1
|
Wyler E, Mösbauer K, Franke V, Diag A, Gottula LT, Arsiè R, Klironomos F, Koppstein D, Hönzke K, Ayoub S, Buccitelli C, Hoffmann K, Richter A, Legnini I, Ivanov A, Mari T, Del Giudice S, Papies J, Praktiknjo S, Meyer TF, Müller MA, Niemeyer D, Hocke A, Selbach M, Akalin A, Rajewsky N, Drosten C, Landthaler M. Transcriptomic profiling of SARS-CoV-2 infected human cell lines identifies HSP90 as target for COVID-19 therapy. iScience 2021; 24:102151. [PMID: 33585804 PMCID: PMC7866843 DOI: 10.1016/j.isci.2021.102151] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/20/2020] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Detailed knowledge of the molecular biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is crucial for understanding of viral replication, host responses, and disease progression. Here, we report gene expression profiles of three SARS-CoV- and SARS-CoV-2-infected human cell lines. SARS-CoV-2 elicited an approximately two-fold higher stimulation of the innate immune response compared to SARS-CoV in the human epithelial cell line Calu-3, including induction of miRNA-155. Single-cell RNA sequencing of infected cells showed that genes induced by virus infections were broadly upregulated, whereas interferon beta/lambda genes, a pro-inflammatory cytokines such as IL-6, were expressed only in small subsets of infected cells. Temporal analysis suggested that transcriptional activities of interferon regulatory factors precede those of nuclear factor κB. Lastly, we identified heat shock protein 90 (HSP90) as a protein relevant for the infection. Inhibition of the HSP90 activity resulted in a reduction of viral replication and pro-inflammatory cytokine expression in primary human airway epithelial cells.
Collapse
|
research-article |
4 |
182 |
2
|
Alles J, Karaiskos N, Praktiknjo SD, Grosswendt S, Wahle P, Ruffault PL, Ayoub S, Schreyer L, Boltengagen A, Birchmeier C, Zinzen R, Kocks C, Rajewsky N. Cell fixation and preservation for droplet-based single-cell transcriptomics. BMC Biol 2017; 15:44. [PMID: 28526029 PMCID: PMC5438562 DOI: 10.1186/s12915-017-0383-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Recent developments in droplet-based microfluidics allow the transcriptional profiling of thousands of individual cells in a quantitative, highly parallel and cost-effective way. A critical, often limiting step is the preparation of cells in an unperturbed state, not altered by stress or ageing. Other challenges are rare cells that need to be collected over several days or samples prepared at different times or locations. METHODS Here, we used chemical fixation to address these problems. Methanol fixation allowed us to stabilise and preserve dissociated cells for weeks without compromising single-cell RNA sequencing data. RESULTS By using mixtures of fixed, cultured human and mouse cells, we first showed that individual transcriptomes could be confidently assigned to one of the two species. Single-cell gene expression from live and fixed samples correlated well with bulk mRNA-seq data. We then applied methanol fixation to transcriptionally profile primary cells from dissociated, complex tissues. Low RNA content cells from Drosophila embryos, as well as mouse hindbrain and cerebellum cells prepared by fluorescence-activated cell sorting, were successfully analysed after fixation, storage and single-cell droplet RNA-seq. We were able to identify diverse cell populations, including neuronal subtypes. As an additional resource, we provide 'dropbead', an R package for exploratory data analysis, visualization and filtering of Drop-seq data. CONCLUSIONS We expect that the availability of a simple cell fixation method will open up many new opportunities in diverse biological contexts to analyse transcriptional dynamics at single-cell resolution.
Collapse
|
research-article |
8 |
144 |
3
|
Wyler E, Franke V, Menegatti J, Kocks C, Boltengagen A, Praktiknjo S, Walch-Rückheim B, Bosse J, Rajewsky N, Grässer F, Akalin A, Landthaler M. Single-cell RNA-sequencing of herpes simplex virus 1-infected cells connects NRF2 activation to an antiviral program. Nat Commun 2019; 10:4878. [PMID: 31653857 PMCID: PMC6814756 DOI: 10.1038/s41467-019-12894-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023] Open
Abstract
Herpesvirus infection initiates a range of perturbations in the host cell, which remain poorly understood at the level of individual cells. Here, we quantify the transcriptome of single human primary fibroblasts during the first hours of lytic infection with HSV-1. By applying a generalizable analysis scheme, we define a precise temporal order of early viral gene expression and propose a set-wise emergence of viral genes. We identify host cell genes and pathways relevant for infection by combining three different computational approaches: gene and pathway overdispersion analysis, prediction of cell-state transition probabilities, as well as future cell states. One transcriptional program, which correlates with increased resistance to infection, implicates the transcription factor NRF2. Consequently, Bardoxolone methyl and Sulforaphane, two known NRF2 agonists, impair virus production, suggesting that NRF2 activation restricts viral infection. Our study provides insights into early stages of HSV-1 infection and serves as a general blueprint for the investigation of heterogeneous cell states in virus infection.
Collapse
|
research-article |
6 |
95 |
4
|
Nouailles G, Adler JM, Pennitz P, Peidli S, Teixeira Alves LG, Baumgardt M, Bushe J, Voss A, Langenhagen A, Langner C, Martin Vidal R, Pott F, Kazmierski J, Ebenig A, Lange MV, Mühlebach MD, Goekeri C, Simmons S, Xing N, Abdelgawad A, Herwig S, Cichon G, Niemeyer D, Drosten C, Goffinet C, Landthaler M, Blüthgen N, Wu H, Witzenrath M, Gruber AD, Praktiknjo SD, Osterrieder N, Wyler E, Kunec D, Trimpert J. Live-attenuated vaccine sCPD9 elicits superior mucosal and systemic immunity to SARS-CoV-2 variants in hamsters. Nat Microbiol 2023; 8:860-874. [PMID: 37012419 PMCID: PMC10159847 DOI: 10.1038/s41564-023-01352-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/01/2023] [Indexed: 04/05/2023]
Abstract
Vaccines play a critical role in combating the COVID-19 pandemic. Future control of the pandemic requires improved vaccines with high efficacy against newly emerging SARS-CoV-2 variants and the ability to reduce virus transmission. Here we compare immune responses and preclinical efficacy of the mRNA vaccine BNT162b2, the adenovirus-vectored spike vaccine Ad2-spike and the live-attenuated virus vaccine candidate sCPD9 in Syrian hamsters, using both homogeneous and heterologous vaccination regimens. Comparative vaccine efficacy was assessed by employing readouts from virus titrations to single-cell RNA sequencing. Our results show that sCPD9 vaccination elicited the most robust immunity, including rapid viral clearance, reduced tissue damage, fast differentiation of pre-plasmablasts, strong systemic and mucosal humoral responses, and rapid recall of memory T cells from lung tissue after challenge with heterologous SARS-CoV-2. Overall, our results demonstrate that live-attenuated vaccines offer advantages over currently available COVID-19 vaccines.
Collapse
|
|
2 |
42 |
5
|
Lareau CA, Liu V, Muus C, Praktiknjo SD, Nitsch L, Kautz P, Sandor K, Yin Y, Gutierrez JC, Pelka K, Satpathy AT, Regev A, Sankaran VG, Ludwig LS. Mitochondrial single-cell ATAC-seq for high-throughput multi-omic detection of mitochondrial genotypes and chromatin accessibility. Nat Protoc 2023; 18:1416-1440. [PMID: 36792778 PMCID: PMC10317201 DOI: 10.1038/s41596-022-00795-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 11/11/2022] [Indexed: 02/17/2023]
Abstract
Natural sequence variation within mitochondrial DNA (mtDNA) contributes to human phenotypes and may serve as natural genetic markers in human cells for clonal and lineage tracing. We recently developed a single-cell multi-omic approach, called 'mitochondrial single-cell assay for transposase-accessible chromatin with sequencing' (mtscATAC-seq), enabling concomitant high-throughput mtDNA genotyping and accessible chromatin profiling. Specifically, our technique allows the mitochondrial genome-wide inference of mtDNA variant heteroplasmy along with information on cell state and accessible chromatin variation in individual cells. Leveraging somatic mtDNA mutations, our method further enables inference of clonal relationships among native ex vivo-derived human cells not amenable to genetic engineering-based clonal tracing approaches. Here, we provide a step-by-step protocol for the use of mtscATAC-seq, including various cell-processing and flow cytometry workflows, by using primary hematopoietic cells, subsequent single-cell genomic library preparation and sequencing that collectively take ~3-4 days to complete. We discuss experimental and computational data quality control metrics and considerations for the extension to other mammalian tissues. Overall, mtscATAC-seq provides a broadly applicable platform to map clonal relationships between cells in human tissues, investigate fundamental aspects of mitochondrial genetics and enable additional modes of multi-omic discovery.
Collapse
|
Review |
2 |
29 |
6
|
Lareau CA, Dubois SM, Buquicchio FA, Hsieh YH, Garg K, Kautz P, Nitsch L, Praktiknjo SD, Maschmeyer P, Verboon JM, Gutierrez JC, Yin Y, Fiskin E, Luo W, Mimitou EP, Muus C, Malhotra R, Parikh S, Fleming MD, Oevermann L, Schulte J, Eckert C, Kundaje A, Smibert P, Vardhana SA, Satpathy AT, Regev A, Sankaran VG, Agarwal S, Ludwig LS. Single-cell multi-omics of mitochondrial DNA disorders reveals dynamics of purifying selection across human immune cells. Nat Genet 2023; 55:1198-1209. [PMID: 37386249 PMCID: PMC10548551 DOI: 10.1038/s41588-023-01433-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/24/2023] [Indexed: 07/01/2023]
Abstract
Pathogenic mutations in mitochondrial DNA (mtDNA) compromise cellular metabolism, contributing to cellular heterogeneity and disease. Diverse mutations are associated with diverse clinical phenotypes, suggesting distinct organ- and cell-type-specific metabolic vulnerabilities. Here we establish a multi-omics approach to quantify deletions in mtDNA alongside cell state features in single cells derived from six patients across the phenotypic spectrum of single large-scale mtDNA deletions (SLSMDs). By profiling 206,663 cells, we reveal the dynamics of pathogenic mtDNA deletion heteroplasmy consistent with purifying selection and distinct metabolic vulnerabilities across T-cell states in vivo and validate these observations in vitro. By extending analyses to hematopoietic and erythroid progenitors, we reveal mtDNA dynamics and cell-type-specific gene regulatory adaptations, demonstrating the context-dependence of perturbing mitochondrial genomic integrity. Collectively, we report pathogenic mtDNA heteroplasmy dynamics of individual blood and immune cells across lineages, demonstrating the power of single-cell multi-omics for revealing fundamental properties of mitochondrial genetics.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
24 |
7
|
Cardin S, Scott-Boyer MP, Praktiknjo S, Jeidane S, Picard S, Reudelhuber TL, Deschepper CF. Differences in cell-type-specific responses to angiotensin II explain cardiac remodeling differences in C57BL/6 mouse substrains. Hypertension 2014; 64:1040-6. [PMID: 25069667 DOI: 10.1161/hypertensionaha.114.04067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite indications that hearts from the C57BL/6N and C57BL/6J mouse substrains differ in terms of their contractility and their responses to stress-induced overload, no information is available about the underlying molecular and cellular mechanisms. We tested whether subacute (48 hours) and chronic (14 days) administration of angiotensin II (500 ng/kg per day) had different effects on the left ventricles of male C57BL/6J and C57BL/6N mice. Despite higher blood pressure in C57BL/6J mice, chronic angiotensin II induced fibrosis and increased the left ventricular weight/body weight ratio and cardiac expression of markers of left ventricular hypertrophy to a greater extent in C57BL/6N mice. Subacute angiotensin II affected a greater number of cardiac genes in C57BL/6N than in C57BL/6J mice. Some of the most prominent differences were observed for markers of (1) macrophage activation and M2 polarization, including 2 genes (osteopontin and galectin-3) whose inactivation was reported as sufficient to prevent angiotensin II-induced myocardial fibrosis; and (2) fibroblast activation. These differences were confirmed in macrophage- and fibroblast-enriched populations of cells isolated from the hearts of experimental mice. When testing F2 animals, the amount of connective tissue present after chronic angiotensin II administration did not cosegregate with the inactivation mutation of the nicotinamide nucleotide transhydrogenase gene from C57BL/6J mice, thus discounting its possible contribution to differences in cardiac remodeling. However, expression levels of osteopontin and galectin-3 were cosegregated in hearts from angiotensin II-treated F2 animals and may represent endophenotypes that could facilitate the identification of genetic regulators of the cardiac fibrogenic response to angiotensin II.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
20 |
8
|
Praktiknjo SD, Llamas B, Scott-Boyer MP, Picard S, Robert F, Langlais D, Haibe-Kains B, Faubert D, Silversides DW, Deschepper CF. Novel effects of chromosome Y on cardiac regulation, chromatin remodeling, and neonatal programming in male mice. Endocrinology 2013; 154:4746-56. [PMID: 24105479 DOI: 10.1210/en.2013-1699] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Little is known about the functions of chromosome Y (chrY) genes beyond their effects on sex and reproduction. In hearts, postpubertal testosterone affects the size of cells and the expression of genes differently in male C57BL/6J than in their C57.Y(A) counterparts, where the original chrY has been substituted with that from A/J mice. We further compared the 2 strains to better understand how chrY polymorphisms may affect cardiac properties, the latter being sexually dimorphic but unrelated to sex and reproduction. Genomic regions showing occupancy with androgen receptors (ARs) were identified in adult male hearts from both strains by chromatin immunoprecipitation. AR chromatin immunoprecipitation peaks (showing significant enrichment for consensus AR binding sites) were mostly strain specific. Measurements of anogenital distances in male pups showed that the biologic effects of perinatal androgens were greater in C57BL/6J than in C57.Y(A). Although perinatal endocrine manipulations showed that these differences contributed to the strain-specific differences in the response of adult cardiac cells to testosterone, the amounts of androgens produced by fetal testes were not different in each strain. Nonetheless, chrY polymorphisms associated in newborn pups' hearts with strain-specific differences in genomic regions showing either AR occupancy, accessible chromatin sites, or trimethylation of histone H3 Lysine 4 marks, as well as with differential expression of 2 chrY-encoded histone demethylases. In conclusion, the effects of chrY on adult cardiac phenotypes appeared to result from an interaction of this chromosome with the organizational programming effects exerted by the neonatal testosterone surge and show several characteristics of being mediated by an epigenetic remodeling of chromatin.
Collapse
|
|
12 |
14 |
9
|
Praktiknjo SD, Saad F, Maier D, Ip P, Hipfner DR. Activation of Smoothened in the Hedgehog pathway unexpectedly increases Gα s-dependent cAMP levels in Drosophila. J Biol Chem 2018; 293:13496-13508. [PMID: 30018136 DOI: 10.1074/jbc.ra118.001953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/13/2018] [Indexed: 12/28/2022] Open
Abstract
Hedgehog (Hh) signaling plays a key role in the development and maintenance of animal tissues. This signaling is mediated by the atypical G protein-coupled receptor (GPCR) Smoothened (Smo). Smo activation leads to signaling through several well-characterized effectors to activate Hh target gene expression. Recent studies have implicated activation of the heterotrimeric G protein subunit Gαi and the subsequent decrease in cellular cAMP levels in promoting the Hh response in flies and mammals. Although Hh stimulation decreases cAMP levels in some insect cell lines, here using a bioluminescence resonance energy transfer (BRET)-based assay we found that this stimulation had no detectable effect in Drosophila S2-R+ cells. However, we observed an unexpected and significant Gαs-dependent increase in cAMP levels in response to strong Smo activation in Smo-transfected cells. This effect was mediated by Smo's broadly conserved core, and was specifically activated in response to phosphorylation of the Smo C-terminus by GPCR kinase 2 (Gprk2). Genetic analysis of heterotrimeric G protein function in the developing Drosophila wing revealed a positive role for cAMP in the endogenous Hh response. Specifically, we found that mutation or depletion of Gαs diminished low-threshold Hh responses in Drosophila, whereas depletion of Gαi potentiated them (in contrast to previous findings). Our analysis suggested that regulated cAMP production is important for controlling the sensitivity of cellular responses to Hh in Drosophila.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
6 |
10
|
Praktiknjo SD, Picard S, Deschepper CF. Comparisons of chromosome Y-substituted mouse strains reveal that the male-specific chromosome modulates the effects of androgens on cardiac functions. Biol Sex Differ 2016; 7:61. [PMID: 27980711 PMCID: PMC5143463 DOI: 10.1186/s13293-016-0116-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/09/2016] [Indexed: 01/06/2023] Open
Abstract
Background The C57BL/6J.YA/J mouse strain is a chromosome-substituted line where the original male-specific portion of chromosome Y (MSY) from C57BL/6J mice was substituted for that from A/J mice. In hearts from male C57BL/6J.YA/J and C57BL/6J mice, orchidectomy (ORX) affected in a strictly strain-specific fashion the expression a subset of genes showing enrichment for functional categories, including that of circadian rhythms and cardiac contractility. We further tested whether: (1) there were strain-specific differences in cardiac circadian rhythms; (2) strain-dependent differences in the effects of ORX on contractility genes translated into differences in cardiac functions; and (3) differential contractility responses occurred preferentially at times when circadian rhythms also showed strain-specific differences. Methods In hearts from the two above strains, we (1) profiled the expression levels of 15 circadian genes at 4-h intervals across a 24 h period; (2) tested the effects of either ORX or androgen replacement on expression of cardiac contractility genes, and that of ORX on myocardial functional reserve; and (3) verified whether the effects of MSY variants on cardiac contractility-related responses showed synchronicity with differences in circadian rhythms. Results Among the 15 tested circadian genes, a subset of them were affected by strain (and thus the genetic origin of MSY), which interacted with the amplitude of their peak of maximal expression at 2:00 PM. At that same time-point, ORX decreased (and androgen supplementation increased) the expression of three contractility-related genes, and decreased myocardial relaxation reserve in C57BL/6J.YA/J, but not in C57BL/6J mice. These effects were not detected at 10:00 AM, i.e., at another time-point when circadian genes showed no strain-specific differences. Conclusions The results indicate that in mice, androgens have activational effects on cardiac circadian rhythms, contractile gene expression, and myocardial functional reserve. All effects occurred preferentially at the same time of the day, but varied as a function of the genetic origin of MSY. Androgens may therefore be necessary but not sufficient to impart male-specific characteristics to some particular cardiac functions, with genetic material from MSY being one other necessary factor to fully define their range of actions. Electronic supplementary material The online version of this article (doi:10.1186/s13293-016-0116-4) contains supplementary material, which is available to authorized users.
Collapse
|
Journal Article |
9 |
5 |
11
|
Scott-Boyer MP, Praktiknjo SD, Llamas B, Picard S, Deschepper CF. Dual Linkage of a Locus to Left Ventricular Mass and a Cardiac Gene Co-Expression Network Driven by a Chromosome Domain. Front Cardiovasc Med 2014; 1:11. [PMID: 26664861 PMCID: PMC4668859 DOI: 10.3389/fcvm.2014.00011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/27/2014] [Indexed: 12/22/2022] Open
Abstract
We have previously reported Lvm1 as a quantitative trait locus (QTL) on chromosome 13 that links to cardiac left ventricular mass (LVM) in a panel of AxB/BxA mouse recombinant inbred strains (RIS). When performing a gene expression QTL (eQTL) analysis, we detected 33 cis-eQTLs that correlated with LVM. Among the latter, a group of eight cis-eQTLs clustered in a genomic region smaller than 6 Mb and surrounding the Lvm1 peak on chr13. Co-variant analysis indicated that all eight genes correlated with the phenotype in a causal rather than a reactive fashion, a finding that (despite its functional interest) did not provide grounds to prioritize any of these candidate genes. As a complementary approach, we performed weighted gene co-expression network analysis, which allowed us to detect 49 modules of highly connected genes. The module that correlated best with LVM: (1) showed linkage to a module QTL whose boundaries matched closely those of the phenotypic Lvm1 QTL on chr13; (2) harbored a disproportionately high proportion of genes originating from a small genomic region on chromosome 13 (including the 8 previously detected cis-eQTL genes); (3) contained genes that, beyond their individual level of expression, correlated with LVM as a function of their inter-connectivity; and (4) showed increased abundance of polymorphic insertion–deletion elements in the same region. Taken together, these data suggest that a domain on chromosome 13 constitutes the biologic principle responsible for the organization and linkage of the gene co-expression module, and indicate a mechanism whereby genetic variants within chromosome domains may associate to phenotypic changes via coordinate changes in the expression of several genes. One other possible implication of these findings is that candidate genes to consider as contributors to a particular phenotype should extend further than those that are closest to the QTL peak.
Collapse
|
|
11 |
2 |
12
|
Ihlow J, Penter L, Vuong LG, Bischoff P, Obermayer B, Trinks A, Blau O, Behnke A, Conrad T, Morkel M, Wu CJ, Westermann J, Bullinger L, von Brünneck AC, Blüthgen N, Horst D, Praktiknjo SD. Diagnosing recipient- vs. donor-derived posttransplant myelodysplastic neoplasm via targeted single-cell mutational profiling. MED 2025; 6:100548. [PMID: 39644889 DOI: 10.1016/j.medj.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/13/2024] [Accepted: 11/01/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Distinguishing donor- vs. recipient-derived myelodysplastic neoplasm (MDS) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is challenging and has direct therapeutical implications. METHODS Here, we took a translational approach that we used in addition to conventional diagnostic techniques to resolve the origin of MDS in a 38-year-old patient with acquired aplastic anemia and evolving MDS after first allo-HSCT. Specifically, we used single-cell transcriptional profiling to differentiate between donor- and recipient-derived bone marrow cells and established a strategy that additionally allows identification of cells carrying the MDS-associated U2AF1S34Y variant. RESULTS The patient exhibited mixed donor chimerism combined with severely reduced erythropoiesis and dysplastic morphology within the granulocytic and megakaryocytic lineage along with the MDS-associated U2AF1S34Y mutation in the bone marrow. Single-cell transcriptional profiling together with targeted enrichment of the U2AF1S34Y-specific locus further revealed that, while the immune compartment was mainly populated by donor-derived cells, myelopoiesis was predominantly driven by the recipient. Additionally, concordant with recipient-derived MDS, we found that U2AF1S34Y-mutated cells were exclusively recipient derived with X but not Y chromosome-specific gene expression. CONCLUSION Our study highlights the clinical potential of integrating high-resolution single-cell techniques to resolve complex cases for personalized treatment decisions. FUNDING The study was funded by intramural resources of the Charité - Universitätsmedizin Berlin and the Berlin Institute of Health.
Collapse
|
Case Reports |
1 |
|
13
|
Peidli S, Nouailles G, Wyler E, Adler JM, Kunder S, Voß A, Kazmierski J, Pott F, Pennitz P, Postmus D, Teixeira Alves LG, Goffinet C, Gruber AD, Blüthgen N, Witzenrath M, Trimpert J, Landthaler M, Praktiknjo SD. Single-cell-resolved interspecies comparison shows a shared inflammatory axis and a dominant neutrophil-endothelial program in severe COVID-19. Cell Rep 2024; 43:114328. [PMID: 38861386 DOI: 10.1016/j.celrep.2024.114328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/21/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
A key issue for research on COVID-19 pathogenesis is the lack of biopsies from patients and of samples at the onset of infection. To overcome these hurdles, hamsters were shown to be useful models for studying this disease. Here, we further leverage the model to molecularly survey the disease progression from time-resolved single-cell RNA sequencing data collected from healthy and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected Syrian and Roborovski hamster lungs. We compare our data to human COVID-19 studies, including bronchoalveolar lavage, nasal swab, and postmortem lung tissue, and identify a shared axis of inflammation dominated by macrophages, neutrophils, and endothelial cells, which we show to be transient in Syrian and terminal in Roborovski hamsters. Our data suggest that, following SARS-CoV-2 infection, commitment to a type 1- or type 3-biased immunity determines moderate versus severe COVID-19 outcomes, respectively.
Collapse
|
Comparative Study |
1 |
|