1
|
Solon-Biet SM, McMahon AC, Ballard JWO, Ruohonen K, Wu LE, Cogger VC, Warren A, Huang X, Pichaud N, Melvin RG, Gokarn R, Khalil M, Turner N, Cooney GJ, Sinclair DA, Raubenheimer D, Le Couteur DG, Simpson SJ. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab 2014; 19:418-30. [PMID: 24606899 PMCID: PMC5087279 DOI: 10.1016/j.cmet.2014.02.009] [Citation(s) in RCA: 682] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/14/2014] [Accepted: 02/11/2014] [Indexed: 11/13/2022]
Abstract
The fundamental questions of what represents a macronutritionally balanced diet and how this maintains health and longevity remain unanswered. Here, the Geometric Framework, a state-space nutritional modeling method, was used to measure interactive effects of dietary energy, protein, fat, and carbohydrate on food intake, cardiometabolic phenotype, and longevity in mice fed one of 25 diets ad libitum. Food intake was regulated primarily by protein and carbohydrate content. Longevity and health were optimized when protein was replaced with carbohydrate to limit compensatory feeding for protein and suppress protein intake. These consequences are associated with hepatic mammalian target of rapamycin (mTOR) activation and mitochondrial function and, in turn, related to circulating branched-chain amino acids and glucose. Calorie restriction achieved by high-protein diets or dietary dilution had no beneficial effects on lifespan. The results suggest that longevity can be extended in ad libitum-fed animals by manipulating the ratio of macronutrients to inhibit mTOR activation.
Collapse
|
research-article |
11 |
682 |
2
|
Solon-Biet SM, Cogger VC, Pulpitel T, Wahl D, Clark X, Bagley E, Gregoriou GC, Senior AM, Wang QP, Brandon AE, Perks R, O’Sullivan J, Koay YC, Bell-Anderson K, Kebede M, Yau B, Atkinson C, Svineng G, Dodgson T, Wali JA, Piper MDW, Juricic P, Partridge L, Rose AJ, Raubenheimer D, Cooney GJ, Le Couteur DG, Simpson SJ. Branched chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nat Metab 2019; 1:532-545. [PMID: 31656947 PMCID: PMC6814438 DOI: 10.1038/s42255-019-0059-2] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/22/2019] [Indexed: 12/11/2022]
Abstract
Elevated branched chain amino acids (BCAAs) are associated with obesity and insulin resistance. How long-term dietary BCAAs impact late-life health and lifespan is unknown. Here, we show that when dietary BCAAs are varied against a fixed, isocaloric macronutrient background, long-term exposure to high BCAA diets leads to hyperphagia, obesity and reduced lifespan. These effects are not due to elevated BCAA per se or hepatic mTOR activation, but rather due to a shift in the relative quantity of dietary BCAAs and other AAs, notably tryptophan and threonine. Increasing the ratio of BCAAs to these AAs resulted in hyperphagia and is associated with central serotonin depletion. Preventing hyperphagia by calorie restriction or pair-feeding averts the health costs of a high BCAA diet. Our data highlight a role for amino acid quality in energy balance and show that health costs of chronic high BCAA intakes need not be due to intrinsic toxicity but, rather, a consequence of hyperphagia driven by AA imbalance.
Collapse
|
research-article |
6 |
217 |
3
|
Solon-Biet SM, Cogger VC, Pulpitel T, Heblinski M, Wahl D, McMahon AC, Warren A, Durrant-Whyte J, Walters KA, Krycer JR, Ponton F, Gokarn R, Wali JA, Ruohonen K, Conigrave AD, James DE, Raubenheimer D, Morrison CD, Le Couteur DG, Simpson SJ. Defining the Nutritional and Metabolic Context of FGF21 Using the Geometric Framework. Cell Metab 2016; 24:555-565. [PMID: 27693377 DOI: 10.1016/j.cmet.2016.09.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 06/30/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is the first known endocrine signal activated by protein restriction. Although FGF21 is robustly elevated in low-protein environments, increased FGF21 is also seen in various other contexts such as fasting, overfeeding, ketogenic diets, and high-carbohydrate diets, leaving its nutritional context and physiological role unresolved and controversial. Here, we use the Geometric Framework, a nutritional modeling platform, to help reconcile these apparently conflicting findings in mice confined to one of 25 diets that varied in protein, carbohydrate, and fat content. We show that FGF21 was elevated under low protein intakes and maximally when low protein was coupled with high carbohydrate intakes. Our results explain how elevation of FGF21 occurs both under starvation and hyperphagia, and show that the metabolic outcomes associated with elevated FGF21 depend on the nutritional context, differing according to whether the animal is in a state of under- or overfeeding.
Collapse
|
|
9 |
166 |
4
|
Hill CM, Laeger T, Dehner M, Albarado DC, Clarke B, Wanders D, Burke SJ, Collier JJ, Qualls-Creekmore E, Solon-Biet SM, Simpson SJ, Berthoud HR, Münzberg H, Morrison CD. FGF21 Signals Protein Status to the Brain and Adaptively Regulates Food Choice and Metabolism. Cell Rep 2020; 27:2934-2947.e3. [PMID: 31167139 PMCID: PMC6579533 DOI: 10.1016/j.celrep.2019.05.022] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/05/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Reduced dietary protein intake induces adaptive physiological changes in macronutrient preference, energy expenditure, growth, and glucose homeostasis. We demonstrate that deletion of the FGF21 co-receptor βKlotho (Klb) from the brain produces mice that are unable to mount a physiological response to protein restriction, an effect that is replicated by whole-body deletion of FGF21. Mice forced to consume a low-protein diet exhibit reduced growth, increased energy expenditure, and a resistance to diet-induced obesity, but the loss of FGF21 signaling in the brain completely abrogates that response. When given access to a higher protein alternative, protein-restricted mice exhibit a shift toward protein-containing foods, and central FGF21 signaling is essential for that response. FGF21 is an endocrine signal linking the liver and brain, which regulates adaptive, homeostatic changes in metabolism and feeding behavior during protein restriction.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
150 |
5
|
Solon-Biet SM, Mitchell SJ, Coogan SCP, Cogger VC, Gokarn R, McMahon AC, Raubenheimer D, de Cabo R, Simpson SJ, Le Couteur DG. Dietary Protein to Carbohydrate Ratio and Caloric Restriction: Comparing Metabolic Outcomes in Mice. Cell Rep 2015; 11:1529-34. [PMID: 26027933 DOI: 10.1016/j.celrep.2015.05.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/16/2015] [Accepted: 05/05/2015] [Indexed: 01/09/2023] Open
Abstract
Both caloric restriction (CR) and low-protein, high-carbohydrate (LPHC) ad-libitum-fed diets increase lifespan and improve metabolic parameters such as insulin, glucose, and blood lipids. Severe CR, however, is unsustainable for most people; therefore, it is important to determine whether manipulating macronutrient ratios in ad-libitum-fed conditions can generate similar health outcomes. We present the results of a short-term (8 week) dietary manipulation on metabolic outcomes in mice. We compared three diets varying in protein to carbohydrate ratio under both CR and ad libitum conditions. Ad libitum LPHC diets delivered similar benefits to CR in terms of levels of insulin, glucose, lipids, and HOMA, despite increased energy intake. CR on LPHC diets did not provide additional benefits relative to ad libitum LPHC. We show that LPHC diets under ad-libitum-fed conditions generate the metabolic benefits of CR without a 40% reduction in total caloric intake.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
147 |
6
|
Le Couteur DG, Solon-Biet S, Cogger VC, Mitchell SJ, Senior A, de Cabo R, Raubenheimer D, Simpson SJ. The impact of low-protein high-carbohydrate diets on aging and lifespan. Cell Mol Life Sci 2016; 73:1237-52. [PMID: 26718486 PMCID: PMC11108352 DOI: 10.1007/s00018-015-2120-y] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Most research on nutritional effects on aging has focussed on the impact of manipulating single dietary factors such as total calorie intake or each of the macronutrients individually. More recent studies using a nutritional geometric approach called the Geometric Framework have facilitated an understanding of how aging is influenced across a landscape of diets that vary orthogonally in macronutrient and total energy content. Such studies have been performed using ad libitum feeding regimes, thus taking into account compensatory feeding responses that are inevitable in a non-constrained environment. Geometric Framework studies on insects and mice have revealed that diets low in protein and high in carbohydrates generate longest lifespans in ad libitum-fed animals while low total energy intake (caloric restriction by dietary dilution) has minimal effect. These conclusions are supported indirectly by observational studies in humans and a heterogeneous group of other types of interventional studies in insects and rodents. Due to compensatory feeding for protein dilution, low-protein, high-carbohydrate diets are often associated with increased food intake and body fat, a phenomenon called protein leverage. This could potentially be mitigated by supplementing these diets with interventions that influence body weight through physical activity and ambient temperature.
Collapse
|
Research Support, N.I.H., Intramural |
9 |
145 |
7
|
Le Couteur DG, Solon-Biet SM, Cogger VC, Ribeiro R, de Cabo R, Raubenheimer D, Cooney GJ, Simpson SJ. Branched chain amino acids, aging and age-related health. Ageing Res Rev 2020; 64:101198. [PMID: 33132154 DOI: 10.1016/j.arr.2020.101198] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/04/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023]
Abstract
Branched chain amino acids (BCAA: leucine, valine, isoleucine) have key physiological roles in the regulation of protein synthesis, metabolism, food intake and aging. Many studies report apparently inconsistent conclusions about the relationships between blood levels of BCAAs or dietary manipulation of BCAAs with age-related changes in body composition, sarcopenia, obesity, insulin and glucose metabolism, and aging biology itself. These divergent results can be resolved by consideration of the role of BCAAs as signalling molecules and the bidirectional mechanistic relationship between BCAAs and some aging phenotypes. The effects of BCAAs are also influenced by the background nutritional composition such as macronutrient ratios and imbalance with other amino acids. Understanding the interaction between BCAAs and other components of the diet may provide new opportunities for influencing age-related outcomes through manipulation of dietary BCAAs together with titration of macronutrient ratios and other amino acids.
Collapse
|
Review |
5 |
131 |
8
|
Holmes AJ, Chew YV, Colakoglu F, Cliff JB, Klaassens E, Read MN, Solon-Biet SM, McMahon AC, Cogger VC, Ruohonen K, Raubenheimer D, Le Couteur DG, Simpson SJ. Diet-Microbiome Interactions in Health Are Controlled by Intestinal Nitrogen Source Constraints. Cell Metab 2017; 25:140-151. [PMID: 27889387 DOI: 10.1016/j.cmet.2016.10.021] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/30/2016] [Accepted: 10/28/2016] [Indexed: 01/12/2023]
Abstract
Diet influences health and patterns of disease in populations. How different diets do this and why outcomes of diets vary between individuals are complex and involve interaction with the gut microbiome. A major challenge for predicting health outcomes of the host-microbiome dynamic is reconciling the effects of different aspects of diet (food composition or intake rate) on the system. Here we show that microbial community assembly is fundamentally shaped by a dichotomy in bacterial strategies to access nitrogen in the gut environment. Consequently, the pattern of dietary protein intake constrains the host-microbiome dynamic in ways that are common to a very broad range of diet manipulation strategies. These insights offer a mechanism for the impact of high protein intake on metabolic health and form the basis for a general theory of the impact of different diet strategies on host-microbiome outcomes.
Collapse
|
|
8 |
127 |
9
|
Simpson SJ, Le Couteur DG, Raubenheimer D, Solon-Biet SM, Cooney GJ, Cogger VC, Fontana L. Dietary protein, aging and nutritional geometry. Ageing Res Rev 2017; 39:78-86. [PMID: 28274839 DOI: 10.1016/j.arr.2017.03.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 11/29/2022]
Abstract
Nearly a century of research has shown that nutritional interventions can delay aging and age- related diseases in many animal models and possibly humans. The most robust and widely studied intervention is caloric restriction, while protein restriction and restriction of various amino acids (methionine, tryptophan) have also been shown to delay aging. However, there is still debate over whether the major impact on aging is secondary to caloric intake, protein intake or specific amino acids. Nutritional geometry provides new perspectives on the relationship between nutrition and aging by focusing on calories, macronutrients and their interactions across a landscape of diets, and taking into account compensatory feeding in ad libitum-fed experiments. Nutritional geometry is a state-space modelling approach that explores how animals respond to and balance changes in nutrient availability. Such studies in insects and mice have shown that low protein, high carbohydrate diets are associated with longest lifespan in ad libitum fed animals suggesting that the interaction between macronutrients may be as important as their total intake.
Collapse
|
Review |
8 |
104 |
10
|
Wahl D, Solon-Biet SM, Wang QP, Wali JA, Pulpitel T, Clark X, Raubenheimer D, Senior AM, Sinclair DA, Cooney GJ, de Cabo R, Cogger VC, Simpson SJ, Le Couteur DG. Comparing the Effects of Low-Protein and High-Carbohydrate Diets and Caloric Restriction on Brain Aging in Mice. Cell Rep 2018; 25:2234-2243.e6. [PMID: 30463018 PMCID: PMC6296764 DOI: 10.1016/j.celrep.2018.10.070] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/27/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022] Open
Abstract
Calorie restriction (CR) increases lifespan and improves brain health in mice. Ad libitum low-protein, high-carbohydrate (LPHC) diets also extend lifespan, but it is not known whether they are beneficial for brain health. We compared hippocampus biology and memory in mice subjected to 20% CR or provided ad libitum access to one of three LPHC diets or to a control diet. Patterns of RNA expression in the hippocampus of 15-month-old mice were similar between mice fed CR and LPHC diets when we looked at genes associated with longevity, cytokines, and dendrite morphogenesis. Nutrient-sensing proteins, including SIRT1, mTOR, and PGC1α, were also influenced by diet; however, the effects varied by sex. CR and LPHC diets were associated with increased dendritic spines in dentate gyrus neurons. Mice fed CR and LPHC diets had modest improvements in the Barnes maze and novel object recognition. LPHC diets recapitulate some of the benefits of CR on brain aging.
Collapse
|
Comparative Study |
7 |
94 |
11
|
Wahl D, Solon-Biet SM, Cogger VC, Fontana L, Simpson SJ, Le Couteur DG, Ribeiro RV. Aging, lifestyle and dementia. Neurobiol Dis 2019; 130:104481. [PMID: 31136814 DOI: 10.1016/j.nbd.2019.104481] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Aging is the greatest risk factor for most diseases including cancer, cardiovascular disorders, and neurodegenerative disease. There is emerging evidence that interventions that improve metabolic health with aging may also be effective for brain health. The most robust interventions are non-pharmacological and include limiting calorie or protein intake, increasing aerobic exercise, or environmental enrichment. In humans, dietary patterns including the Mediterranean, Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) and Okinawan diets are associated with improved age-related health and may reduce neurodegenerative disease including dementia. Rapamycin, metformin and resveratrol act on nutrient sensing pathways that improve cardiometabolic health and decrease the risk for age-associated disease. There is some evidence that they may reduce the risk for dementia in rodents. There is a growing recognition that improving metabolic function may be an effective way to optimize brain health during aging.
Collapse
|
Review |
6 |
87 |
12
|
Solon-Biet SM, Mitchell SJ, de Cabo R, Raubenheimer D, Le Couteur DG, Simpson SJ. Macronutrients and caloric intake in health and longevity. J Endocrinol 2015; 226:R17-28. [PMID: 26021555 PMCID: PMC4490104 DOI: 10.1530/joe-15-0173] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2015] [Indexed: 12/18/2022]
Abstract
Both lifespan and healthspan are influenced by nutrition, with nutritional interventions proving to be robust across a wide range of species. However, the relationship between nutrition, health and aging is still not fully understood. Caloric restriction is the most studied dietary intervention known to extend life in many organisms, but recently the balance of macronutrients has been shown to play a critical role. In this review, we discuss the current understanding regarding the impact of calories and macronutrient balance in mammalian health and longevity, and highlight the key nutrient-sensing pathways that mediate the effects of nutrition on health and ageing.
Collapse
|
Research Support, N.I.H., Intramural |
10 |
87 |
13
|
Wahl D, Coogan SCP, Solon-Biet SM, de Cabo R, Haran JB, Raubenheimer D, Cogger VC, Mattson MP, Simpson SJ, Le Couteur DG. Cognitive and behavioral evaluation of nutritional interventions in rodent models of brain aging and dementia. Clin Interv Aging 2017; 12:1419-1428. [PMID: 28932108 PMCID: PMC5598548 DOI: 10.2147/cia.s145247] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Evaluation of behavior and cognition in rodent models underpins mechanistic and interventional studies of brain aging and neurodegenerative diseases, especially dementia. Commonly used tests include Morris water maze, Barnes maze, object recognition, fear conditioning, radial arm water maze, and Y maze. Each of these tests reflects some aspects of human memory including episodic memory, recognition memory, semantic memory, spatial memory, and emotional memory. Although most interventional studies in rodent models of dementia have focused on pharmacological agents, there are an increasing number of studies that have evaluated nutritional interventions including caloric restriction, intermittent fasting, and manipulation of macronutrients. Dietary interventions have been shown to influence various cognitive and behavioral tests in rodents indicating that nutrition can influence brain aging and possibly neurodegeneration.
Collapse
|
Review |
8 |
74 |
14
|
Wahl D, Cogger VC, Solon-Biet SM, Waern RVR, Gokarn R, Pulpitel T, Cabo RD, Mattson MP, Raubenheimer D, Simpson SJ, Le Couteur DG. Nutritional strategies to optimise cognitive function in the aging brain. Ageing Res Rev 2016; 31:80-92. [PMID: 27355990 PMCID: PMC5035589 DOI: 10.1016/j.arr.2016.06.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022]
Abstract
Old age is the greatest risk factor for most neurodegenerative diseases. During recent decades there have been major advances in understanding the biology of aging, and the development of nutritional interventions that delay aging including calorie restriction (CR) and intermittent fasting (IF), and chemicals that influence pathways linking nutrition and aging processes. CR influences brain aging in many animal models and recent findings suggest that dietary interventions can influence brain health and dementia in older humans. The role of individual macronutrients in brain aging also has been studied, with conflicting results about the effects of dietary protein and carbohydrates. A new approach known as the Geometric Framework (GF) has been used to unravel the complex interactions between macronutrients (protein, fat, and carbohydrate) and total energy on outcomes such as aging. These studies have shown that low-protein, high-carbohydrate (LPHC) diets are optimal for lifespan in ad libitum fed animals, while total calories have minimal effect once macronutrients are taken into account. One of the primary purposes of this review is to explore the notion that macronutrients may have a more translational potential than CR and IF in humans, and therefore there is a pressing need to use GF to study the impact of diet on brain aging. Furthermore, given the growing recognition of the role of aging biology in dementia, such studies might provide a new approach for dietary interventions for optimizing brain health and preventing dementia in older people.
Collapse
|
Review |
9 |
65 |
15
|
Simpson SJ, Le Couteur DG, James DE, George J, Gunton JE, Solon-Biet SM, Raubenheimer D. The Geometric Framework for Nutrition as a tool in precision medicine. ACTA ACUST UNITED AC 2017; 4:217-226. [PMID: 29276791 PMCID: PMC5734128 DOI: 10.3233/nha-170027] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fundamental questions in nutrition include, “What constitutes a nutritionally balanced diet?”, “What are the consequences of failing to achieve diet balance?”, and “How does diet balance change across the lifecourse and with individual circumstances?”. Answering these questions requires coming to grips with the multidimensionality and dynamic nature of nutritional requirements, foods and diets, and the complex relationships between nutrition and health, while at the same time avoiding becoming overwhelmed by complexity. Here we illustrate the use of an integrating framework for taming the complexity of nutrition, the Geometric Framework for Nutrition (GFN), and show how this might be used to untap the full potential for nutrition to provide targeted primary interventions and treatments for the chronic diseases of aging. We first briefly introduce the concepts behind GFN, then provide an example of how GFN has been used to relate nutrition to various behavioural, physiological and health outcomes in a large mouse experiment, and end by suggesting a translational pathway to human health.
Collapse
|
Review |
8 |
58 |
16
|
Wali JA, Milner AJ, Luk AWS, Pulpitel TJ, Dodgson T, Facey HJW, Wahl D, Kebede MA, Senior AM, Sullivan MA, Brandon AE, Yau B, Lockwood GP, Koay YC, Ribeiro R, Solon-Biet SM, Bell-Anderson KS, O'Sullivan JF, Macia L, Forbes JM, Cooney GJ, Cogger VC, Holmes A, Raubenheimer D, Le Couteur DG, Simpson SJ. Impact of dietary carbohydrate type and protein-carbohydrate interaction on metabolic health. Nat Metab 2021; 3:810-828. [PMID: 34099926 DOI: 10.1038/s42255-021-00393-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Reduced protein intake, through dilution with carbohydrate, extends lifespan and improves mid-life metabolic health in animal models. However, with transition to industrialised food systems, reduced dietary protein is associated with poor health outcomes in humans. Here we systematically interrogate the impact of carbohydrate quality in diets with varying carbohydrate and protein content. Studying 700 male mice on 33 isocaloric diets, we find that the type of carbohydrate and its digestibility profoundly shape the behavioural and physiological responses to protein dilution, modulate nutrient processing in the liver and alter the gut microbiota. Low (10%)-protein, high (70%)-carbohydrate diets promote the healthiest metabolic outcomes when carbohydrate comprises resistant starch (RS), yet the worst outcomes were with a 50:50 mixture of monosaccharides fructose and glucose. Our findings could explain the disparity between healthy, high-carbohydrate diets and the obesogenic impact of protein dilution by glucose-fructose mixtures associated with highly processed diets.
Collapse
|
|
4 |
50 |
17
|
Le Couteur DG, Solon-Biet S, Wahl D, Cogger VC, Willcox BJ, Willcox DC, Raubenheimer D, Simpson SJ. New Horizons: Dietary protein, ageing and the Okinawan ratio. Age Ageing 2016; 45:443-7. [PMID: 27130207 PMCID: PMC4916345 DOI: 10.1093/ageing/afw069] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/02/2016] [Indexed: 01/21/2023] Open
Abstract
Nutrition has profound effects on ageing and lifespan. Caloric restriction is the major nutritional intervention that historically has been shown to influence lifespan and/or healthspan in many animal models. Studies have suggested that a reduction in protein intake can also increase lifespan, albeit not as dramatically as caloric restriction. More recent research based on nutritional geometry has attempted to define the effects of nutrition on ageing over a broad landscape of dietary macronutrients and energy content. Such studies in insects and mice indicate that animals with ad libitum access to low-protein, high-carbohydrate diets have longest lifespans. Remarkably, the optimum content and ratio of dietary protein to carbohydrates for ageing in experimental animals are almost identical to those in the traditional diets of the long-lived people on the island of Okinawa.
Collapse
|
Review |
9 |
50 |
18
|
Rodriguez Paris V, Solon-Biet SM, Senior AM, Edwards MC, Desai R, Tedla N, Cox MJ, Ledger WL, Gilchrist RB, Simpson SJ, Handelsman DJ, Walters KA. Defining the impact of dietary macronutrient balance on PCOS traits. Nat Commun 2020; 11:5262. [PMID: 33067453 PMCID: PMC7568581 DOI: 10.1038/s41467-020-19003-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/15/2020] [Indexed: 02/05/2023] Open
Abstract
Lifestyle, mainly dietary, interventions are first-line treatment for women with polycystic ovary syndrome (PCOS), but the optimal diet remains undefined. We combined a hyperandrogenized PCOS mouse model with a systematic macronutrient approach, to elucidate the impact of dietary macronutrients on the development of PCOS. We identify that an optimum dietary macronutrient balance of a low protein, medium carbohydrate and fat diet can ameliorate key PCOS reproductive traits. However, PCOS mice display a hindered ability for their metabolic system to respond to diet variations, and varying macronutrient balance did not have a beneficial effect on the development of metabolic PCOS traits. We reveal that PCOS traits in a hyperandrogenic PCOS mouse model are ameliorated selectively by diet, with reproductive traits displaying greater sensitivity than metabolic traits to dietary macronutrient balance. Hence, providing evidence to support the development of evidence-based dietary interventions as a promising strategy for the treatment of PCOS, especially reproductive traits.
Collapse
|
research-article |
5 |
43 |
19
|
Cogger VC, Svistounov D, Warren A, Zykova S, Melvin RG, Solon-Biet SM, O'Reilly JN, McMahon AC, Ballard JWO, De Cabo R, Le Couteur DG, Lebel M. Liver aging and pseudocapillarization in a Werner syndrome mouse model. J Gerontol A Biol Sci Med Sci 2013; 69:1076-86. [PMID: 24149428 DOI: 10.1093/gerona/glt169] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Werner syndrome is a progeric syndrome characterized by premature atherosclerosis, diabetes, cancer, and death in humans. The knockout mouse model created by deletion of the RecQ helicase domain of the mouse Wrn homologue gene (Wrn(∆hel/∆hel)) is of great interest because it develops atherosclerosis and hypertriglyceridemia, conditions associated with aging liver and sinusoidal changes. Here, we show that Wrn(∆hel/∆hel) mice exhibit increased extracellular matrix, defenestration, decreased fenestration diameter, and changes in markers of liver sinusoidal endothelial cell inflammation, consistent with age-related pseudocapilliarization. In addition, hepatocytes are larger, have increased lipofuscin deposition, more frequent nuclear morphological anomalies, decreased mitochondria number, and increased mitochondrial diameter compared to wild-type mice. The Wrn(∆hel/∆hel) mice also have altered mitochondrial function and altered nuclei. Microarray data revealed that the Wrn(∆hel/∆hel) genotype does not affect the expression of many genes within the isolated hepatocytes or liver sinusoidal endothelial cells. This study reveals that Wrn(∆hel/∆hel) mice have accelerated typical age-related liver changes including pseudocapillarization. This confirms that pseudocapillarization of the liver sinusoid is a consistent feature of various aging models. Moreover, it implies that DNA repair may be implicated in normal aging changes in the liver.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
41 |
20
|
Koay YC, Wali JA, Luk AWS, Macia L, Cogger VC, Pulpitel TJ, Wahl D, Solon-Biet SM, Holmes A, Simpson SJ, O'Sullivan JF. Ingestion of resistant starch by mice markedly increases microbiome-derived metabolites. FASEB J 2019; 33:8033-8042. [PMID: 30925066 DOI: 10.1096/fj.201900177r] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent research has shown significant health benefits deriving from high-dietary fiber or microbiome-accessible carbohydrate consumption. Compared with native starch (NS), dietary resistant starch (RS) is a high microbiome-accessible carbohydrate that significantly alters the gut microbiome. The aim of this study was to determine the systemic metabolic effects of high microbiome-accessible carbohydrate. Male C57BL/6 mice were divided into 2 groups and fed either NS or RS for 18 wk (n = 20/group). Metabolomic analyses revealed that plasma levels of numerous metabolites were significantly different between the RS-fed and NS-fed mice, many of which are microbiome-derived. Most strikingly, we observed a 22-fold increase in gut microbiome-derived tryptophan metabolite indole-3-propionate (IPA), which was positively correlated with several gut microbiota, including Allobaculum, Bifidobacterium, and Lachnospiraceae, with Allobaculum having the most consistently increased abundance of all the IPA-associated taxa across all RS-fed mice. In addition, major changes were observed for metabolites solely or primarily metabolized in the gut (e.g., trimethylamine-N-oxide), metabolites that have a significant entero-hepatic circulation (i.e., bile acids), lipid metabolites (e.g., cholesterol sulfate), metabolites indicating increased energy turnover (e.g., tricarboxylic acid cycle intermediates and ketone bodies), and increased antioxidants such as reduced glutathione. Our findings reveal potentially novel mediators of high microbiome-accessible carbohydrate-derived health benefits.-Koay,Y. C., Wali. J. A., Luk, A. W. S., Macia, L., Cogger, V. C., Pulpitel, T. J., Wahl, D., Solon-Biet, S. M., Holmes, A., Simpson, S. J., O'Sullivan, J. F. Ingestion of resistant starch by mice markedly increases microbiome-derived metabolites.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
38 |
21
|
Raubenheimer D, Simpson SJ, Le Couteur DG, Solon-Biet SM, Coogan SCP. Nutritional ecology and the evolution of aging. Exp Gerontol 2016; 86:50-61. [PMID: 27094469 DOI: 10.1016/j.exger.2016.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/01/2016] [Accepted: 04/07/2016] [Indexed: 11/20/2022]
Abstract
Considerable progress has been made in understanding both evolutionary and mechanistic aspects of biological aging, although the two areas remain poorly integrated. We suggest that a greater emphasis on ecology can help to remedy this, by focusing on the interface between biological mechanisms and the environments in which they evolved by natural selection. Among the most salient aspects of the environment relevant to aging is nutrition, and yet in the bulk of aging research nutrition is coarsely represented as dietary restriction or caloric restriction, without consideration for how specific components of diet, beyond "energy" (the undifferentiated mix of macronutrients), are driving the observed effects. More recently, it has become clear that specific nutrients (notably amino acids) and interactions among nutrients (i.e., nutritional balance) play important roles in the biology of aging. We show how a method developed in nutritional ecology, called the Geometric Framework for nutrition, can help to understand the nutritional interactions of animals with their environments, by explicitly distinguishing the roles of calories, individual nutrients and nutrient balance. Central to these models are the active regulatory responses that animals use to mediate between variation in the nutritional environment and fitness-related consequences such as lifespan and reproduction. These homeostatic responses provide a guide for researchers that can help to link the biological mechanisms with evolutionary processes in the context of a multi-dimensional nutritional environment.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
30 |
22
|
Le Couteur DG, Tay SS, Solon-Biet S, Bertolino P, McMahon AC, Cogger VC, Colakoglu F, Warren A, Holmes AJ, Pichaud N, Horan M, Correa C, Melvin RG, Turner N, Ballard JWO, Ruohonen K, Raubenheimer D, Simpson SJ. The Influence of Macronutrients on Splanchnic and Hepatic Lymphocytes in Aging Mice. J Gerontol A Biol Sci Med Sci 2014; 70:1499-507. [DOI: 10.1093/gerona/glu196] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/16/2014] [Indexed: 11/13/2022] Open
|
|
11 |
28 |
23
|
Rodriguez Paris V, Wong XYD, Solon-Biet SM, Edwards MC, Aflatounian A, Gilchrist RB, Simpson SJ, Handelsman DJ, Kaakoush NO, Walters KA. The interplay between PCOS pathology and diet on gut microbiota in a mouse model. Gut Microbes 2022; 14:2085961. [PMID: 35787106 PMCID: PMC9450977 DOI: 10.1080/19490976.2022.2085961] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The gut microbiome has been implicated in polycystic ovary syndrome (PCOS) pathophysiology. PCOS is a disorder with reproductive, endocrine and metabolic irregularities, and several studies report that PCOS is associated with a decrease in microbial diversity and composition. Diet is an important regulator of the gut microbiome, as alterations in macronutrient composition impact the balance of gut microbial communities. This study investigated the interplay between macronutrient balance and PCOS on the gut microbiome of control and dihydrotestosterone (DHT)-induced PCOS-like mice exposed to diets that varied in protein (P), carbohydrate (C) and fat (F) content. The amount of dietary P, C and F consumed significantly altered alpha (α) and beta (β) diversity of the gut microbiota of control and PCOS-like mice. However, α-diversity between control and PCOS-like mice on the same diet did not differ significantly. In contrast, β-diversity was significantly altered by PCOS pathology. Further analysis identified an operational taxonomic unit (OTU) within Bacteroides (OTU3) with 99.2% similarity to Bacteroides acidifaciens, which is inversely associated with obesity, to be significantly decreased in PCOS-like mice. Additionally, this study investigated the role of the gut microbiome in the development of PCOS traits, whereby PCOS-like mice were transplanted with healthy fecal microbiota from control mice. Although the PCOS gut microbiome shifted toward that of control mice, PCOS traits were not ameliorated. Overall, these findings demonstrate that while diet exerts a stronger influence over gut microbiota diversity than PCOS pathology, overall gut microbiota composition is affected by PCOS pathology.
Collapse
|
research-article |
3 |
28 |
24
|
Simpson SJ, Raubenheimer D, Cogger VC, Macia L, Solon-Biet SM, Le Couteur DG, George J. The nutritional geometry of liver disease including non-alcoholic fatty liver disease. J Hepatol 2018; 68:316-325. [PMID: 29122389 DOI: 10.1016/j.jhep.2017.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 12/23/2022]
Abstract
Nutrition has a profound effect on chronic liver disease, especially non-alcoholic fatty liver disease (NAFLD). Most observational studies and clinical trials have focussed on the effects of total energy intake, or the intake of individual macronutrients and certain micronutrients, such as vitamin D, on liver disease. Although these studies have shown the importance of nutrition on hepatic outcomes, there is not yet any unifying framework for understanding the relationship between diet and liver disease. The Geometric Framework for Nutrition (GFN) is an innovative model for designing nutritional experiments or interpreting nutritional data that can determine the effects of nutrients and their interactions on animal behaviour and phenotypes. Recently the GFN has provided insights into the relationship between dietary energy and macronutrients on obesity and ageing in mammals including humans. Mouse studies using the GFN have disentangled the effects of macronutrients on fatty liver and the gut microbiome. The GFN is likely to play a significant role in disentangling the effects of nutrients on liver disease, especially NAFLD, in humans.
Collapse
|
Review |
7 |
26 |
25
|
Senior AM, Solon-Biet SM, Cogger VC, Le Couteur DG, Nakagawa S, Raubenheimer D, Simpson SJ. Dietary macronutrient content, age-specific mortality and lifespan. Proc Biol Sci 2020; 286:20190393. [PMID: 31039722 DOI: 10.1098/rspb.2019.0393] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Protein and calorie restrictions extend median lifespan in many organisms. However, studies suggest that among-individual variation in the age at death is also affected. Ultimately, both of these outcomes must be caused by effects of nutrition on underlying patterns of age-specific mortality (ASM). Using model life tables, we tested for effects of dietary macronutrients on ASM in mice ( Mus musculus). High concentrations of protein and fat relative to carbohydrates were associated with low life expectancy and high variation in the age at death, a result caused predominantly by high mortality prior to middle age. A lifelong diet comprising the ratio of macronutrients self-selected by mouse (in early adulthood) was associated with low mortality up until middle age, but higher late-life mortality. This pattern results in reasonably high life expectancy, but very low variation in the age at death. Our analyses also indicate that it may be possible to minimize ASM across life by altering the ratio of dietary protein to carbohydrate in the approach to old age. Mortality in early and middle life was minimized at around one-part protein to two-parts carbohydrate, whereas in later life slightly greater than equal parts protein to carbohydrate reduced mortality.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
21 |