1
|
Enomoto R, Tanimori T, Naito T, Yoshida T, Yanagita S, Mori M, Edwards PG, Asahara A, Bicknell GV, Gunji S, Hara S, Hara T, Hayashi S, Itoh C, Kabuki S, Kajino F, Katagiri H, Kataoka J, Kawachi A, Kifune T, Kubo H, Kushida J, Maeda S, Maeshiro A, Matsubara Y, Mizumoto Y, Moriya M, Muraishi H, Muraki Y, Nakase T, Nishijima K, Ohishi M, Okumura K, Patterson JR, Sakurazawa K, Suzuki R, Swaby DL, Takano K, Takano T, Tokanai F, Tsuchiya K, Tsunoo H, Uruma K, Watanabe A, Yoshikoshi T. The acceleration of cosmic-ray protons in the supernova remnant RX J1713.7-3946. Nature 2002; 416:823-6. [PMID: 11976676 DOI: 10.1038/416823a] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protons with energies up to approximately 10(15) eV are the main component of cosmic rays, but evidence for the specific locations where they could have been accelerated to these energies has been lacking. Electrons are known to be accelerated to cosmic-ray energies in supernova remnants, and the shock waves associated with such remnants, when they hit the surrounding interstellar medium, could also provide the energy to accelerate protons. The signature of such a process would be the decay of pions (pi(0)), which are generated when the protons collide with atoms and molecules in an interstellar cloud: pion decay results in gamma-rays with a particular spectral-energy distribution. Here we report the observation of cascade showers of optical photons resulting from gamma-rays at energies of approximately 10(12) eV hitting Earth's upper atmosphere, in the direction of the supernova remnant RX J1713.7-3946. The spectrum is a good match to that predicted by pion decay, and cannot be explained by other mechanisms.
Collapse
|
|
23 |
203 |
2
|
Narita N, Tanemura A, Murali R, Scolyer RA, Huang S, Arigami T, Yanagita S, Chong KK, Thompson JF, Morton DL, Hoon DS. Functional RET G691S polymorphism in cutaneous malignant melanoma. Oncogene 2009; 28:3058-3068. [PMID: 19561646 PMCID: PMC2738597 DOI: 10.1038/onc.2009.164] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 03/11/2009] [Accepted: 05/15/2009] [Indexed: 01/24/2023]
Abstract
RET proto-oncogene encodes a receptor tyrosine kinase whose ligand is glial cell line-derived neurotrophic factor (GDNF), and its polymorphism at G691S juxtamembrane region (RETp) is a germline polymorphism. Cutaneous melanomas, particularly the desmoplastic subtype, are highly neurotropic; thus we sought to determine the frequency of RETp in cutaneous melanoma and its functional responsiveness to GDNF. RETp was assessed in 71 non-desmoplastic cutaneous melanomas (non-DMs) and 70 desmoplastic melanomas (DMs). Melanoma cell lines with RETp, RET wild type (RETwt), BRAF V600E mutation (BRAFmt) or BRAF wild type (BRAFwt) were assessed for functional activity. RETp frequency was significantly higher in DMs (61%) than in non-DMs (31%, P<0.001). BRAFmt was detected in only 11% of DMs. GDNF stimulation significantly amplified cell proliferation, migration and invasion in RETp, but not in RETwt melanoma cells. GDNF stimulation of RETp cell lines enhanced phosphorylation of extracellular signal-regulated kinase (ERK) and Akt of the RET-RAS-RAF-ERK and RET-phosphatidylinositol 3-kinase (PI3K)-Akt pathways, respectively. GDNF response of RETp cells in signal transduction and other functional studies were not affected by BRAFmt. The study demonstrates that RETp is frequently found in cutaneous melanoma, particularly desmoplastic subtypes, and responds to GDNF inducing events favorable for tumor progression.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
55 |
3
|
Doke T, Fujii M, Fujimoto M, Fujiki K, Fukui T, Gliem F, Güttler W, Hasebe N, Hayashi T, Ito T, Itsumi K, Kashiwagi T, Kikuchi J, Kohno T, Kokubun S, Livi S, Maezawa K, Moriya H, Munakata K, Murakami H, Muraki Y, Nagoshi H, Nakamoto A, Nagata K, Nishida A, Rathje R, Shino T, Sommer H, Takashima T, Terasawa T, Ullaland S, Weiss W, Wilken B, Yamamoto T, Yanagimachi T, Yanagita S. The Energetic Particle Spectrometer HEP onboard the GEOTAIL Spacecraft. ACTA ACUST UNITED AC 1994. [DOI: 10.5636/jgg.46.713] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
31 |
38 |
4
|
Adriani O, Akaike Y, Asano K, Asaoka Y, Bagliesi MG, Bigongiari G, Binns WR, Bonechi S, Bongi M, Brogi P, Buckley JH, Cannady N, Castellini G, Checchia C, Cherry ML, Collazuol G, Di Felice V, Ebisawa K, Fuke H, Guzik TG, Hams T, Hareyama M, Hasebe N, Hibino K, Ichimura M, Ioka K, Ishizaki W, Israel MH, Javaid A, Kasahara K, Kataoka J, Kataoka R, Katayose Y, Kato C, Kawanaka N, Kawakubo Y, Krawczynski HS, Krizmanic JF, Kuramata S, Lomtadze T, Maestro P, Marrocchesi PS, Messineo AM, Mitchell JW, Miyake S, Mizutani K, Moiseev AA, Mori K, Mori M, Mori N, Motz HM, Munakata K, Murakami H, Nakahira S, Nishimura J, de Nolfo GA, Okuno S, Ormes JF, Ozawa S, Pacini L, Palma F, Papini P, Penacchioni AV, Rauch BF, Ricciarini SB, Sakai K, Sakamoto T, Sasaki M, Shimizu Y, Shiomi A, Sparvoli R, Spillantini P, Stolzi F, Takahashi I, Takayanagi M, Takita M, Tamura T, Tateyama N, Terasawa T, Tomida H, Torii S, Tsunesada Y, Uchihori Y, Ueno S, Vannuccini E, Wefel JP, Yamaoka K, Yanagita S, Yoshida A, Yoshida K, Yuda T. Energy Spectrum of Cosmic-Ray Electron and Positron from 10 GeV to 3 TeV Observed with the Calorimetric Electron Telescope on the International Space Station. PHYSICAL REVIEW LETTERS 2017; 119:181101. [PMID: 29219544 DOI: 10.1103/physrevlett.119.181101] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 06/07/2023]
Abstract
First results of a cosmic-ray electron and positron spectrum from 10 GeV to 3 TeV is presented based upon observations with the CALET instrument on the International Space Station starting in October, 2015. Nearly a half million electron and positron events are included in the analysis. CALET is an all-calorimetric instrument with total vertical thickness of 30 X_{0} and a fine imaging capability designed to achieve a large proton rejection and excellent energy resolution well into the TeV energy region. The observed energy spectrum over 30 GeV can be fit with a single power law with a spectral index of -3.152±0.016 (stat+syst). Possible structure observed above 100 GeV requires further investigation with increased statistics and refined data analysis.
Collapse
|
|
8 |
32 |
5
|
Kobayashi S, Fukuta M, Kontani H, Yanagita S, Kimura I. A quantitative assay for angiogenesis of cultured choroidal tissues in streptozotocin-diabetic Wistar and spontaneously diabetic GK rats. JAPANESE JOURNAL OF PHARMACOLOGY 1998; 78:471-8. [PMID: 9920204 DOI: 10.1254/jjp.78.471] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Angiogenesis of cultured choroids was quantitatively assayed in spontaneously diabetic GK and a bolus-treated streptozotocin (STZ)-diabetic Wistar rats. The number and total length of microvessels budded from cultured choroidal explants were measured to use as angiogenic indices. Both indices in 10-week-old Wistar rats were increased in parallel by 5% fetal bovine serum (FBS) from days 2 to 7 in culture. These indices in STZ-rats (10 weeks of age) were increased by 5% FBS to a greater extent than those in age-matched normal rats. These enhanced actions of FBS were concentration-dependent. The explants of 16-week-old GK rats also increased these indices to a greater extent than those of age-matched Wistar rats. Aging to 18 weeks of age also increased choroidal angiogenesis in the normal rats. In conclusion, the assay model of choroidal angiogenesis was established by determining the number and length of microvessels in cultured choroidal explants. The diabetic states of STZ-Wistar and GK rats enhanced FBS-induced choroidal angiogenesis. This assay model is useful for determining angiogenic activity of growth factors and effective drugs in diabetic choroidopathy and retinopathy.
Collapse
|
|
27 |
14 |
6
|
Adriani O, Akaike Y, Asano K, Asaoka Y, Bagliesi MG, Berti E, Bigongiari G, Binns WR, Bonechi S, Bongi M, Brogi P, Buckley JH, Cannady N, Castellini G, Checchia C, Cherry ML, Collazuol G, Di Felice V, Ebisawa K, Fuke H, Guzik TG, Hams T, Hareyama M, Hasebe N, Hibino K, Ichimura M, Ioka K, Ishizaki W, Israel MH, Kasahara K, Kataoka J, Kataoka R, Katayose Y, Kato C, Kawanaka N, Kawakubo Y, Kohri K, Krawczynski HS, Krizmanic JF, Lomtadze T, Maestro P, Marrocchesi PS, Messineo AM, Mitchell JW, Miyake S, Moiseev AA, Mori K, Mori M, Mori N, Motz HM, Munakata K, Murakami H, Nakahira S, Nishimura J, de Nolfo GA, Okuno S, Ormes JF, Ozawa S, Pacini L, Palma F, Papini P, Penacchioni AV, Rauch BF, Ricciarini SB, Sakai K, Sakamoto T, Sasaki M, Shimizu Y, Shiomi A, Sparvoli R, Spillantini P, Stolzi F, Suh JE, Sulaj A, Takahashi I, Takayanagi M, Takita M, Tamura T, Tateyama N, Terasawa T, Tomida H, Torii S, Tsunesada Y, Uchihori Y, Ueno S, Vannuccini E, Wefel JP, Yamaoka K, Yanagita S, Yoshida A, Yoshida K. Extended Measurement of the Cosmic-Ray Electron and Positron Spectrum from 11 GeV to 4.8 TeV with the Calorimetric Electron Telescope on the International Space Station. PHYSICAL REVIEW LETTERS 2018; 120:261102. [PMID: 30004739 DOI: 10.1103/physrevlett.120.261102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Extended results on the cosmic-ray electron + positron spectrum from 11 GeV to 4.8 TeV are presented based on observations with the Calorimetric Electron Telescope (CALET) on the International Space Station utilizing the data up to November 2017. The analysis uses the full detector acceptance at high energies, approximately doubling the statistics compared to the previous result. CALET is an all-calorimetric instrument with a total thickness of 30 X_{0} at normal incidence and fine imaging capability, designed to achieve large proton rejection and excellent energy resolution well into the TeV energy region. The observed energy spectrum in the region below 1 TeV shows good agreement with Alpha Magnetic Spectrometer (AMS-02) data. In the energy region below ∼300 GeV, CALET's spectral index is found to be consistent with the AMS-02, Fermi Large Area Telescope (Fermi-LAT), and Dark Matter Particle Explorer (DAMPE), while from 300 to 600 GeV the spectrum is significantly softer than the spectra from the latter two experiments. The absolute flux of CALET is consistent with other experiments at around a few tens of GeV. However, it is lower than those of DAMPE and Fermi-LAT with the difference increasing up to several hundred GeV. The observed energy spectrum above ∼1 TeV suggests a flux suppression consistent within the errors with the results of DAMPE, while CALET does not observe any significant evidence for a narrow spectral feature in the energy region around 1.4 TeV. Our measured all-electron flux, including statistical errors and a detailed breakdown of the systematic errors, is tabulated in the Supplemental Material in order to allow more refined spectral analyses based on our data.
Collapse
|
|
7 |
13 |
7
|
Adriani O, Akaike Y, Asano K, Asaoka Y, Bagliesi MG, Berti E, Bigongiari G, Binns WR, Bonechi S, Bongi M, Brogi P, Bruno A, Buckley JH, Cannady N, Castellini G, Checchia C, Cherry ML, Collazuol G, Di Felice V, Ebisawa K, Fuke H, Guzik TG, Hams T, Hasebe N, Hibino K, Ichimura M, Ioka K, Ishizaki W, Israel MH, Kasahara K, Kataoka J, Kataoka R, Katayose Y, Kato C, Kawanaka N, Kawakubo Y, Kohri K, Krawczynski HS, Krizmanic JF, Lomtadze T, Maestro P, Marrocchesi PS, Messineo AM, Mitchell JW, Miyake S, Moiseev AA, Mori K, Mori M, Mori N, Motz HM, Munakata K, Murakami H, Nakahira S, Nishimura J, de Nolfo GA, Okuno S, Ormes JF, Ozawa S, Pacini L, Palma F, Papini P, Penacchioni AV, Rauch BF, Ricciarini SB, Sakai K, Sakamoto T, Sasaki M, Shimizu Y, Shiomi A, Sparvoli R, Spillantini P, Stolzi F, Suh JE, Sulaj A, Takahashi I, Takayanagi M, Takita M, Tamura T, Terasawa T, Tomida H, Torii S, Tsunesada Y, Uchihori Y, Ueno S, Vannuccini E, Wefel JP, Yamaoka K, Yanagita S, Yoshida A, Yoshida K. Direct Measurement of the Cosmic-Ray Proton Spectrum from 50 GeV to 10 TeV with the Calorimetric Electron Telescope on the International Space Station. PHYSICAL REVIEW LETTERS 2019; 122:181102. [PMID: 31144869 DOI: 10.1103/physrevlett.122.181102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/03/2019] [Indexed: 06/09/2023]
Abstract
In this paper, we present the analysis and results of a direct measurement of the cosmic-ray proton spectrum with the CALET instrument onboard the International Space Station, including the detailed assessment of systematic uncertainties. The observation period used in this analysis is from October 13, 2015 to August 31, 2018 (1054 days). We have achieved the very wide energy range necessary to carry out measurements of the spectrum from 50 GeV to 10 TeV covering, for the first time in space, with a single instrument the whole energy interval previously investigated in most cases in separate subranges by magnetic spectrometers (BESS-TeV, PAMELA, and AMS-02) and calorimetric instruments (ATIC, CREAM, and NUCLEON). The observed spectrum is consistent with AMS-02 but extends to nearly an order of magnitude higher energy, showing a very smooth transition of the power-law spectral index from -2.81±0.03 (50-500 GeV) neglecting solar modulation effects (or -2.87±0.06 including solar modulation effects in the lower energy region) to -2.56±0.04 (1-10 TeV), thereby confirming the existence of spectral hardening and providing evidence of a deviation from a single power law by more than 3σ.
Collapse
|
|
6 |
10 |
8
|
Ueno M, Akita M, Ban SI, Ohigashi T, Yanagita S, Iida M, Deguchi N. Production of parathyroid hormone-related protein in two new cell lines of renal cell carcinoma. Int J Urol 2001; 8:549-56. [PMID: 11737483 DOI: 10.1046/j.1442-2042.2001.00369.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Hypercalcemia is the most common of all paraneoplastic syndromes and has been reported to appear in up to 20% of patients with renal cell carcinoma (RCC). Humoral hypercalcemia of malignancy is believed to be induced when parathyroid hormone-related protein (PTHrP) is excessively produced in cancer cells and impairs the homeostasis of serum calcium concentrations. METHODS Cancer cells were isolated from a surgical specimen and successfully cultured in a monolayer. The present study describes the establishment and characterization of new cell lines of RCC. RESULTS Two different cell lines, designated SMRC-1 and SMRC-3, were established from human RCC, each of which had been continuously secreting PTHrP in vitro. The patient from whom the SMRC-3 cells were obtained was shown to have elevated levels of PTHrP and resultant hypercalcemia. Cultured SMRC-1 was spindle-shaped in morphology. SMRC-3 had pleomorphic polygonal shapes and formed typical epithelial monolayers. Both cell types secreted intact, C-terminal PTHrP and interleukin-6 in the culture medium. Cellular messenger RNA of PTHrP was analyzed by reverse transcriptase-polymerase chain reaction. The SMRC-1 cells showed chromosome numbers ranging from 42 to 47 with consistent structural abnormalities of add(4)(q23~25) and add(6)(q13). The chromosomal analysis of SMRC-3 revealed a modal number of 95 with consistent structural abnormalities of add(1)(p36) and der(1;3)(q10;p10). CONCLUSIONS These cell lines could be good models for investigating the mechanism of PTHrP production and the relationship between this hormone and hypercalcemia.
Collapse
|
Case Reports |
24 |
5 |
9
|
Adriani O, Akaike Y, Asano K, Asaoka Y, Berti E, Bigongiari G, Binns WR, Bongi M, Brogi P, Bruno A, Buckley JH, Cannady N, Castellini G, Checchia C, Cherry ML, Collazuol G, Ebisawa K, Ficklin AW, Fuke H, Gonzi S, Guzik TG, Hams T, Hibino K, Ichimura M, Ioka K, Ishizaki W, Israel MH, Kasahara K, Kataoka J, Kataoka R, Katayose Y, Kato C, Kawanaka N, Kawakubo Y, Kobayashi K, Kohri K, Krawczynski HS, Krizmanic JF, Maestro P, Marrocchesi PS, Messineo AM, Mitchell JW, Miyake S, Moiseev AA, Mori M, Mori N, Motz HM, Munakata K, Nakahira S, Nishimura J, de Nolfo GA, Okuno S, Ormes JF, Ozawa S, Pacini L, Papini P, Rauch BF, Ricciarini SB, Sakai K, Sakamoto T, Sasaki M, Shimizu Y, Shiomi A, Spillantini P, Stolzi F, Sugita S, Sulaj A, Takita M, Tamura T, Terasawa T, Torii S, Tsunesada Y, Uchihori Y, Vannuccini E, Wefel JP, Yamaoka K, Yanagita S, Yoshida A, Yoshida K, Zober WV. Observation of Spectral Structures in the Flux of Cosmic-Ray Protons from 50 GeV to 60 TeV with the Calorimetric Electron Telescope on the International Space Station. PHYSICAL REVIEW LETTERS 2022; 129:101102. [PMID: 36112450 DOI: 10.1103/physrevlett.129.101102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
A precise measurement of the cosmic-ray proton spectrum with the Calorimetric Electron Telescope (CALET) is presented in the energy interval from 50 GeV to 60 TeV, and the observation of a softening of the spectrum above 10 TeV is reported. The analysis is based on the data collected during ∼6.2 years of smooth operations aboard the International Space Station and covers a broader energy range with respect to the previous proton flux measurement by CALET, with an increase of the available statistics by a factor of ∼2.2. Above a few hundred GeV we confirm our previous observation of a progressive spectral hardening with a higher significance (more than 20 sigma). In the multi-TeV region we observe a second spectral feature with a softening around 10 TeV and a spectral index change from -2.6 to -2.9 consistently, within the errors, with the shape of the spectrum reported by DAMPE. We apply a simultaneous fit of the proton differential spectrum which well reproduces the gradual change of the spectral index encompassing the lower energy power-law regime and the two spectral features observed at higher energies.
Collapse
|
|
3 |
4 |
10
|
Adriani O, Akaike Y, Asano K, Asaoka Y, Bagliesi MG, Berti E, Bigongiari G, Binns WR, Bongi M, Brogi P, Bruno A, Buckley JH, Cannady N, Castellini G, Checchia C, Cherry ML, Collazuol G, Ebisawa K, Fuke H, Gonzi S, Guzik TG, Hams T, Hibino K, Ichimura M, Ioka K, Ishizaki W, Israel MH, Kasahara K, Kataoka J, Kataoka R, Katayose Y, Kato C, Kawanaka N, Kawakubo Y, Kobayashi K, Kohri K, Krawczynski HS, Krizmanic JF, Link J, Maestro P, Marrocchesi PS, Messineo AM, Mitchell JW, Miyake S, Moiseev AA, Mori M, Mori N, Motz HM, Munakata K, Nakahira S, Nishimura J, de Nolfo GA, Okuno S, Ormes JF, Ospina N, Ozawa S, Pacini L, Palma F, Papini P, Rauch BF, Ricciarini SB, Sakai K, Sakamoto T, Sasaki M, Shimizu Y, Shiomi A, Sparvoli R, Spillantini P, Stolzi F, Sugita S, Suh JE, Sulaj A, Takita M, Tamura T, Terasawa T, Torii S, Tsunesada Y, Uchihori Y, Vannuccini E, Wefel JP, Yamaoka K, Yanagita S, Yoshida A, Yoshida K. Direct Measurement of the Cosmic-Ray Carbon and Oxygen Spectra from 10 GeV/n to 2.2 TeV/n with the Calorimetric Electron Telescope on the International Space Station. PHYSICAL REVIEW LETTERS 2020; 125:251102. [PMID: 33416351 DOI: 10.1103/physrevlett.125.251102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/01/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
In this paper, we present the measurement of the energy spectra of carbon and oxygen in cosmic rays based on observations with the Calorimetric Electron Telescope on the International Space Station from October 2015 to October 2019. Analysis, including the detailed assessment of systematic uncertainties, and results are reported. The energy spectra are measured in kinetic energy per nucleon from 10 GeV/n to 2.2 TeV/n with an all-calorimetric instrument with a total thickness corresponding to 1.3 nuclear interaction length. The observed carbon and oxygen fluxes show a spectral index change of ∼0.15 around 200 GeV/n established with a significance >3σ. They have the same energy dependence with a constant C/O flux ratio 0.911±0.006 above 25 GeV/n. The spectral hardening is consistent with that measured by AMS-02, but the absolute normalization of the flux is about 27% lower, though in agreement with observations from previous experiments including the PAMELA spectrometer and the calorimetric balloon-borne experiment CREAM.
Collapse
|
|
5 |
2 |
11
|
Adriani O, Akaike Y, Asano K, Asaoka Y, Berti E, Bigongiari G, Binns WR, Bongi M, Brogi P, Bruno A, Buckley JH, Cannady N, Castellini G, Checchia C, Cherry ML, Collazuol G, de Nolfo GA, Ebisawa K, Ficklin AW, Fuke H, Gonzi S, Guzik TG, Hams T, Hibino K, Ichimura M, Ioka K, Ishizaki W, Israel MH, Kasahara K, Kataoka J, Kataoka R, Katayose Y, Kato C, Kawanaka N, Kawakubo Y, Kobayashi K, Kohri K, Krawczynski HS, Krizmanic JF, Maestro P, Marrocchesi PS, Messineo AM, Mitchell JW, Miyake S, Moiseev AA, Mori M, Mori N, Motz HM, Munakata K, Nakahira S, Nishimura J, Okuno S, Ormes JF, Ozawa S, Pacini L, Papini P, Rauch BF, Ricciarini SB, Sakai K, Sakamoto T, Sasaki M, Shimizu Y, Shiomi A, Spillantini P, Stolzi F, Sugita S, Sulaj A, Takita M, Tamura T, Terasawa T, Torii S, Tsunesada Y, Uchihori Y, Vannuccini E, Wefel JP, Yamaoka K, Yanagita S, Yoshida A, Yoshida K, Zober WV. Cosmic-Ray Boron Flux Measured from 8.4 GeV/n to 3.8 TeV/n with the Calorimetric Electron Telescope on the International Space Station. PHYSICAL REVIEW LETTERS 2022; 129:251103. [PMID: 36608255 DOI: 10.1103/physrevlett.129.251103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
We present the measurement of the energy dependence of the boron flux in cosmic rays and its ratio to the carbon flux in an energy interval from 8.4 GeV/n to 3.8 TeV/n based on the data collected by the Calorimetric Electron Telescope (CALET) during ∼6.4 yr of operation on the International Space Station. An update of the energy spectrum of carbon is also presented with an increase in statistics over our previous measurement. The observed boron flux shows a spectral hardening at the same transition energy E_{0}∼200 GeV/n of the C spectrum, though B and C fluxes have different energy dependences. The spectral index of the B spectrum is found to be γ=-3.047±0.024 in the interval 25<E<200 GeV/n. The B spectrum hardens by Δγ_{B}=0.25±0.12, while the best fit value for the spectral variation of C is Δγ_{C}=0.19±0.03. The B/C flux ratio is compatible with a hardening of 0.09±0.05, though a single power-law energy dependence cannot be ruled out given the current statistical uncertainties. A break in the B/C ratio energy dependence would support the recent AMS-02 observations that secondary cosmic rays exhibit a stronger hardening than primary ones. We also perform a fit to the B/C ratio with a leaky-box model of the cosmic-ray propagation in the Galaxy in order to probe a possible residual value λ_{0} of the mean escape path length λ at high energy. We find that our B/C data are compatible with a nonzero value of λ_{0}, which can be interpreted as the column density of matter that cosmic rays cross within the acceleration region.
Collapse
|
|
3 |
1 |
12
|
Adriani O, Akaike Y, Asano K, Asaoka Y, Berti E, Bigongiari G, Binns WR, Bongi M, Brogi P, Bruno A, Buckley JH, Cannady N, Castellini G, Checchia C, Cherry ML, Collazuol G, Ebisawa K, Fuke H, Gonzi S, Guzik TG, Hams T, Hibino K, Ichimura M, Ioka K, Ishizaki W, Israel MH, Kasahara K, Kataoka J, Kataoka R, Katayose Y, Kato C, Kawanaka N, Kawakubo Y, Kobayashi K, Kohri K, Krawczynski HS, Krizmanic JF, Link J, Maestro P, Marrocchesi PS, Messineo AM, Mitchell JW, Miyake S, Moiseev AA, Mori M, Mori N, Motz HM, Munakata K, Nakahira S, Nishimura J, de Nolfo GA, Okuno S, Ormes JF, Ospina N, Ozawa S, Pacini L, Papini P, Rauch BF, Ricciarini SB, Sakai K, Sakamoto T, Sasaki M, Shimizu Y, Shiomi A, Spillantini P, Stolzi F, Sugita S, Sulaj A, Takita M, Tamura T, Terasawa T, Torii S, Tsunesada Y, Uchihori Y, Vannuccini E, Wefel JP, Yamaoka K, Yanagita S, Yoshida A, Yoshida K. Measurement of the Iron Spectrum in Cosmic Rays from 10 GeV/n to 2.0 TeV/n with the Calorimetric Electron Telescope on the International Space Station. PHYSICAL REVIEW LETTERS 2021; 126:241101. [PMID: 34213922 DOI: 10.1103/physrevlett.126.241101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 04/12/2021] [Indexed: 06/13/2023]
Abstract
The Calorimetric Electron Telescope (CALET), in operation on the International Space Station since 2015, collected a large sample of cosmic-ray iron over a wide energy interval. In this Letter a measurement of the iron spectrum is presented in the range of kinetic energy per nucleon from 10 GeV/n to 2.0 TeV/n allowing the inclusion of iron in the list of elements studied with unprecedented precision by space-borne instruments. The measurement is based on observations carried out from January 2016 to May 2020. The CALET instrument can identify individual nuclear species via a measurement of their electric charge with a dynamic range extending far beyond iron (up to atomic number Z=40). The energy is measured by a homogeneous calorimeter with a total equivalent thickness of 1.2 proton interaction lengths preceded by a thin (3 radiation lengths) imaging section providing tracking and energy sampling. The analysis of the data and the detailed assessment of systematic uncertainties are described and results are compared with the findings of previous experiments. The observed differential spectrum is consistent within the errors with previous experiments. In the region from 50 GeV/n to 2 TeV/n our present data are compatible with a single power law with spectral index -2.60±0.03.
Collapse
|
|
4 |
1 |
13
|
Adriani O, Akaike Y, Asano K, Asaoka Y, Bagliesi M, Bigongiari G, Binns W, Bonechi S, Bongi M, Buckley J, Castellini G, Cherry M, Collazuol G, Ebisawa K, Di Felice V, Fuke H, Guzik T, Hams T, Hareyama M, Hasebe N, Hibino K, Ichimura M, Ioka K, Israel M, Javaid A, Kamioka E, Kasahara K, Kataoka J, Kataoka R, Katayose Y, Kawanaka N, Kitamura H, Kotani T, Krawczynski H, Krizmanic J, Kubota A, Kuramata S, Lomtadze T, Maestro P, Marcelli L, Marrocchesi P, Mitchell J, Miyake S, Mizutani K, Moiseev A, Mori K, Mori M, Mori N, Motz H, Munakata K, Murakami H, Nakagawa Y, Nakahira S, Nishimura J, Okuno S, Ormes J, Ozawa S, Palma F, Papini P, Rauch B, Ricciarini S, Sakamoto T, Sasaki M, Shibata M, Shimizu Y, Shiomi A, Sparvoli R, Spillantini P, Takahashi I, Takayanagi M, Takita M, Tamura T, Tateyama N, Terasawa T, Tomida H, Torii S, Tunesada Y, Uchihori Y, Ueno S, Vannuccini E, Wefel J, Yamaoka K, Yanagita S, Yoshida A, Yoshida K, Yuda T. The CALorimetric Electron Telescope (CALET) for high-energy astroparticle physics on the International Space Station. EPJ WEB OF CONFERENCES 2015. [DOI: 10.1051/epjconf/20159504056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
|
10 |
1 |
14
|
Adriani O, Akaike Y, Asano K, Asaoka Y, Berti E, Bigongiari G, Binns WR, Bongi M, Brogi P, Bruno A, Buckley JH, Cannady N, Castellini G, Checchia C, Cherry ML, Collazuol G, Ebisawa K, Ficklin AW, Fuke H, Gonzi S, Guzik TG, Hams T, Hibino K, Ichimura M, Ioka K, Ishizaki W, Israel MH, Kasahara K, Kataoka J, Kataoka R, Katayose Y, Kato C, Kawanaka N, Kawakubo Y, Kobayashi K, Kohri K, Krawczynski HS, Krizmanic JF, Maestro P, Marrocchesi PS, Messineo AM, Mitchell JW, Miyake S, Moiseev AA, Mori M, Mori N, Motz HM, Munakata K, Nakahira S, Nishimura J, de Nolfo GA, Okuno S, Ormes JF, Ospina N, Ozawa S, Pacini L, Papini P, Rauch BF, Ricciarini SB, Sakai K, Sakamoto T, Sasaki M, Shimizu Y, Shiomi A, Spillantini P, Stolzi F, Sugita S, Sulaj A, Takita M, Tamura T, Terasawa T, Torii S, Tsunesada Y, Uchihori Y, Vannuccini E, Wefel JP, Yamaoka K, Yanagita S, Yoshida A, Yoshida K, Zober WV. Direct Measurement of the Nickel Spectrum in Cosmic Rays in the Energy Range from 8.8 GeV/n to 240 GeV/n with CALET on the International Space Station. PHYSICAL REVIEW LETTERS 2022; 128:131103. [PMID: 35426700 DOI: 10.1103/physrevlett.128.131103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/03/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The relative abundance of cosmic ray nickel nuclei with respect to iron is by far larger than for all other transiron elements; therefore it provides a favorable opportunity for a low background measurement of its spectrum. Since nickel, as well as iron, is one of the most stable nuclei, the nickel energy spectrum and its relative abundance with respect to iron provide important information to estimate the abundances at the cosmic ray source and to model the Galactic propagation of heavy nuclei. However, only a few direct measurements of cosmic-ray nickel at energy larger than ∼3 GeV/n are available at present in the literature, and they are affected by strong limitations in both energy reach and statistics. In this Letter, we present a measurement of the differential energy spectrum of nickel in the energy range from 8.8 to 240 GeV/n, carried out with unprecedented precision by the Calorimetric Electron Telescope (CALET) in operation on the International Space Station since 2015. The CALET instrument can identify individual nuclear species via a measurement of their electric charge with a dynamic range extending far beyond iron (up to atomic number Z=40). The particle's energy is measured by a homogeneous calorimeter (1.2 proton interaction lengths, 27 radiation lengths) preceded by a thin imaging section (3 radiation lengths) providing tracking and energy sampling. This Letter follows our previous measurement of the iron spectrum [1O. Adriani et al. (CALET Collaboration), Phys. Rev. Lett. 126, 241101 (2021).PRLTAO0031-900710.1103/PhysRevLett.126.241101], and it extends our investigation on the energy dependence of the spectral index of heavy elements. It reports the analysis of nickel data collected from November 2015 to May 2021 and a detailed assessment of the systematic uncertainties. In the region from 20 to 240 GeV/n our present data are compatible within the errors with a single power law with spectral index -2.51±0.07.
Collapse
|
|
3 |
1 |
15
|
Arafune J, Fukugita M, Yanagita S. Monopole abundance in the Solar System and the intrinsic heat in the Jovian planets. PHYSICAL REVIEW. D, PARTICLES AND FIELDS 1985; 32:2586-2590. [PMID: 9956031 DOI: 10.1103/physrevd.32.2586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
|
40 |
1 |
16
|
Kimura I, Yanagita S, Kobayshi S, Fukuta M, Okabe M. Vascular endothelial growth factor- and platelet-derived growth factor-angiogenesis depressed but fetal bovine serum-angiogenesis enhanced choroidal tissue cultures of streptozotocin-diabetic Wistar and GK rats. INT ANGIOL 2000; 19:26-34. [PMID: 10853682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
BACKGROUND Diabetic state-induced alterations of angiogenic activity of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) were compared with that of fetal bovine serum (FBS) in the cultured choroidal explants of streptozotocin (STZ)-diabetic Wistar and diabetic GK rats. METHODS Choroidal explants (0.04-1.0 mm2) were isolated from rat eyeballs and cultured in fibrin gels with FBS-Dulbecco's modified Eagle's medium (0.5 mL) containing antibiotics and 300 microg/mL epsilon-amino caproic acid in the presence of recombinant mouse vascular endothelial growth factor and recombinant human platelet-derived growth factor BB at 37 degrees C under 5% CO2 and 95% air. Microvessels newly budded from these choroidal explants were photographed. The number and length of all microvessels per choroidal explant were counted and measured as indices of angiogenesis in vitro. RESULTS Fetal bovine serum (5-10%) enhanced both angiogenic indices in the explants of STZ-diabetic Wistar and GK rats. The actions of the serum on both angiogenic indices in both diabetic rats were greater than those in age-matched normal rats. Vascular endothelial growth factor (3-30 ng/mL) with 1% fetal bovine serum increased the angiogenic indices in diabetic choroids, but was less pronounced than in normal choroids. The action of the growth factor (2.5 ng/mL) on angiogenesis was also less in diabetic choroids. CONCLUSIONS Results suggest that the diabetic state may down-regulate the receptors for vascular endothelial and platelet-derived growth factors and/or desensitize their post-receptor signaling in the vascular endothelial cells of choroids, being inexplicable for the enhanced actions of fetal bovine serum on angiogenesis in diabetic choroids.
Collapse
|
Comparative Study |
25 |
|
17
|
Asaoka Y, Adriani O, Akaike Y, Asano K, Bagliesi MG, Berti E, Bigongiari G, Binns WR, Bonechi S, Bongi M, Bruno A, Brogi P, Buckley JH, Cannady N, Castellini G, Checchia C, Cherry ML, Collazuol G, Di Felice V, Ebisawa K, Fuke H, Guzik TG, Hams T, Hasebe N, Hibinov K, Ichimura M, Ioka K, Ishizaki W, Israel MH, Kasahara K, Kataoka J, Kataoka R, Katayose Y, Kato C, Kawanaka N, Kawakubo Y, Kohri K, Krawczynski HS, Krizmanic JF, Lomtadze T, Maestro P, Marrocchesi PS, Messineo AM, Mitchell JW, Miyake S, Moiseev AA, Mori K, Mori M, Mori N, Motz HM, Munakata K, Murakami H, Nakahira S, Nishimura J, De Nolfo GA, Okuno S, Ormes JF, Ozawa S, Pacini L, Palma F, Pal'shin V, Papini P, Penacchioni AV, Rauch BF, Ricciarini SB, Sakai K, Sakamoto T, Sasaki M, Shimizu Y, Shiomi A, Sparvoli R, Spillantini P, Stolzi F, Sugita S, Suh JE, Sulaj A, Takahashi I, Takayanagi M, Takita M, Tamura T, Tateyama N, Terasawa T, Tomida H, Torii S, Tsunesada Y, Uchihori Y, Ueno S, Vannuccini E, Wefel JP, Yamaoka K, Yanagita S, Yoshida A, Yoshida K. The CALorimetric Electron Telescope (CALET) on the International Space Station: Results from the First Two Years of Operation. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201920813001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The CALorimetric Electron Telescope (CALET) space experiment, which has been developed by Japan in collaboration with Italy and the United States, is a high-energy astroparticle physics mission on the International Space Station (ISS). The primary goals of the CALET mission include investigation of possible nearby sources of high-energy electrons, detailed study of galactic cosmic-ray acceleration and propagation, and search for dark matter signatures. With a long-term observation onboard the ISS, the CALET experiment measures the flux of cosmic-ray electrons (including positrons) up to 20 TeV, gamma-rays to 10 TeV, and nuclei up to 1,000 TeV based on its charge separation capability from Z = 1 to 40. Since the start of science operation in mid-October, 2015, a continuous observation has been maintained without any major interruptions. The number of triggered events over 10 GeV is nearly 20 million per month. By using the data obtained during the first two-years, here we present a summary of the CALET observations: 1) Electron+positron energy spectrum, 2) Nuclei analysis, 3) Gamma-ray observation with a characterization of the on-orbit performance. The search results for the electromagnetic counterparts of LIGO/Virgo gravitational wave events are also discussed.
Collapse
|
|
6 |
|
18
|
Adriani O, Akaike Y, Asano K, Asaoka Y, Berti E, Bigongiari G, Binns WR, Bongi M, Brogi P, Bruno A, Buckley JH, Cannady N, Castellini G, Checchia C, Cherry ML, Collazuol G, de Nolfo GA, Ebisawa K, Ficklin AW, Fuke H, Gonzi S, Guzik TG, Hams T, Hibino K, Ichimura M, Ioka K, Ishizaki W, Israel MH, Kasahara K, Kataoka J, Kataoka R, Katayose Y, Kato C, Kawanaka N, Kawakubo Y, Kobayashi K, Kohri K, Krawczynski HS, Krizmanic JF, Maestro P, Marrocchesi PS, Messineo AM, Mitchell JW, Miyake S, Moiseev AA, Mori M, Mori N, Motz HM, Munakata K, Nakahira S, Nishimura J, Okuno S, Ormes JF, Ozawa S, Pacini L, Papini P, Rauch BF, Ricciarini SB, Sakai K, Sakamoto T, Sasaki M, Shimizu Y, Shiomi A, Spillantini P, Stolzi F, Sugita S, Sulaj A, Takita M, Tamura T, Terasawa T, Torii S, Tsunesada Y, Uchihori Y, Vannuccini E, Wefel JP, Yamaoka K, Yanagita S, Yoshida A, Yoshida K, Zober WV. Erratum: Charge-Sign Dependent Cosmic-Ray Modulation Observed with the Calorimetric Electron Telescope on the International Space Station [Phys. Rev. Lett. 130, 211001 (2023)]. PHYSICAL REVIEW LETTERS 2023; 131:109902. [PMID: 37739390 DOI: 10.1103/physrevlett.131.109902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Indexed: 09/24/2023]
Abstract
This corrects the article DOI: 10.1103/PhysRevLett.130.211001.
Collapse
|
Published Erratum |
2 |
|
19
|
Adriani O, Akaike Y, Asano K, Asaoka Y, Berti E, Bigongiari G, Binns WR, Bongi M, Brogi P, Bruno A, Buckley JH, Cannady N, Castellini G, Checchia C, Cherry ML, Collazuol G, de Nolfo GA, Ebisawa K, Ficklin AW, Fuke H, Gonzi S, Guzik TG, Hams T, Hibino K, Ichimura M, Ioka K, Ishizaki W, Israel MH, Kasahara K, Kataoka J, Kataoka R, Katayose Y, Kato C, Kawanaka N, Kawakubo Y, Kobayashi K, Kohri K, Krawczynski HS, Krizmanic JF, Maestro P, Marrocchesi PS, Messineo AM, Mitchell JW, Miyake S, Moiseev AA, Mori M, Mori N, Motz HM, Munakata K, Nakahira S, Nishimura J, Okuno S, Ormes JF, Ozawa S, Pacini L, Papini P, Rauch BF, Ricciarini SB, Sakai K, Sakamoto T, Sasaki M, Shimizu Y, Shiomi A, Spillantini P, Stolzi F, Sugita S, Sulaj A, Takita M, Tamura T, Terasawa T, Torii S, Tsunesada Y, Uchihori Y, Vannuccini E, Wefel JP, Yamaoka K, Yanagita S, Yoshida A, Yoshida K, Zober WV. Charge-Sign Dependent Cosmic-Ray Modulation Observed with the Calorimetric Electron Telescope on the International Space Station. PHYSICAL REVIEW LETTERS 2023; 130:211001. [PMID: 37295105 DOI: 10.1103/physrevlett.130.211001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/16/2023] [Accepted: 04/13/2023] [Indexed: 06/12/2023]
Abstract
We present the observation of a charge-sign dependent solar modulation of galactic cosmic rays (GCRs) with the Calorimetric Electron Telescope onboard the International Space Station over 6 yr, corresponding to the positive polarity of the solar magnetic field. The observed variation of proton count rate is consistent with the neutron monitor count rate, validating our methods for determining the proton count rate. It is observed by the Calorimetric Electron Telescope that both GCR electron and proton count rates at the same average rigidity vary in anticorrelation with the tilt angle of the heliospheric current sheet, while the amplitude of the variation is significantly larger in the electron count rate than in the proton count rate. We show that this observed charge-sign dependence is reproduced by a numerical "drift model" of the GCR transport in the heliosphere. This is a clear signature of the drift effect on the long-term solar modulation observed with a single detector.
Collapse
|
|
2 |
|
20
|
Yamaguchi S, Yanagita S, Wake K, Mishio M, Okuda Y, Kitajima T. [Anesthetic management of a patient with hypertrophic cardiomyopathy using propofol, fentanyl and ketamine]. MASUI. THE JAPANESE JOURNAL OF ANESTHESIOLOGY 1998; 47:1240-2. [PMID: 9834600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
A 59-year-old male with hypertrophic cardiomyopathy was scheduled for resection of a maxillary cyst. Metoprolol was discontinued the day before surgery. Thirty min before anesthesia, meperidine 35 mg was administered intramuscularly. After intravenous administration of midazolam 3 mg, a pulmonary catheter was inserted for monitoring hemodynamic parameters. Anesthesia was induced with propofol 75 mg, fentanyl 0.15 mg and ketamine 75 mg. Anesthesia was maintained with continuous infusion of propofol 5 mg.kg-1.h-1 and ketamine 1 mg.kg-1.h-1. Moreover, fentanyl was added as necessary during surgery. Blood pressure (BP), pulmonary arterial pressure (PA), systemic vascular resistance index (SVRI) and pulmonary vascular resistance index (PVRI) were measured using a pulmonary catheter during anesthesia. Since BP decreased after intubation, dopamine 3 micrograms.kg-1.min-1 was administered for 20 min. The hemodynamic state was stable during surgery. However, BP, PA, SVRI and PVRI increased temporally at extubation. His postoperative course was uneventful. In conclusion, total intravenous anesthesia with propofol, fentanyl and ketamine may be useful for anesthetic management of a patient with hypertrophic cardiomyopathy.
Collapse
|
Case Reports |
27 |
|
21
|
Yanagita S, Kobayashi Y. [The new type articulators (author's transl)]. SHIGAKU = ODONTOLOGY; JOURNAL OF NIHON DENTAL COLLEGE 1976; 64:363-74. [PMID: 1075439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
|
49 |
|
22
|
Kobayashi Y, Yusa H, Komatsu Y, Kazama J, Mitsuzuka S, Imai R, Matsuda Y, Yanagita S. [New Nippon Dental University semi-adjustable articulator (author's transl)]. SHIGAKU = ODONTOLOGY; JOURNAL OF NIHON DENTAL COLLEGE 1978; 66:175-84. [PMID: 397434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
Review |
47 |
|
23
|
Adriani O, Akaike Y, Asano K, Asaoka Y, Berti E, Bigongiari G, Binns WR, Bongi M, Brogi P, Bruno A, Buckley JH, Cannady N, Castellini G, Checchia C, Cherry ML, Collazuol G, de Nolfo GA, Ebisawa K, Ficklin AW, Fuke H, Gonzi S, Guzik TG, Hams T, Hibino K, Ichimura M, Ioka K, Ishizaki W, Israel MH, Kasahara K, Kataoka J, Kataoka R, Katayose Y, Kato C, Kawanaka N, Kawakubo Y, Kobayashi K, Kohri K, Krawczynski HS, Krizmanic JF, Maestro P, Marrocchesi PS, Messineo AM, Mitchell JW, Miyake S, Moiseev AA, Mori M, Mori N, Motz HM, Munakata K, Nakahira S, Nishimura J, Okuno S, Ormes JF, Ozawa S, Pacini L, Papini P, Rauch BF, Ricciarini SB, Sakai K, Sakamoto T, Sasaki M, Shimizu Y, Shiomi A, Spillantini P, Stolzi F, Sugita S, Sulaj A, Takita M, Tamura T, Terasawa T, Torii S, Tsunesada Y, Uchihori Y, Vannuccini E, Wefel JP, Yamaoka K, Yanagita S, Yoshida A, Yoshida K, Zober WV. Direct Measurement of the Spectral Structure of Cosmic-Ray Electrons+Positrons in the TeV Region with CALET on the International Space Station. PHYSICAL REVIEW LETTERS 2023; 131:191001. [PMID: 38000434 DOI: 10.1103/physrevlett.131.191001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/31/2023] [Accepted: 10/09/2023] [Indexed: 11/26/2023]
Abstract
Detailed measurements of the spectral structure of cosmic-ray electrons and positrons from 10.6 GeV to 7.5 TeV are presented from over 7 years of observations with the CALorimetric Electron Telescope (CALET) on the International Space Station. The instrument, consisting of a charge detector, an imaging calorimeter, and a total absorption calorimeter with a total depth of 30 radiation lengths at normal incidence and a fine shower imaging capability, is optimized to measure the all-electron spectrum well into the TeV region. Because of the excellent energy resolution (a few percent above 10 GeV) and the outstanding e/p separation (10^{5}), CALET provides optimal performance for a detailed search of structures in the energy spectrum. The analysis uses data up to the end of 2022, and the statistics of observed electron candidates has increased more than 3 times since the last publication in 2018. By adopting an updated boosted decision tree analysis, a sufficient proton rejection power up to 7.5 TeV is achieved, with a residual proton contamination less than 10%. The observed energy spectrum becomes gradually harder in the lower energy region from around 30 GeV, consistently with AMS-02, but from 300 to 600 GeV it is considerably softer than the spectra measured by DAMPE and Fermi-LAT. At high energies, the spectrum presents a sharp break around 1 TeV, with a spectral index change from -3.15 to -3.91, and a broken power law fitting the data in the energy range from 30 GeV to 4.8 TeV better than a single power law with 6.9 sigma significance, which is compatible with the DAMPE results. The break is consistent with the expected effects of radiation loss during the propagation from distant sources (except the highest energy bin). We have fitted the spectrum with a model consistent with the positron flux measured by AMS-02 below 1 TeV and interpreted the electron+positron spectrum with possible contributions from pulsars and nearby sources. Above 4.8 TeV, a possible contribution from known nearby supernova remnants, including Vela, is addressed by an event-by-event analysis providing a higher proton-rejection power than a purely statistical analysis.
Collapse
|
|
2 |
|
24
|
Kobayashi Y, Shibuya H, Nagano T, Yanagita S. [Treatment of the temporomandibular joint dysfunction patient by full mouth occlusal reconstruction (author's transl)]. SHIGAKU = ODONTOLOGY; JOURNAL OF NIHON DENTAL COLLEGE 1975; 63:79-93. [PMID: 1074044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
|
50 |
|
25
|
Yanagita S. Trend of prosthodontics in Japan during 1969. DENTISTRY IN JAPAN 1970:17-21. [PMID: 5278505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
|
55 |
|