1
|
Wurch L, Giannone RJ, Belisle BS, Swift C, Utturkar S, Hettich RL, Reysenbach AL, Podar M. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment. Nat Commun 2016; 7:12115. [PMID: 27378076 PMCID: PMC4935971 DOI: 10.1038/ncomms12115] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/01/2016] [Indexed: 02/06/2023] Open
Abstract
Biological features can be inferred, based on genomic data, for many microbial lineages that remain uncultured. However, cultivation is important for characterizing an organism's physiology and testing its genome-encoded potential. Here we use single-cell genomics to infer cultivation conditions for the isolation of an ectosymbiotic Nanoarchaeota (‘Nanopusillus acidilobi') and its host (Acidilobus, a crenarchaeote) from a terrestrial geothermal environment. The cells of ‘Nanopusillus' are among the smallest known cellular organisms (100–300 nm). They appear to have a complete genetic information processing machinery, but lack almost all primary biosynthetic functions as well as respiration and ATP synthesis. Genomic and proteomic comparison with its distant relative, the marine Nanoarchaeum equitans illustrate an ancient, common evolutionary history of adaptation of the Nanoarchaeota to ectosymbiosis, so far unique among the Archaea. Many microbial lineages have not yet been cultured, which hampers our understanding of their physiology. Here, Wurch et al. use single-cell genomics to infer cultivation conditions for the isolation of a tiny ectosymbiotic nanoarchaeon and its crenarchaeota host from a geothermal spring.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
9 |
108 |
2
|
Brown SD, Nagaraju S, Utturkar S, De Tissera S, Segovia S, Mitchell W, Land ML, Dassanayake A, Köpke M. Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:40. [PMID: 24655715 PMCID: PMC4022347 DOI: 10.1186/1754-6834-7-40] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/19/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND Clostridium autoethanogenum strain JA1-1 (DSM 10061) is an acetogen capable of fermenting CO, CO2 and H2 (e.g. from syngas or waste gases) into biofuel ethanol and commodity chemicals such as 2,3-butanediol. A draft genome sequence consisting of 100 contigs has been published. RESULTS A closed, high-quality genome sequence for C. autoethanogenum DSM10061 was generated using only the latest single-molecule DNA sequencing technology and without the need for manual finishing. It is assigned to the most complex genome classification based upon genome features such as repeats, prophage, nine copies of the rRNA gene operons. It has a low G + C content of 31.1%. Illumina, 454, Illumina/454 hybrid assemblies were generated and then compared to the draft and PacBio assemblies using summary statistics, CGAL, QUAST and REAPR bioinformatics tools and comparative genomic approaches. Assemblies based upon shorter read DNA technologies were confounded by the large number repeats and their size, which in the case of the rRNA gene operons were ~5 kb. CRISPR (Clustered Regularly Interspaced Short Paloindromic Repeats) systems among biotechnologically relevant Clostridia were classified and related to plasmid content and prophages. Potential associations between plasmid content and CRISPR systems may have implications for historical industrial scale Acetone-Butanol-Ethanol (ABE) fermentation failures and future large scale bacterial fermentations. While C. autoethanogenum contains an active CRISPR system, no such system is present in the closely related Clostridium ljungdahlii DSM 13528. A common prophage inserted into the Arg-tRNA shared between the strains suggests a common ancestor. However, C. ljungdahlii contains several additional putative prophages and it has more than double the amount of prophage DNA compared to C. autoethanogenum. Other differences include important metabolic genes for central metabolism (as an additional hydrogenase and the absence of a phophoenolpyruvate synthase) and substrate utilization pathway (mannose and aromatics utilization) that might explain phenotypic differences between C. autoethanogenum and C. ljungdahlii. CONCLUSIONS Single molecule sequencing will be increasingly used to produce finished microbial genomes. The complete genome will facilitate comparative genomics and functional genomics and support future comparisons between Clostridia and studies that examine the evolution of plasmids, bacteriophage and CRISPR systems.
Collapse
|
research-article |
11 |
100 |
3
|
Knapp DW, Dhawan D, Ramos-Vara JA, Ratliff TL, Cresswell GM, Utturkar S, Sommer BC, Fulkerson CM, Hahn NM. Naturally-Occurring Invasive Urothelial Carcinoma in Dogs, a Unique Model to Drive Advances in Managing Muscle Invasive Bladder Cancer in Humans. Front Oncol 2020; 9:1493. [PMID: 32039002 PMCID: PMC6985458 DOI: 10.3389/fonc.2019.01493] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
There is a great need to improve the outlook for people facing urinary bladder cancer, especially for patients with invasive urothelial carcinoma (InvUC) which is lethal in 50% of cases. Improved outcomes for patients with InvUC could come from advances on several fronts including emerging immunotherapies, targeted therapies, and new drug combinations; selection of patients most likely to respond to a given treatment based on molecular subtypes, immune signatures, and other characteristics; and prevention, early detection, and early intervention. Progress on all of these fronts will require clinically relevant animal models for translational research. The animal model(s) should possess key features that drive success or failure of cancer drugs in humans including tumor heterogeneity, genetic-epigenetic crosstalk, immune cell responsiveness, invasive and metastatic behavior, and molecular subtypes (e.g., luminal, basal). Experimental animal models, while essential in bladder cancer research, do not possess these collective features to accurately predict outcomes in humans. These key features, however, are present in naturally-occurring InvUC in pet dogs. Canine InvUC closely mimics muscle-invasive bladder cancer in humans in cellular and molecular features, molecular subtypes, immune response patterns, biological behavior (sites and frequency of metastasis), and response to therapy. Thus, dogs can offer a highly relevant animal model to complement other models in research for new therapies for bladder cancer. Clinical treatment trials in pet dogs with InvUC are considered a win-win-win scenario; the individual dog benefits from effective treatment, the results are expected to help other dogs, and the findings are expected to translate to better treatment outcomes in humans. In addition, the high breed-associated risk for InvUC in dogs (e.g., 20-fold increased risk in Scottish Terriers) offers an unparalleled opportunity to test new strategies in primary prevention, early detection, and early intervention. This review will provide an overview of canine InvUC, summarize the similarities (and differences) between canine and human InvUC, and provide evidence for the expanding value of this canine model in bladder cancer research.
Collapse
|
Review |
5 |
50 |
4
|
Wang J, Toregrosa-Allen S, Elzey BD, Utturkar S, Lanman NA, Bernal-Crespo V, Behymer MM, Knipp GT, Yun Y, Veronesi MC, Sinn AL, Pollok KE, Brutkiewicz RR, Nevel KS, Matosevic S. Multispecific targeting of glioblastoma with tumor microenvironment-responsive multifunctional engineered NK cells. Proc Natl Acad Sci U S A 2021; 118:e2107507118. [PMID: 34740973 PMCID: PMC8609337 DOI: 10.1073/pnas.2107507118] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 01/09/2023] Open
Abstract
Tumor antigen heterogeneity, a severely immunosuppressive tumor microenvironment (TME) and lymphopenia resulting in inadequate immune intratumoral trafficking, have rendered glioblastoma (GBM) highly resistant to therapy. To address these obstacles, here we describe a unique, sophisticated combinatorial platform for GBM: a cooperative multifunctional immunotherapy based on genetically engineered human natural killer (NK) cells bearing multiple antitumor functions including local tumor responsiveness that addresses key drivers of GBM resistance to therapy: antigen escape, immunometabolic reprogramming of immune responses, and poor immune cell homing. We engineered dual-specific chimeric antigen receptor (CAR) NK cells to bear a third functional moiety that is activated in the GBM TME and addresses immunometabolic suppression of NK cell function: a tumor-specific, locally released antibody fragment which can inhibit the activity of CD73 independently of CAR signaling and decrease the local concentration of adenosine. The multifunctional human NK cells targeted patient-derived GBM xenografts, demonstrated local tumor site-specific activity in the tissue, and potently suppressed adenosine production. We also unveil a complex reorganization of the immunological profile of GBM induced by inhibiting autophagy. Pharmacologic impairment of the autophagic process not only sensitized GBM to antigenic targeting by NK cells but promoted a chemotactic profile favorable to NK infiltration. Taken together, our study demonstrates a promising NK cell-based combinatorial strategy that can target multiple clinically recognized mechanisms of GBM progression simultaneously.
Collapse
|
Evaluation Study |
4 |
45 |
5
|
Chen Y, Wang J, Yang S, Utturkar S, Crodian J, Cummings S, Thimmapuram J, San Miguel P, Kuang S, Gribskov M, Plaut K, Casey T. Effect of high-fat diet on secreted milk transcriptome in midlactation mice. Physiol Genomics 2017; 49:747-762. [PMID: 29093195 DOI: 10.1152/physiolgenomics.00080.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
High-fat diet (HFD) during lactation alters milk composition and is associated with development of metabolic diseases in the offspring. We hypothesized that HFD affects milk microRNA (miRNA) and mRNA content, which potentially impact offspring development. Our objective was to determine the effect of maternal HFD on secreted milk transcriptome. To meet this objective, 4 wk old female ICR mice were divided into two treatments: control diet containing 10% kcal fat and HFD containing 60% kcal fat. After 4 wk on CD or HFD, mice were bred while continuously fed the same diets. On postnatal day 2 (P2), litters were normalized to 10 pups, and half the pups in each litter were cross-fostered between treatments. Milk was collected from dams on P10 and P12. Total RNA was isolated from milk fat fraction of P10 samples and used for mRNA-Seq and small RNA-Seq. P12 milk was used to determine macronutrient composition. After 4 wk of prepregnancy feeding HFD mice weighed significantly more than did the control mice. Lactose and fat concentration were significantly ( P < 0.05) higher in milk of HFD dams. Pup weight was significantly greater ( P < 0.05) in groups suckled by HFD vs. control dams. There were 25 miRNA and over 1,500 mRNA differentially expressed (DE) in milk of HFD vs. control dams. DE mRNA and target genes of DE miRNA enriched categories that were primarily related to multicellular organismal development. Maternal HFD impacts mRNA and miRNA content of milk, if bioactive nucleic acids are absorbed by neonate differences may affect development.
Collapse
|
|
8 |
29 |
6
|
Mani SKK, Yan B, Cui Z, Sun J, Utturkar S, Foca A, Fares N, Durantel D, Lanman N, Merle P, Kazemian M, Andrisani O. Restoration of RNA helicase DDX5 suppresses hepatitis B virus (HBV) biosynthesis and Wnt signaling in HBV-related hepatocellular carcinoma. Theranostics 2020; 10:10957-10972. [PMID: 33042264 PMCID: PMC7532671 DOI: 10.7150/thno.49629] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Rationale: RNA helicase DDX5 is downregulated during hepatitis B virus (HBV) replication, and poor prognosis HBV-related hepatocellular carcinoma (HCC). The aim of this study is to determine the mechanism and significance of DDX5 downregulation for HBV-driven HCC, and identify biologics to prevent DDX5 downregulation. Methods: Molecular approaches including immunoblotting, qRT-PCR, luciferase transfections, hepatosphere assays, Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq), and RNA-seq were used with cellular models of HBV replication, HBV infection, and HBV-related liver tumors, as well as bioinformatic analyses of liver cancer cells from two independent cohorts. Results: We demonstrate that HBV infection induces expression of the proto-oncogenic miR17~92 and miR106b~25 clusters which target the downregulation of DDX5. Increased expression of these miRNAs is also detected in HBV-driven HCCs exhibiting reduced DDX5 mRNA. Stable DDX5 knockdown (DDX5KD) in HBV replicating hepatocytes increased viral replication, and resulted in hepatosphere formation, drug resistance, Wnt activation, and pluripotency gene expression. ATAC-seq of DDX5KD compared to DDX5 wild-type (WT) cells identified accessible chromatin regions enriched in regulation of Wnt signaling genes. RNA-seq analysis comparing WT versus DDX5KD cells identified enhanced expression of multiple genes involved in Wnt pathway. Additionally, expression of Disheveled, DVL1, a key regulator of Wnt pathway activation, was significantly higher in liver cancer cells with low DDX5 expression, from two independent cohorts. Importantly, inhibitors (antagomirs) to miR17~92 and miR106b~25 restored DDX5 levels, reduced DVL1 expression, and suppressed both Wnt activation and viral replication. Conclusion : DDX5 is a negative regulator of Wnt signaling and hepatocyte reprogramming in HCCs. Restoration of DDX5 levels by miR17~92 / miR106b~25 antagomirs in HBV-infected patients can be explored as both antitumor and antiviral strategy.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
28 |
7
|
Woo HL, Utturkar S, Klingeman D, Simmons BA, DeAngelis KM, Brown SD, Hazen TC. Draft Genome Sequence of the Lignin-Degrading Burkholderia sp. Strain LIG30, Isolated from Wet Tropical Forest Soil. GENOME ANNOUNCEMENTS 2014; 2:e00637-14. [PMID: 24948777 PMCID: PMC4064042 DOI: 10.1128/genomea.00637-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/06/2014] [Indexed: 02/01/2023]
Abstract
Burkholderia species are common soil Betaproteobacteria capable of degrading recalcitrant aromatic compounds and xenobiotics. Burkholderia sp. strain LIG30 was isolated from wet tropical forest soil and is capable of utilizing lignin as a sole carbon source. Here we report the draft genome sequence of Burkholderia sp. strain LIG30.
Collapse
|
brief-report |
11 |
21 |
8
|
Dao TN, Utturkar S, Atallah Lanman N, Matosevic S. TIM-3 Expression Is Downregulated on Human NK Cells in Response to Cancer Targets in Synergy with Activation. Cancers (Basel) 2020; 12:cancers12092417. [PMID: 32858904 PMCID: PMC7565804 DOI: 10.3390/cancers12092417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
Among natural killer (NK) cell receptors, the T-cell immunoglobulin and mucin-containing domain (TIM-3) has been associated with both inhibitory and activating functions, depending on context and activation pathway. Ex vivo and in vitro, expression of TIM-3 is inducible and depends on activation stimulus. Here, we report that TIM-3 expression can be downregulated on NK cells under specific conditions. When NK cells are exposed to cancer targets, they synergize with stimulation conditions to induce a substantial decrease in TIM-3 expression on their surface. We found that such downregulation occurs following prior NK activation. Downregulated TIM-3 expression correlated to lower cytotoxicity and lower interferon gamma (IFN-γ) expression, fueling the notion that TIM-3 might function as a benchmark for human NK cell dysfunction.
Collapse
|
Journal Article |
5 |
15 |
9
|
I. Mohammed S, Utturkar S, Lee M, Yang HH, Cui Z, Atallah Lanman N, Zhang G, Ramos Cardona XE, Mittal SK, Miller MA. Ductal Carcinoma In Situ Progression in Dog Model of Breast Cancer. Cancers (Basel) 2020; 12:cancers12020418. [PMID: 32053966 PMCID: PMC7072653 DOI: 10.3390/cancers12020418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/25/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
The mechanisms that drive ductal carcinoma in situ (DCIS) progression to invasive cancer are not clear. Studying DCIS progression in humans is challenging and not ethical, thus necessitating the characterization of an animal model that faithfully resembles human disease. We have characterized a canine model of spontaneous mammary DCIS and invasive cancer that shares histologic, molecular, and diagnostic imaging characteristics with DCIS and invasive cancer in women. The purpose of the study was to identify markers and altered signaling pathways that lead to invasive cancer and shed light on early molecular events in breast cancer progression and development. Transcriptomic studies along the continuum of cancer progression in the mammary gland from healthy, through atypical ductal hyperplasia (ADH), DCIS, and invasive carcinoma were performed using the canine model. Gene expression profiles of preinvasive DCIS lesions closely resemble those of invasive carcinoma. However, certain genes, such as SFRP2, FZD2, STK31, and LALBA, were over-expressed in DCIS compared to invasive cancer. The over-representation of myoepithelial markers, epithelial-mesenchymal transition (EMT), canonical Wnt signaling components, and other pathways induced by Wnt family members distinguishes DCIS from invasive. The information gained may help in stratifying DCIS as well as identify actionable targets for primary and tertiary prevention or targeted therapy.
Collapse
|
Journal Article |
5 |
10 |
10
|
Chambers AM, Lupo KB, Wang J, Cao J, Utturkar S, Atallah Lanman N, Bernal-Crespo V, Jalal S, Pine SR, Toregrosa-Allen S, Elzey BD, Matosevic S. Engineered natural killer cells impede the immunometabolic CD73-adenosine axis in solid tumors. eLife 2022; 11:73699. [PMID: 35815945 PMCID: PMC9342955 DOI: 10.7554/elife.73699] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 07/10/2022] [Indexed: 11/24/2022] Open
Abstract
Immunometabolic reprogramming due to adenosine produced by CD73 (encoded by the 5’-ectonucleotidase gene NT5E) is a recognized immunosuppressive mechanism contributing to immune evasion in solid tumors. Adenosine is not only known to contribute to tumor progression, but it has specific roles in driving dysfunction of immune cells, including natural killer (NK) cells. Here, we engineered human NK cells to directly target the CD73-adenosine axis by blocking the enzymatic activity of CD73. In doing so, the engineered NK cells not only impaired adenosinergic metabolism driven by the hypoxic uptake of ATP by cancer cells in a model of non-small-cell lung cancer, but also mediated killing of tumor cells due to the specific recognition of overexpressed CD73. This resulted in a ‘single agent’ immunotherapy that combines antibody specificity, blockade of purinergic signaling, and killing of targets mediated by NK cells. We also showed that CD73-targeted NK cells are potent in vivo and result in tumor arrest, while promoting NK cell infiltration into CD73+ tumors and enhancing intratumoral activation.
Collapse
|
|
3 |
10 |
11
|
Utturkar S, Dassanayake A, Nagaraju S, Brown SD. Bacterial Differential Expression Analysis Methods. Methods Mol Biol 2020; 2096:89-112. [PMID: 32720149 DOI: 10.1007/978-1-0716-0195-2_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RNA-Seq examines global gene expression to provide insights into cellular processes, and it can be particularly informative when comparing contrasting physiological states or strains. Although relatively routine in many laboratories, there are many steps involved in performing a transcriptomics experiment to ensure representative and high-quality results are generated for analysis. In this chapter, we present the application of widely used bioinformatic methodologies to assess, trim, and filter RNA-seq reads for quality using FastQC and Trim Galore, respectively. High-quality reads are mapped using Bowtie2 and differentially expressed genes across different groups were estimated using the DEseq2 R-Bioconductor package. In addition, we describe the various steps to perform the sample-wise data quality assessment by generating exploratory plots through the DESeq2 package. Simple steps to calculate the significant differentially expressed genes, up- and down-regulated genes, and exporting the data and images are also included. A Venn diagram is a useful method to compare the differentially expressed genes across various comparisons and steps to generate the Venn diagram from DESeq2 results are provided. Finally, the output from DESeq2 is compared to published results from EdgeR. The Clostridium autoethanogenum data are published and publicly available.
Collapse
|
|
5 |
6 |
12
|
Sood S, Alpsoy A, Jiao G, Dhiman A, King CS, Conjelko G, Hallett J, Utturkar S, Hutchcroft J, Dykhuizen E. Loss of Bicra/Gltscr1 leads to a defect in fetal liver macrophages responsible for erythrocyte maturation in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618940. [PMID: 39464106 PMCID: PMC11507987 DOI: 10.1101/2024.10.17.618940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
GLTSCR1, a protein encoded by the Bicra gene, is a defining subunit of the SWI/SNF (also called mammalian BAF) chromatin remodeling subcomplex called GBAF/ncBAF. To determine the role of GLTSCR1 during mouse development, we generated a Bicra germline knockout mouse using CRISPR/Cas9. Mice with homozygous loss of Bicra were born at Mendelian ratios but were small, pale and died within 24 hours after birth. Histology indicated blood-related defects including defective erythroblastic islands and irregularly sized red blood cells. Gene expression profiling of fetal livers pinpointed a defect in liver resident macrophages involved in the last stage of erythrocyte maturation, resulting in accumulation of nucleated erythrocytes in Bicra-/- pups. Together, these results demonstrate that Bicra is critical for fetal liver macrophage function during development.
Collapse
|
Preprint |
1 |
|
13
|
Kuerbitz EM, Dhawan D, Utturkar S, Sola MF, Enstrom AW, Fourez LM, Knapp DW. Characterisation of Gene Expression in Canine Invasive Urothelial Carcinoma Using a NanoString-Based Urine Assay. Vet Comp Oncol 2025. [PMID: 40104990 DOI: 10.1111/vco.13046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/16/2025] [Accepted: 02/07/2025] [Indexed: 03/20/2025]
Abstract
For human and canine invasive urothelial carcinoma (InvUC), there is growing interest in using the molecular characteristics of a tumour to guide individualised treatment strategies. The objective of this study was to use a non-invasive, urine-based method to characterise gene expression signatures in dogs with InvUC. RNA was isolated from canine InvUC tumour samples, urine sediment from dogs with InvUC, normal canine bladder mucosa, and normal canine urine sediment and queried using the nCounter Canine Immuno-Oncology Panel. Differential gene expression profiles were characterised for tissue and urine samples, and nCounter results were compared to bulk RNA-seq gene expression profiles. The effect of spiking normal urine with white blood cells (WBCs) from the same dog was also assessed. Key genes involved in antitumor immune responses and oncogenic signalling pathways, including potential small molecule inhibitor targets, were differentially expressed in tumour and urine samples from dogs with InvUC, compared to normal samples. nCounter-generated gene expression profiles for tumour tissue and urine from dogs with InvUC were highly correlated, whereas the correlation between the nCounter IO panel and bulk RNA-seq results for InvUC tissue was moderate. The addition of WBCs to normal urine affected the gene expression profiles. Analysis of canine urine using the nCounter canine IO panel has good potential for revealing gene expression patterns in InvUC. Additional studies are warranted to determine the extent to which WBC infiltration affects the results related to immune response patterns and the expression of other genes.
Collapse
|
|
1 |
|
14
|
Dao T, Matosevic S, Utturkar S, Lanman N. 530 T-cell immunoglobulin– and mucin domain–containing (TIM)–3 downregulation in response to ex vivo activation and cancer targets correlates to NK cell functionality. J Immunother Cancer 2020. [DOI: 10.1136/jitc-2020-sitc2020.0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BackgroundNatural killer (NK) cells are part of the innate immune system, but are capable of participating in both innate and adaptive immune responses due to their wide range of cytolytic activities, from degranulation, secretion of cytokines to antibody-dependent cell-mediated cytotoxicity. These are possible due to the cells’ ability to recognize self and non-self-entities via the net signal generated from their activating and inhibitory receptors upon engagement. TIM-3 is a part of the NK receptor repertoire, expressed commonly on different lymphocytes. In T cells, TIM-3 is established as an inhibitory marker. However, in NK cells, the role of TIM-3 could be agonistic or antagonistic to NK cytotoxicity based on the disease type and activation status, though limited information is known about its role in cancer and its correlation to NK cell effector functions.MethodsWe measured TIM-3 expression upon activation of human NK cells under various conditions. NK cells were isolated from peripheral blood of healthy donors and expanded either in K562-based feeder media or feeder-free OpTmizerTM media. After expansion, they were co-cultured for 4 hours with patient-derived glioblastoma multiforme cells (GBM43) at effector:target ratios of 2.5:1 and 10:1. To evaluate the effect of TIM-3 expression on NK cells, 7AAD/CFSE killing assays, CD107a degranulation and IFNγ secretion assays were carried out while blocking TIM-3 with neutralizing antibodies. Bioinformatics analysis of GBM patient RNAseq data was carried out to correlate TIM-3 expression with in vivo function, and this analysis is supplemented by phenotyping TIM-3 on NK cells isolated from patient samples in order to infer the role of this receptor in GBM.ResultsWe found that TIM-3 was downregulated on OpTmizerTM -cultured NK cells once exposed to cancer targets, and this correlated to a decreased in NK killing capacity when compared to feeder media-cultured NK cells, where the downregulation was not observed. Culturing NK cells in different derivatives of both media suggested that a combination of serum and cytokines can induce TIM-3 expression change to cancer targets. Flow cytometric assays revealed that while degranulation remained the same, the decreased in cytotoxicity corresponded to a decrease in IFNγ secretion. In GBM patient datasets, TIM-3 expression correlates to high IFN-γ levels and associates with both pro- and anti-tumorigenic functions. Here, we report a new role of TIM-3 in modulating NK functionality by correlating its loss to a loss in NK cell effector functions, and how its expression can be modified by ex vivo activation.ConclusionsTIM-3 expression on NK cells can be induced by ex vivo expansion, and this change in expression could influence NK cytotoxicity and cytokine secretion. Our data suggested that TIM-3 is not necessarily an inhibitory marker in GBM, and more likely to be a status marker or an activation limiter, working in conjunction with other receptors to modulate NK cell anti-tumor responses.Ethics ApprovalThis study was approved by Purdue Intuition’s Ethics Board, approval number [1804020540].
Collapse
|
|
5 |
|
15
|
Lupo KB, Torregrosa-Allen S, Elzey BD, Utturkar S, Lanman NA, Cohen-Gadol AA, Slivova V, McIntosh M, Pollok KE, Matosevic S. TIGIT contributes to the regulation of 4-1BB and does not define NK cell dysfunction in glioblastoma. iScience 2023; 26:108353. [PMID: 38053639 PMCID: PMC10694670 DOI: 10.1016/j.isci.2023.108353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/27/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023] Open
Abstract
TIGIT is a receptor on human natural killer (NK) cells. Here, we report that TIGIT does not spontaneously induce inhibition of NK cells in glioblastoma (GBM), but rather acts as a decoy-like receptor, by usurping binding partners and regulating expression of NK activating ligands and receptors. Our data show that in GBM patients, one of the underpinnings of unresponsiveness to TIGIT blockade is that by targeting TIGIT, NK cells do not lose an inhibitory signal, but gains the potential for new interactions with other, shared, TIGIT ligands. Therefore, TIGIT does not define NK cell dysfunction in GBM. Further, in GBM, TIGIT+ NK cells are hyperfunctional. In addition, we discovered that 4-1BB correlates with TIGIT expression, the agonism of which contributes to TIGIT immunotherapy. Overall, our data suggest that in GBM, TIGIT acts as a regulator of a complex network, and provide new clues about its use as an immunotherapeutic target.
Collapse
|
research-article |
2 |
|
16
|
Kim SQ, Utturkar S, Atallah NM, Kim KH. Abstract 5468: A pharmacological inhibition of sterol O-acyltransferase 1improves response to enzalutamide in prostate cancer. Cancer Res 2022. [DOI: 10.1158/1538-7445.am2022-5468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Prostate cancer (PCa) growth is mediated by androgens via activation of androgen receptor (AR). Accordingly, androgen deprivation therapy (ADT) is the gold standard for the treatment of advanced PCa, but progression to castration-resistant PCa (CRPC) follows. Enzalutamide (ENZ) is an AR antagonist used for the management of CRPC. However, patients acquire resistance to the drug in a short period. Meanwhile, cholesterol is a precursor to androgen and its metabolism is dysregulated in PCa. In addition, cholesteryl ester (CE) accumulation aggravates tumor growth but its association with ENZ treatment has not been studied. Thus, we hypothesized that inhibition of CE formation by blockage of sterol-O-acyltransferase 1 (SOAT1) could enhance the response to ENZ. We found that SOAT1 mRNA is upregulated in clinical prostate tumors compared to normal/benign tissues in TCGA dataset. SOAT1 mRNA level was also highly correlated with AR expression in SU2CF/PCF cohorts and TCGA dataset, suggesting critical role of the cholesterol metabolism in prostate tumor progression and potential association to AR signaling pathway. We treated 22RV1 prostate cancer cells with ENZ in the presence or absence of SOAT1 inhibitor, avasimibe, and found the combination treatment effectively reduced the level of CEs compared to control, which accompanied inhibition of colony formation and cell proliferation. Combination index value was calculated and the relationship between the two drugs showed synergism. Furthermore, genetic knockdown of SOAT1 sensitized cells to ENZ treatment and also reduced the number of colonies formed. In TCGA dataset, patients who had previously undergone ADT were analyzed, and their Kaplan-Meier survival curve showed low SOAT1 expressing patients had a significantly longer progression-free survival rate than their counterpart, indicating that SOAT1 could act as a prognostic biomarker predicting PCa treatment outcome. Gene set enrichment analysis of patients with ADT history showed androgen response gen sets were enriched in high SOAT1 expressing PCa patient group. Inhibition of SOAT1 and the combination treatment did not change AR and ARV7 protein level, but downstream genes such as PSA were down regulated upon the combination treatment. In summary, our in vitro results showed blockage of SOAT1 enzyme sensitized PCa cells to ENZ treatment and analysis of PCa patient data suggested that SOAT1 gene expression has potential as a prognostic marker.
Citation Format: Sora Q. Kim, Sagar Utturkar, Nadia M. Atallah, Kee-Hong Kim. A pharmacological inhibition of sterol O-acyltransferase 1improves response to enzalutamide in prostate cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 5468.
Collapse
|
|
3 |
|
17
|
Li Z, Kim W, Utturkar S, Yan B, Lanman NA, Elzey BD, Kazemian M, Yeo Y, Andrisani O. DDX5 deficiency drives non-canonical NF-κB activation and NRF2 expression, influencing sorafenib response and hepatocellular carcinoma progression. Cell Death Dis 2024; 15:583. [PMID: 39122708 PMCID: PMC11315975 DOI: 10.1038/s41419-024-06977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
In advanced hepatocellular carcinoma (HCC), RNA helicase DDX5 regulates the Wnt/β-catenin-ferroptosis axis, influencing the efficacy of the multi-tyrosine kinase inhibitor (mTKI) sorafenib. DDX5 inhibits Wnt/β-catenin signaling, preventing sorafenib-induced ferroptosis escape. Sorafenib/mTKIs reduce DDX5 expression, correlating with poor patient survival post-sorafenib treatment. Notably, DDX5-knockout in HCC cells activates Wnt/β-catenin signaling persistently. Herein, we investigate the mechanistic impact of Wnt/β-catenin activation resulting from DDX5 downregulation in the progression and treatment of HCC. RNAseq analyses identified shared genes repressed by DDX5 and upregulated by sorafenib, including Wnt signaling genes, NF-κB-inducing kinase (NIK) essential for non-canonical NF-κB (p52/RelB) activation, and cytoprotective transcription factor NRF2. We demonstrate, Wnt/β-catenin activation induced NIK transcription, leading to non-canonical NF-κB activation, which subsequently mediated NRF2 transcription. Additionally, DDX5 deficiency extended NRF2 protein half-life by inactivating KEAP1 through p62/SQSTM1 stabilization. In a preclinical HCC mouse model, NRF2 knockdown or DDX5 overexpression restricted tumor growth upon sorafenib treatment, via induction of ferroptosis. Importantly, DDX5-knockout HCC cells exhibited elevated expression of Wnt signaling genes, NIK, p52/RelB, and NRF2-regulated genes, regardless of sorafenib treatment. Transcriptomic analyses of HCCs from TCGA and the Stelic Animal Model (STAM) of non-alcoholic steatohepatitis revealed elevated expression of these interconnected pathways in the context of DDX5 downregulation. In conclusion, DDX5 deficiency triggers Wnt/β-catenin signaling, promoting p52/RelB and NRF2 activation, thereby enabling ferroptosis evasion upon sorafenib treatment. Similarly, independent of sorafenib, DDX5 deficiency in liver tumors enhances activation and gene expression of these interconnected pathways, underscoring the clinical relevance of DDX5 deficiency in HCC progression and therapeutic response.
Collapse
|
research-article |
1 |
|
18
|
Lupo KB, Yao X, Borde S, Wang J, Torregrosa-Allen S, Elzey BD, Utturkar S, Lanman NA, McIntosh M, Matosevic S. synNotch-programmed iPSC-derived NK cells usurp TIGIT and CD73 activities for glioblastoma therapy. Nat Commun 2024; 15:1909. [PMID: 38429294 PMCID: PMC10907695 DOI: 10.1038/s41467-024-46343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
Severe heterogeneity within glioblastoma has spurred the notion that disrupting the interplay between multiple elements on immunosuppression is at the core of meaningful anti-tumor responses. T cell immunoreceptor with Ig and ITIM domains (TIGIT) and its glioblastoma-associated antigen, CD155, form a highly immunosuppressive axis in glioblastoma and other solid tumors, yet targeting of TIGIT, a functionally heterogeneous receptor on tumor-infiltrating immune cells, has largely been ineffective as monotherapy, suggesting that disruption of its inhibitory network might be necessary for measurable responses. It is within this context that we show that the usurpation of the TIGIT - CD155 axis via engineered synNotch-mediated activation of induced pluripotent stem cell-derived natural killer (NK) cells promotes transcription factor-mediated activation of a downstream signaling cascade that results in the controlled, localized blockade of CD73 to disrupt purinergic activity otherwise resulting in the production and accumulation of immunosuppressive extracellular adenosine. Such "decoy" receptor engages CD155 binding to TIGIT, but tilts inhibitory TIGIT/CD155 interactions toward activation via downstream synNotch signaling. Usurping activities of TIGIT and CD73 promotes the function of adoptively transferred NK cells into intracranial patient-derived models of glioblastoma and enhances their natural cytolytic functions against this tumor to result in complete tumor eradication. In addition, targeting both receptors, in turn, reprograms the glioblastoma microenvironment via the recruitment of T cells and the downregulation of M2 macrophages. This study demonstrates that TIGIT/CD155 and CD73 are targetable receptor partners in glioblastoma. Our data show that synNotch-engineered pluripotent stem cell-derived NK cells are not only effective mediators of anti-glioblastoma responses within the setting of CD73 and TIGIT/CD155 co-targeting, but represent a powerful allogeneic treatment option for this tumor.
Collapse
|
research-article |
1 |
|
19
|
Hasan H, Lanman NA, Utturkar S, Kasinski AL. Abstract 1537: Understanding role of uniquely enriched RNAs carried in non-small cell lung cancer derived extracellular vesicles and dynamics of their selective export. Cancer Res 2022. [DOI: 10.1158/1538-7445.am2022-1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The dynamic interaction mediated by extracellular vesicles (EVs) between cancer cells and microenvironment has been shown to regulate cancer progression. Specifically, tumor derived EVs alter the phenotypes of recipient cells by delivering functional biomolecules including RNAs (EV-RNA). Studies from our lab reveal the impact of NSCLC derived EVs (Calu6 and H358) in promoting invasion of non-tumorigenic cells (BEAS-2B) and disruption of an epithelial barrier. We further determined that of all the major macromolecules contained in EVs, EV-RNA is a significant contributor to the observed phenotypes. Additionally, our data supports dysregulation of RNA subsets enclosed in NSCLC cell-derived EVs in comparison with non-tumorigenic EVs. Interestingly, RNA sequencing analysis revealed preferential enrichment of several small RNAs (<200nt), especially miRNAs, in EVs isolated from NSCLC cell lines which suggest the presence of precise mechanisms involved in loading and export of RNAs into EVs. We shortlisted a cohort of uniquely enriched miRNAs in EVs derived from Calu6 and H358 cell lines to understand their combinatorial effects on non-tumorigenic recipient cells. Amongst the shortlisted candidates miR-100, miR-10b, miR-21, miR-155 and miR-486 stand out as potential contributors to NSCLC-EV mediated function. To understand the dynamics of export of miRNAs into EVs, we transfected Calu6 cells with one of the uniquely enriched fluorescently labelled candidate miRNA (miR-451) and tracked its export into EVs. We first verified that inclusion of a fluorophore to the RNA does not impair RNA loading into EVs. To set the experiment up, one EV-enriched RNA and one Cell-enriched RNA (as a control) conjugated with different fluorophores were transfected into cells, and cellular and EV fluorescence were monitored. Interestingly, cellular fluorescence corresponding to the EV-enriched RNA diminished, while fluorescence corresponding to the Cell-enriched RNA was retained. Fluorescence signal for EV-enriched RNA showed retention in EVs isolated 48 hours after transfection. Validation of release of candidate miRNA into EVs was performed by inhibiting biosynthesis of EVs after treatment with nSMase inhibitor Gw4869. Inhibition of EV release caused EV-enriched RNA to be retained by the cells which was confirmed following flow cytometry analysis of treated cells. Despite clear evidence that dysregulated EV-RNA subsets enclosed in cancer cell-derived EVs can modulate the cellular microenvironment, research showing dynamics and mechanisms of their export is limiting. Hence, there is a critical need to reveal mechanistic details of RNA export into EVs. Resulting data from this study is expected to not only reveal functional EV-RNA subsets and dynamics of their loading but will ultimately point to novel targets for future therapeutic intervention.
Citation Format: Humna Hasan, Nadia A. Lanman, Sagar Utturkar, Andrea L. Kasinski. Understanding role of uniquely enriched RNAs carried in non-small cell lung cancer derived extracellular vesicles and dynamics of their selective export [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 1537.
Collapse
|
|
3 |
|
20
|
Li Z, Caron de Fromentel C, Kim W, Wang WH, Sun J, Yan B, Utturkar S, Lanman NA, Elzey BD, Yeo Y, Zhang H, Kazemian M, Levrero M, Andrisani O. RNA helicase DDX5 modulates sorafenib sensitivity in hepatocellular carcinoma via the Wnt/β-catenin-ferroptosis axis. Cell Death Dis 2023; 14:786. [PMID: 38036507 PMCID: PMC10689482 DOI: 10.1038/s41419-023-06302-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Reduced expression of the RNA helicase DDX5 associated with increased hepatocellular carcinoma (HCC) tumor grade and poor patient survival following treatment with sorafenib. While immunotherapy is the first-line treatment for HCC, sorafenib and other multi-tyrosine kinase inhibitors (mTKIs) are widely used when immunotherapy is contra-indicated or fails. Herein, we elucidate the role of DDX5 in sensitizing HCC to sorafenib, offering new therapeutic strategies. Treatment of various human HCC cell lines with sorafenib/mTKIs downregulated DDX5 in vitro and in preclinical HCC models. Conversely, DDX5 overexpression reduced the viability of sorafenib-treated cells via ferroptosis, suggesting a role for DDX5 in sorafenib sensitivity. RNAseq of wild-type vs. DDX5-knockdown cells treated with or without sorafenib identified a set of common genes repressed by DDX5 and upregulated by sorafenib. This set significantly overlaps with Wnt signaling genes, including Disheveled-1 (DVL1), an indispensable Wnt activator and prognostic indicator of poor survival for sorafenib-treated patients. DDX5-knockout (DDX5KO) HCC cells exhibited DVL1 induction, Wnt/β-catenin pathway activation, and ferroptosis upon inhibition of canonical Wnt signaling. Consistently, xenograft HCC tumors exhibited reduced growth by inhibition of Wnt/β-catenin signaling via induction of ferroptosis. Significantly, overexpression of DDX5 in HCC xenografts repressed DVL1 expression and increased ferroptosis, resulting in reduced tumor growth by sorafenib. We conclude that DDX5 downregulation by sorafenib mediates adaptive resistance by activating Wnt/β-catenin signaling, leading to ferroptosis escape. Conversely, overexpression of DDX5 in vivo enhances the anti-tumor efficacy of sorafenib by suppressing Wnt/β-catenin activation and induction of ferroptosis. Thus, DDX5 overexpression in combination with mTKIs is a promising therapeutic strategy for HCC.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
|
21
|
Figueiredo ML, Utturkar S, Kumar S, Fonseca-Alves CE. Transcriptomic analysis of mouse TRAMP cell lines and tumors provide insights into shared pathways and therapeutic targets. CELL INSIGHT 2024; 3:100184. [PMID: 39175940 PMCID: PMC11339039 DOI: 10.1016/j.cellin.2024.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
The present study focused on comparing the gene expression profiles of different mouse models of prostate cancer, focusing on the TRAMP transgenic model and its derived cell lines and extending the comparisons to relevant genetically engineered mouse models and human prostate cancer datasets. Employing RNA sequencing, we examined different levels of prostate cancer aggressiveness from the original TRAMP cells to the TRAMP-C2 (TC2) derived cell line and extending to the aggressive TC2-Ras (TC2R) cells and tumors. TC2R acquire the ability to grow in bone tissue upon implantation, unlike the parental TC2 cells. Analysis identified upregulated genes in cell cycle regulation, immune response, and mitotic processes in TRAMP compared to wild-type tissues. TC2 cells exhibited unique gene profiles enriched in ECM organization and tissue development pathways, while TC2R cells showed increased cytokine signaling and motility genes, with decreased ECM and immune response pathways. In vivo TC2R models demonstrated enhanced ECM organization and receptor tyrosine kinase signaling in tumors, notably enriching immune processes and collagen degradation pathways in intratibial tumors. Comparative analysis among mouse and human datasets showed overlaps, particularly in pathways relating to mitotic cycle regulation, ECM organization, and immune interactions. A gene signature identified in TC2R tumors correlated with aggressive tumor behavior and poor survival in human datasets. Further immune cell landscape analysis of TC2R tumors revealed altered T cell subsets and macrophages, confirmed in single-cell RNA-seq from human samples. TC2R models thus hold significant promise in helping advance preclinical therapeutics, potentially contributing to improved prostate cancer patient outcomes.
Collapse
|
research-article |
1 |
|