1
|
Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ, Davis RJ. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 1995; 270:7420-6. [PMID: 7535770 DOI: 10.1074/jbc.270.13.7420] [Citation(s) in RCA: 1811] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Protein kinases activated by dual phosphorylation on Tyr and Thr (MAP kinases) can be grouped into two major classes: ERK and JNK. The ERK group regulates multiple targets in response to growth factors via a Ras-dependent mechanism. In contrast, JNK activates the transcription factor c-Jun in response to pro-inflammatory cytokines and exposure of cells to several forms of environmental stress. Recently, a novel mammalian protein kinase (p38) that shares sequence similarity with mitogen-activated protein (MAP) kinases was identified. Here, we demonstrate that p38, like JNK, is activated by treatment of cells with pro-inflammatory cytokines and environmental stress. The mechanism of p38 activation is mediated by dual phosphorylation on Thr-180 and Tyr-182. Immunofluorescence microscopy demonstrated that p38 MAP kinase is present in both the nucleus and cytoplasm of activated cells. Together, these data establish that p38 is a member of the mammalian MAP kinase group.
Collapse
|
|
30 |
1811 |
2
|
Gupta S, Campbell D, Dérijard B, Davis RJ. Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 1995; 267:389-93. [PMID: 7824938 DOI: 10.1126/science.7824938] [Citation(s) in RCA: 1162] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Treatment of cells with pro-inflammatory cytokines or ultraviolet radiation causes activation of the c-Jun NH2-terminal protein kinase (JNK). Activating transcription factor-2 (ATF2) was found to be a target of the JNK signal transduction pathway. ATF2 was phosphorylated by JNK on two closely spaced threonine residues within the NH2-terminal activation domain. The replacement of these phosphorylation sites with alanine inhibited the transcriptional activity of ATF2. These mutations also inhibited ATF2-stimulated gene expression mediated by the retinoblastoma (Rb) tumor suppressor and the adenovirus early region 1A (E1A) oncoprotein. Furthermore, expression of dominant-negative JNK inhibited ATF2 transcriptional activity. Together, these data demonstrate a role for the JNK signal transduction pathway in transcriptional responses mediated by ATF2.
Collapse
|
|
30 |
1162 |
3
|
Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Dérijard B, Davis RJ. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 1996. [DOI: 10.1002/j.1460-2075.1996.tb00636.x] [Citation(s) in RCA: 999] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
|
29 |
999 |
4
|
Gupta S, Pablo AM, Jiang XC, Wang N, Tall AR, Schindler C. IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest 1997; 99:2752-61. [PMID: 9169506 PMCID: PMC508122 DOI: 10.1172/jci119465] [Citation(s) in RCA: 674] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The early colocalization of T cells and the potent immunostimulatory cytokine IFN-gamma to atherosclerotic lesions suggest that the immune system contributes to atherogenesis. Since mice with a targeted disruption of the apoE gene (apoE 0 mice) develop profound atherosclerosis, we examined the role of IFN-gamma in this process. First, the presence of CD4(+) and CD8(+) cells, which secrete lesional IFN-gamma, was documented in apoE 0 atheromata. Then, the apoE 0 mice were crossed with IFN-gamma receptor (IFNgammaR) 0 mice to generate apoE 0/IFNgammaR 0 mice. Compared to the apoE 0 mice, the compound knock-out mice exhibited a substantial reduction in atherosclerotic lesion size, a 60% reduction in lesion lipid accumulation, a decrease in lesion cellularity, but a marked increase in lesion collagen content. Evaluation of the plasma lipoproteins showed that the compound knockout mice had a marked increase in potentially atheroprotective phospholipid/apoA-IV rich particles as well. This correlated with an induction of hepatic apoA-IV transcripts. These observations suggest that IFN-gamma promotes and modifies atherosclerosis through both local effects in the arterial wall as well as a systemic effect on plasma lipoproteins. Therefore, therapeutic inhibition of IFN-gamma signaling may lead to the formation of more lipid-poor and stable atheromata.
Collapse
|
research-article |
28 |
674 |
5
|
Verfaillie T, Rubio N, Garg AD, Bultynck G, Rizzuto R, Decuypere JP, Piette J, Linehan C, Gupta S, Samali A, Agostinis P. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ 2012; 19:1880-91. [PMID: 22705852 DOI: 10.1038/cdd.2012.74] [Citation(s) in RCA: 670] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Endoplasmic reticulum stress is emerging as an important modulator of different pathologies and as a mechanism contributing to cancer cell death in response to therapeutic agents. In several instances, oxidative stress and the onset of endoplasmic reticulum (ER) stress occur together; yet, the molecular events linking reactive oxygen species (ROS) to ER stress-mediated apoptosis are currently unknown. Here, we show that PERK (RNA-dependent protein kinase (PKR)-like ER kinase), a key ER stress sensor of the unfolded protein response, is uniquely enriched at the mitochondria-associated ER membranes (MAMs). PERK(-/-) cells display disturbed ER morphology and Ca(2+) signaling as well as significantly weaker ER-mitochondria contact sites. Re-expression of a kinase-dead PERK mutant but not the cytoplasmic deletion mutant of PERK in PERK(-/-) cells re-establishes ER-mitochondria juxtapositions and mitochondrial sensitization to ROS-mediated stress. In contrast to the canonical ER stressor thapsigargin, during ROS-mediated ER stress, PERK contributes to apoptosis twofold by sustaining the levels of pro-apoptotic C/EBP homologous protein (CHOP) and by facilitating the propagation of ROS signals between the ER and mitochondria through its tethering function. Hence, this study reveals an unprecedented role of PERK as a MAMs component required to maintain the ER-mitochondria juxtapositions and propel ROS-mediated mitochondrial apoptosis. Furthermore, it suggests that loss of PERK may cause defects in cell death sensitivity in pathological conditions linked to ROS-mediated ER stress.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
670 |
6
|
Cowper SE, Robin HS, Steinberg SM, Su LD, Gupta S, LeBoit PE. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet 2000; 356:1000-1. [PMID: 11041404 DOI: 10.1016/s0140-6736(00)02694-5] [Citation(s) in RCA: 617] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
15 renal dialysis patients have been identified with a skin condition characterised by thickening and hardening of the skin of the extremities and an increase in dermal fibroblast-like cells associated with collagen remodelling and mucin deposition. The disease closely resembles scleromyxoedema, yet has significant enough clinical and histopathological differences to warrant its designation as a new clinicopathological entity.
Collapse
|
Letter |
25 |
617 |
7
|
DeCoursey TE, Chandy KG, Gupta S, Cahalan MD. Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature 1984; 307:465-8. [PMID: 6320007 DOI: 10.1038/307465a0] [Citation(s) in RCA: 598] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Membrane receptors and ion transport mechanisms probably have an important role in lymphocyte activation leading to T-lymphocyte proliferation in the immune response. Here we have applied a gigaohm-seal patch clamp technique to reveal the identity and properties of ion channels in human T lymphocytes. A voltage-dependent potassium channel bearing a resemblance to the delayed rectifier of nerve and muscle cells was found to be the predominant ion channel in these cells. In the whole cell recording conformation, the channels open with sigmoid kinetics during depolarizing voltage steps, reaching a maximum K+ conductance of 3-5 nS. The current subsequently becomes almost completely inactivated during a long-lasting depolarization. Currents through single K+ channels recorded in whole cell and outside-out patch recording conformations reveal a unitary channel conductance of about 16 pS in normal Ringer solution. Thus, the peak current corresponds to approximately 200-300 conducting K+ channels per cell. Phytohaemagglutinin (PHA), at concentrations that produce mitogenesis, alters K+ channel gating within 1 min of addition to the bathing solution, causing channels to open more rapidly and at more negative membrane potentials. 3H-thymidine incorporation by T lymphocytes following PHA stimulation is inhibited by the 'classical' K+ channel blockers tetraethylammonium and 4-aminopyridine, and also by quinine, at doses found to block the K+ channel in voltage-clamped T lymphocytes, suggesting that K+ channels may play a part in mitogenesis.
Collapse
|
|
41 |
598 |
8
|
Grotzinger JP, Sumner DY, Kah LC, Stack K, Gupta S, Edgar L, Rubin D, Lewis K, Schieber J, Mangold N, Milliken R, Conrad PG, DesMarais D, Farmer J, Siebach K, Calef F, Hurowitz J, McLennan SM, Ming D, Vaniman D, Crisp J, Vasavada A, Edgett KS, Malin M, Blake D, Gellert R, Mahaffy P, Wiens RC, Maurice S, Grant JA, Wilson S, Anderson RC, Beegle L, Arvidson R, Hallet B, Sletten RS, Rice M, Bell J, Griffes J, Ehlmann B, Anderson RB, Bristow TF, Dietrich WE, Dromart G, Eigenbrode J, Fraeman A, Hardgrove C, Herkenhoff K, Jandura L, Kocurek G, Lee S, Leshin LA, Leveille R, Limonadi D, Maki J, McCloskey S, Meyer M, Minitti M, Newsom H, Oehler D, Okon A, Palucis M, Parker T, Rowland S, Schmidt M, Squyres S, Steele A, Stolper E, Summons R, Treiman A, Williams R, Yingst A, Team MS, Kemppinen O, Bridges N, Johnson JR, Cremers D, Godber A, Wadhwa M, Wellington D, McEwan I, Newman C, Richardson M, Charpentier A, Peret L, King P, Blank J, Weigle G, Li S, Robertson K, Sun V, Baker M, Edwards C, Farley K, Miller H, Newcombe M, Pilorget C, Brunet C, Hipkin V, Leveille R, et alGrotzinger JP, Sumner DY, Kah LC, Stack K, Gupta S, Edgar L, Rubin D, Lewis K, Schieber J, Mangold N, Milliken R, Conrad PG, DesMarais D, Farmer J, Siebach K, Calef F, Hurowitz J, McLennan SM, Ming D, Vaniman D, Crisp J, Vasavada A, Edgett KS, Malin M, Blake D, Gellert R, Mahaffy P, Wiens RC, Maurice S, Grant JA, Wilson S, Anderson RC, Beegle L, Arvidson R, Hallet B, Sletten RS, Rice M, Bell J, Griffes J, Ehlmann B, Anderson RB, Bristow TF, Dietrich WE, Dromart G, Eigenbrode J, Fraeman A, Hardgrove C, Herkenhoff K, Jandura L, Kocurek G, Lee S, Leshin LA, Leveille R, Limonadi D, Maki J, McCloskey S, Meyer M, Minitti M, Newsom H, Oehler D, Okon A, Palucis M, Parker T, Rowland S, Schmidt M, Squyres S, Steele A, Stolper E, Summons R, Treiman A, Williams R, Yingst A, Team MS, Kemppinen O, Bridges N, Johnson JR, Cremers D, Godber A, Wadhwa M, Wellington D, McEwan I, Newman C, Richardson M, Charpentier A, Peret L, King P, Blank J, Weigle G, Li S, Robertson K, Sun V, Baker M, Edwards C, Farley K, Miller H, Newcombe M, Pilorget C, Brunet C, Hipkin V, Leveille R, Marchand G, Sanchez PS, Favot L, Cody G, Fluckiger L, Lees D, Nefian A, Martin M, Gailhanou M, Westall F, Israel G, Agard C, Baroukh J, Donny C, Gaboriaud A, Guillemot P, Lafaille V, Lorigny E, Paillet A, Perez R, Saccoccio M, Yana C, Armiens-Aparicio C, Rodriguez JC, Blazquez IC, Gomez FG, Gomez-Elvira J, Hettrich S, Malvitte AL, Jimenez MM, Martinez-Frias J, Martin-Soler J, Martin-Torres FJ, Jurado AM, Mora-Sotomayor L, Caro GM, Lopez SN, Peinado-Gonzalez V, Pla-Garcia J, Manfredi JAR, Romeral-Planello JJ, Fuentes SAS, Martinez ES, Redondo JT, Urqui-O'Callaghan R, Mier MPZ, Chipera S, Lacour JL, Mauchien P, Sirven JB, Manning H, Fairen A, Hayes A, Joseph J, Sullivan R, Thomas P, Dupont A, Lundberg A, Melikechi N, Mezzacappa A, DeMarines J, Grinspoon D, Reitz G, Prats B, Atlaskin E, Genzer M, Harri AM, Haukka H, Kahanpaa H, Kauhanen J, Paton M, Polkko J, Schmidt W, Siili T, Fabre C, Wray J, Wilhelm MB, Poitrasson F, Patel K, Gorevan S, Indyk S, Paulsen G, Bish D, Gondet B, Langevin Y, Geffroy C, Baratoux D, Berger G, Cros A, d'Uston C, Forni O, Gasnault O, Lasue J, Lee QM, Meslin PY, Pallier E, Parot Y, Pinet P, Schroder S, Toplis M, Lewin E, Brunner W, Heydari E, Achilles C, Sutter B, Cabane M, Coscia D, Szopa C, Robert F, Sautter V, Le Mouelic S, Nachon M, Buch A, Stalport F, Coll P, Francois P, Raulin F, Teinturier S, Cameron J, Clegg S, Cousin A, DeLapp D, Dingler R, Jackson RS, Johnstone S, Lanza N, Little C, Nelson T, Williams RB, Jones A, Kirkland L, Baker B, Cantor B, Caplinger M, Davis S, Duston B, Fay D, Harker D, Herrera P, Jensen E, Kennedy MR, Krezoski G, Krysak D, Lipkaman L, McCartney E, McNair S, Nixon B, Posiolova L, Ravine M, Salamon A, Saper L, Stoiber K, Supulver K, Van Beek J, Van Beek T, Zimdar R, French KL, Iagnemma K, Miller K, Goesmann F, Goetz W, Hviid S, Johnson M, Lefavor M, Lyness E, Breves E, Dyar MD, Fassett C, Edwards L, Haberle R, Hoehler T, Hollingsworth J, Kahre M, Keely L, McKay C, Bleacher L, Brinckerhoff W, Choi D, Dworkin JP, Floyd M, Freissinet C, Garvin J, Glavin D, Harpold D, Martin DK, McAdam A, Pavlov A, Raaen E, Smith MD, Stern J, Tan F, Trainer M, Posner A, Voytek M, Aubrey A, Behar A, Blaney D, Brinza D, Christensen L, DeFlores L, Feldman J, Feldman S, Flesch G, Jun I, Keymeulen D, Mischna M, Morookian JM, Pavri B, Schoppers M, Sengstacken A, Simmonds JJ, Spanovich N, Juarez MDLT, Webster CR, Yen A, Archer PD, Cucinotta F, Jones JH, Morris RV, Niles P, Rampe E, Nolan T, Fisk M, Radziemski L, Barraclough B, Bender S, Berman D, Dobrea EN, Tokar R, Cleghorn T, Huntress W, Manhes G, Hudgins J, Olson T, Stewart N, Sarrazin P, Vicenzi E, Bullock M, Ehresmann B, Hamilton V, Hassler D, Peterson J, Rafkin S, Zeitlin C, Fedosov F, Golovin D, Karpushkina N, Kozyrev A, Litvak M, Malakhov A, Mitrofanov I, Mokrousov M, Nikiforov S, Prokhorov V, Sanin A, Tretyakov V, Varenikov A, Vostrukhin A, Kuzmin R, Clark B, Wolff M, Botta O, Drake D, Bean K, Lemmon M, Schwenzer SP, Lee EM, Sucharski R, Hernandez MADP, Avalos JJB, Ramos M, Kim MH, Malespin C, Plante I, Muller JP, Navarro-Gonzalez R, Ewing R, Boynton W, Downs R, Fitzgibbon M, Harshman K, Morrison S, Kortmann O, Williams A, Lugmair G, Wilson MA, Jakosky B, Balic-Zunic T, Frydenvang J, Jensen JK, Kinch K, Koefoed A, Madsen MB, Stipp SLS, Boyd N, Campbell JL, Perrett G, Pradler I, VanBommel S, Jacob S, Owen T, Savijarvi H, Boehm E, Bottcher S, Burmeister S, Guo J, Kohler J, Garcia CM, Mueller-Mellin R, Wimmer-Schweingruber R, Bridges JC, McConnochie T, Benna M, Franz H, Bower H, Brunner A, Blau H, Boucher T, Carmosino M, Atreya S, Elliott H, Halleaux D, Renno N, Wong M, Pepin R, Elliott B, Spray J, Thompson L, Gordon S, Ollila A, Williams J, Vasconcelos P, Bentz J, Nealson K, Popa R, Moersch J, Tate C, Day M, Francis R, McCullough E, Cloutis E, ten Kate IL, Scholes D, Slavney S, Stein T, Ward J, Berger J, Moores JE. A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. Science 2013; 343:1242777. [DOI: 10.1126/science.1242777] [Show More Authors] [Citation(s) in RCA: 578] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
12 |
578 |
9
|
Thung I, Aramin H, Vavinskaya V, Gupta S, Park JY, Crowe SE, Valasek MA. Review article: the global emergence of Helicobacter pylori antibiotic resistance. Aliment Pharmacol Ther 2016; 43:514-33. [PMID: 26694080 PMCID: PMC5064663 DOI: 10.1111/apt.13497] [Citation(s) in RCA: 548] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/04/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Helicobacter pylori is one of the most prevalent global pathogens and can lead to gastrointestinal disease including peptic ulcers, gastric marginal zone lymphoma and gastric carcinoma. AIM To review recent trends in H. pylori antibiotic resistance rates, and to discuss diagnostics and treatment paradigms. METHODS A PubMed literature search using the following keywords: Helicobacter pylori, antibiotic resistance, clarithromycin, levofloxacin, metronidazole, prevalence, susceptibility testing. RESULTS The prevalence of bacterial antibiotic resistance is regionally variable and appears to be markedly increasing with time in many countries. Concordantly, the antimicrobial eradication rate of H. pylori has been declining globally. In particular, clarithromycin resistance has been rapidly increasing in many countries over the past decade, with rates as high as approximately 30% in Japan and Italy, 50% in China and 40% in Turkey; whereas resistance rates are much lower in Sweden and Taiwan, at approximately 15%; there are limited data in the USA. Other antibiotics show similar trends, although less pronounced. CONCLUSIONS Since the choice of empiric therapies should be predicated on accurate information regarding antibiotic resistance rates, there is a critical need for determination of current rates at a local scale, and perhaps in individual patients. Such information would not only guide selection of appropriate empiric antibiotic therapy but also inform the development of better methods to identify H. pylori antibiotic resistance at diagnosis. Patient-specific tailoring of effective antibiotic treatment strategies may lead to reduced treatment failures and less antibiotic resistance.
Collapse
|
review-article |
9 |
548 |
10
|
Vaniman DT, Bish DL, Ming DW, Bristow TF, Morris RV, Blake DF, Chipera SJ, Morrison SM, Treiman AH, Rampe EB, Rice M, Achilles CN, Grotzinger JP, McLennan SM, Williams J, Bell JF, Newsom HE, Downs RT, Maurice S, Sarrazin P, Yen AS, Morookian JM, Farmer JD, Stack K, Milliken RE, Ehlmann BL, Sumner DY, Berger G, Crisp JA, Hurowitz JA, Anderson R, Des Marais DJ, Stolper EM, Edgett KS, Gupta S, Spanovich N, Agard C, Alves Verdasca JA, Anderson R, Archer D, Armiens-Aparicio C, Arvidson R, Atlaskin E, Atreya S, Aubrey A, Baker B, Baker M, Balic-Zunic T, Baratoux D, Baroukh J, Barraclough B, Bean K, Beegle L, Behar A, Bender S, Benna M, Bentz J, Berger J, Berman D, Blanco Avalos JJ, Blaney D, Blank J, Blau H, Bleacher L, Boehm E, Botta O, Bottcher S, Boucher T, Bower H, Boyd N, Boynton B, Breves E, Bridges J, Bridges N, Brinckerhoff W, Brinza D, Brunet C, Brunner A, Brunner W, Buch A, Bullock M, Burmeister S, Cabane M, Calef F, Cameron J, Campbell JI, Cantor B, Caplinger M, Caride Rodriguez J, Carmosino M, Carrasco Blazquez I, Charpentier A, Choi D, Clark B, Clegg S, Cleghorn T, Cloutis E, Cody G, Coll P, Conrad P, et alVaniman DT, Bish DL, Ming DW, Bristow TF, Morris RV, Blake DF, Chipera SJ, Morrison SM, Treiman AH, Rampe EB, Rice M, Achilles CN, Grotzinger JP, McLennan SM, Williams J, Bell JF, Newsom HE, Downs RT, Maurice S, Sarrazin P, Yen AS, Morookian JM, Farmer JD, Stack K, Milliken RE, Ehlmann BL, Sumner DY, Berger G, Crisp JA, Hurowitz JA, Anderson R, Des Marais DJ, Stolper EM, Edgett KS, Gupta S, Spanovich N, Agard C, Alves Verdasca JA, Anderson R, Archer D, Armiens-Aparicio C, Arvidson R, Atlaskin E, Atreya S, Aubrey A, Baker B, Baker M, Balic-Zunic T, Baratoux D, Baroukh J, Barraclough B, Bean K, Beegle L, Behar A, Bender S, Benna M, Bentz J, Berger J, Berman D, Blanco Avalos JJ, Blaney D, Blank J, Blau H, Bleacher L, Boehm E, Botta O, Bottcher S, Boucher T, Bower H, Boyd N, Boynton B, Breves E, Bridges J, Bridges N, Brinckerhoff W, Brinza D, Brunet C, Brunner A, Brunner W, Buch A, Bullock M, Burmeister S, Cabane M, Calef F, Cameron J, Campbell JI, Cantor B, Caplinger M, Caride Rodriguez J, Carmosino M, Carrasco Blazquez I, Charpentier A, Choi D, Clark B, Clegg S, Cleghorn T, Cloutis E, Cody G, Coll P, Conrad P, Coscia D, Cousin A, Cremers D, Cros A, Cucinotta F, d'Uston C, Davis S, Day MK, de la Torre Juarez M, DeFlores L, DeLapp D, DeMarines J, Dietrich W, Dingler R, Donny C, Drake D, Dromart G, Dupont A, Duston B, Dworkin J, Dyar MD, Edgar L, Edwards C, Edwards L, Ehresmann B, Eigenbrode J, Elliott B, Elliott H, Ewing R, Fabre C, Fairen A, Farley K, Fassett C, Favot L, Fay D, Fedosov F, Feldman J, Feldman S, Fisk M, Fitzgibbon M, Flesch G, Floyd M, Fluckiger L, Forni O, Fraeman A, Francis R, Francois P, Franz H, Freissinet C, French KL, Frydenvang J, Gaboriaud A, Gailhanou M, Garvin J, Gasnault O, Geffroy C, Gellert R, Genzer M, Glavin D, Godber A, Goesmann F, Goetz W, Golovin D, Gomez Gomez F, Gomez-Elvira J, Gondet B, Gordon S, Gorevan S, Grant J, Griffes J, Grinspoon D, Guillemot P, Guo J, Guzewich S, Haberle R, Halleaux D, Hallet B, Hamilton V, Hardgrove C, Harker D, Harpold D, Harri AM, Harshman K, Hassler D, Haukka H, Hayes A, Herkenhoff K, Herrera P, Hettrich S, Heydari E, Hipkin V, Hoehler T, Hollingsworth J, Hudgins J, Huntress W, Hviid S, Iagnemma K, Indyk S, Israel G, Jackson R, Jacob S, Jakosky B, Jensen E, Jensen JK, Johnson J, Johnson M, Johnstone S, Jones A, Jones J, Joseph J, Jun I, Kah L, Kahanpaa H, Kahre M, Karpushkina N, Kasprzak W, Kauhanen J, Keely L, Kemppinen O, Keymeulen D, Kim MH, Kinch K, King P, Kirkland L, Kocurek G, Koefoed A, Kohler J, Kortmann O, Kozyrev A, Krezoski J, Krysak D, Kuzmin R, Lacour JL, Lafaille V, Langevin Y, Lanza N, Lasue J, Le Mouelic S, Lee EM, Lee QM, Lees D, Lefavor M, Lemmon M, Malvitte AL, Leshin L, Leveille R, Lewin-Carpintier E, Lewis K, Li S, Lipkaman L, Little C, Litvak M, Lorigny E, Lugmair G, Lundberg A, Lyness E, Madsen M, Mahaffy P, Maki J, Malakhov A, Malespin C, Malin M, Mangold N, Manhes G, Manning H, Marchand G, Marin Jimenez M, Martin Garcia C, Martin D, Martin M, Martinez-Frias J, Martin-Soler J, Martin-Torres FJ, Mauchien P, McAdam A, McCartney E, McConnochie T, McCullough E, McEwan I, McKay C, McNair S, Melikechi N, Meslin PY, Meyer M, Mezzacappa A, Miller H, Miller K, Minitti M, Mischna M, Mitrofanov I, Moersch J, Mokrousov M, Molina Jurado A, Moores J, Mora-Sotomayor L, Mueller-Mellin R, Muller JP, Munoz Caro G, Nachon M, Navarro Lopez S, Navarro-Gonzalez R, Nealson K, Nefian A, Nelson T, Newcombe M, Newman C, Nikiforov S, Niles P, Nixon B, Noe Dobrea E, Nolan T, Oehler D, Ollila A, Olson T, Owen T, de Pablo Hernandez MA, Paillet A, Pallier E, Palucis M, Parker T, Parot Y, Patel K, Paton M, Paulsen G, Pavlov A, Pavri B, Peinado-Gonzalez V, Pepin R, Peret L, Perez R, Perrett G, Peterson J, Pilorget C, Pinet P, Pla-Garcia J, Plante I, Poitrasson F, Polkko J, Popa R, Posiolova L, Posner A, Pradler I, Prats B, Prokhorov V, Purdy SW, Raaen E, Radziemski L, Rafkin S, Ramos M, Raulin F, Ravine M, Reitz G, Renno N, Richardson M, Robert F, Robertson K, Rodriguez Manfredi JA, Romeral-Planello JJ, Rowland S, Rubin D, Saccoccio M, Salamon A, Sandoval J, Sanin A, Sans Fuentes SA, Saper L, Sautter V, Savijarvi H, Schieber J, Schmidt M, Schmidt W, Scholes DD, Schoppers M, Schroder S, Schwenzer S, Sebastian Martinez E, Sengstacken A, Shterts R, Siebach K, Siili T, Simmonds J, Sirven JB, Slavney S, Sletten R, Smith M, Sobron Sanchez P, Spray J, Squyres S, Stalport F, Steele A, Stein T, Stern J, Stewart N, Stipp SLS, Stoiber K, Sucharski B, Sullivan R, Summons R, Sun V, Supulver K, Sutter B, Szopa C, Tan F, Tate C, Teinturier S, ten Kate I, Thomas P, Thompson L, Tokar R, Toplis M, Torres Redondo J, Trainer M, Tretyakov V, Urqui-O'Callaghan R, Van Beek J, Van Beek T, VanBommel S, Varenikov A, Vasavada A, Vasconcelos P, Vicenzi E, Vostrukhin A, Voytek M, Wadhwa M, Ward J, Webster C, Weigle E, Wellington D, Westall F, Wiens RC, Wilhelm MB, Williams A, Williams R, Williams RBM, Wilson M, Wimmer-Schweingruber R, Wolff M, Wong M, Wray J, Wu M, Yana C, Yingst A, Zeitlin C, Zimdar R, Zorzano Mier MP. Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science 2013; 343:1243480. [DOI: 10.1126/science.1243480] [Show More Authors] [Citation(s) in RCA: 433] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
12 |
433 |
11
|
Snow RW, Omumbo JA, Lowe B, Molyneux CS, Obiero JO, Palmer A, Weber MW, Pinder M, Nahlen B, Obonyo C, Newbold C, Gupta S, Marsh K. Relation between severe malaria morbidity in children and level of Plasmodium falciparum transmission in Africa. Lancet 1997; 349:1650-4. [PMID: 9186382 DOI: 10.1016/s0140-6736(97)02038-2] [Citation(s) in RCA: 417] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Malaria remains a major cause of mortality and morbidity in Africa. Many approaches to malaria control involve reducing the chances of infection but little is known of the relations between parasite exposure and the development of effective clinical immunity so the long-term effect of such approaches to control on the pattern and frequency of malaria cannot be predicted. METHODS We have prospectively recorded paediatric admissions with severe malaria over three to five years from five discrete communities in The Gambia and Kenya. Demographic analysis of the communities exposed to disease risk allowed the estimation of age-specific rates for severe malaria. Within each community the exposure to Plasmodium falciparum infection was determined through repeated parasitological and serological surveys among children and infants. We used acute respiratory-tract infections (ARI) as a comparison. FINDINGS 3556 malaria admissions were recorded for the five sites. Marked differences were observed in age, clinical spectrum and rates of severe malaria between the five sites. Paradoxically, the risks of severe disease in childhood were lowest among populations with the highest transmission intensities, and the highest disease risks were observed among populations exposed to low-to-moderate intensities of transmission. For severe malaria, for example, admission rates (per 1000 per year) for children up to their 10th birthday were estimated as 3.9, 25.8, 25.9, 16.7, and 18.0 in the five communities; the forces of infection estimated for those communities (new infections per infant per month) were 0.001, 0.034, 0.050, 0.093, and 0.176, respectively. Similar trends were noted for cerebral malaria and for severe malaria anaemia but not for ARI. Mean age of disease decreased with increasing transmission intensity. INTERPRETATION We propose that a critical determinant of life-time disease risk is the ability to develop clinical immunity early in life during a period when other protective mechanisms may operate. In highly endemic areas measures which reduce parasite transmission, and thus immunity, may lead to a change in both the clinical spectrum of severe disease and the overall burden of severe malaria morbidity.
Collapse
|
|
28 |
417 |
12
|
Gupta S, Leatham EW, Carrington D, Mendall MA, Kaski JC, Camm AJ. Elevated Chlamydia pneumoniae antibodies, cardiovascular events, and azithromycin in male survivors of myocardial infarction. Circulation 1997; 96:404-7. [PMID: 9244203 DOI: 10.1161/01.cir.96.2.404] [Citation(s) in RCA: 406] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The clinical significance of the association between elevated anti-Chlamydia pneumoniae (Cp) antibody titres and coronary heart disease (CHD) is unclear. We explored the relationship between antibodies against Cp and future cardiovascular events in male survivors of myocardial infarction (MI). The effect of azithromycin antibiotic therapy was assessed in a subgroup of post-MI patients. METHODS AND RESULTS We screened 220 consecutive male survivors of MI for anti-Cp antibodies. Of these, 213 patients were stratified into three groups: group Cp-ve (n=59), no detectable Cp antibodies; group Cp-I (n=74), intermediate titres of 1/8 to 1/32 dilution; and group Cp+ve (n=80), seropositive at > or = 1/64 dilution. Patients with persisting seropositivity of > or = 1/64 were randomized to either oral azithromycin (Cp+ve-A, 500 mg/d for 3 days [n=28] or 500 mg/d for 6 days [n=12]) or placebo (Cp+ve-P, n=20). Cp+ve-NR (n=20) represented patients not recruited into the antibiotic trial. The incidence of adverse cardiovascular events (over a mean follow-up period of 18+/-4 months) was recorded and shown to increase with increasing anti-Cp titre: Cp-ve, n=4 (7%); Cp-I, n=11 (15%); Cp+ve-NR, n=6 (30%); and Cp+ve-P, n=5 (25%). Cp+ve-NR and Cp+ve-P groups had a fourfold-increased risk for adverse cardiovascular events compared with the Cp-ve group (odds ratio [OR], 4.2; 95% confidence interval [CI], 1.2 to 15.5; P=.03). In contrast, the OR for cardiovascular events in patients receiving azithromycin (Cp+ve-A, single or double course) was the same as in the Cp-ve group (OR, 0.9; 95% CI, 0.2 to 4.6, P=NS). Patients receiving azithromycin were more likely to experience a decrease in IgG anti-Cp titres than were those in the placebo group (P=.02). CONCLUSIONS An increased anti-Cp antibody titre may be a predictor for further adverse cardiovascular events in post-MI patients. Taking a short course of azithromycin may lower this risk, possibly by acting against Cp.
Collapse
|
Clinical Trial |
28 |
406 |
13
|
Grotzinger JP, Gupta S, Malin MC, Rubin DM, Schieber J, Siebach K, Sumner DY, Stack KM, Vasavada AR, Arvidson RE, Calef F, Edgar L, Fischer WF, Grant JA, Griffes J, Kah LC, Lamb MP, Lewis KW, Mangold N, Minitti ME, Palucis M, Rice M, Williams RME, Yingst RA, Blake D, Blaney D, Conrad P, Crisp J, Dietrich WE, Dromart G, Edgett KS, Ewing RC, Gellert R, Hurowitz JA, Kocurek G, Mahaffy P, McBride MJ, McLennan SM, Mischna M, Ming D, Milliken R, Newsom H, Oehler D, Parker TJ, Vaniman D, Wiens RC, Wilson SA. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science 2015; 350:aac7575. [DOI: 10.1126/science.aac7575] [Citation(s) in RCA: 399] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
10 |
399 |
14
|
Abstract
Aberrant or increased expression of cyclooxygenase (COX)-2 has been implicated in the pathogenesis of many diseases including carcinogenesis. COX-2 has been shown to be over-expressed in some human cancers. Employing semi-quantitative reverse transcription-PCR, immunoblotting, and immunohistochemistry we assessed COX-2 expression in samples of pair-matched benign and cancer tissue obtained from the same prostate cancer patient. Mean levels of COX-2 mRNA were 3.4-fold higher in prostate cancer tissue (n = 12) compared with the paired benign tissue. The immunoblot analysis demonstrated that as compared to benign tissue COX-2 protein was over-expressed in 10 of 12 samples examined. Immunohistochemical analysis also verified COX-2 over-expression in cancer than in benign tissue. To our knowledge, this is the first in vivo study showing an over-expression of COX-2 in prostate cancer. These data suggest that COX-2 inhibitors may be useful for prevention or therapy of prostate cancer in humans.
Collapse
|
|
25 |
384 |
15
|
Ruwende C, Khoo SC, Snow RW, Yates SN, Kwiatkowski D, Gupta S, Warn P, Allsopp CE, Gilbert SC, Peschu N. Natural selection of hemi- and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature 1995; 376:246-9. [PMID: 7617034 DOI: 10.1038/376246a0] [Citation(s) in RCA: 344] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common enzymopathy of humans, affects over 400 million people. The geographical correlation of its distribution with the historical endemicity of malaria suggests that this disorder has risen in frequency through natural selection by malaria. However, attempts to confirm that G6PD deficiency is protective in case-control studies of malaria have yielded conflicting results. Hence, for this X-linked disorder, it is unclear whether both male hemizygotes and female heterozygotes are protected or, as frequently suggested, only females. Furthermore, how much protection may be afforded is unknown. Here we report that, in two large case-control studies of over 2,000 African children, the common African form of G6PD deficiency (G6PD A-) is associated with a 46-58% reduction in risk of severe malaria for both female heterozygotes and male hemizygotes. A mathematical model incorporating the measured selective advantage against malaria suggests that a counterbalancing selective disadvantage, associated with this enzyme deficiency, has retarded its rise in frequency in malaria-endemic regions. Although G6PD deficiency is now regarded as a generally benign disorder, in earlier environmental conditions it could have been significantly disadvantageous.
Collapse
|
|
30 |
344 |
16
|
Gupta S, Hastak K, Ahmad N, Lewin JS, Mukhtar H. Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc Natl Acad Sci U S A 2001; 98:10350-5. [PMID: 11504910 PMCID: PMC56964 DOI: 10.1073/pnas.171326098] [Citation(s) in RCA: 344] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2000] [Accepted: 06/27/2001] [Indexed: 11/18/2022] Open
Abstract
Development of effective chemopreventive agents against prostate cancer (CaP) for humans requires conclusive evidence of their efficacy in animal models that closely emulates human disease. The autochthonous transgenic adenocarcinoma of the mouse prostate (TRAMP) model, which spontaneously develops metastatic CaP, is one such model that mimics progressive forms of human disease. Employing male TRAMP mice, we show that oral infusion of a polyphenolic fraction isolated from green tea (GTP) at a human achievable dose (equivalent to six cups of green tea per day) significantly inhibits CaP development and increases survival in these mice. In two separate experiments, the cumulative incidence of palpable tumors at 32 weeks of age in 20 untreated mice was 100% (20 of 20). In these mice, 95% (19 of 20), 65% (13 of 20), 40% (8 of 20), and 25% (5 of 20) of the animals exhibited distant site metastases to lymph nodes, lungs, liver, and bone, respectively. However, 0.1% GTP (wt/vol) provided as the sole source of drinking fluid to TRAMP mice from 8 to 32 weeks of age resulted in (i) significant delay in primary tumor incidence and tumor burden as assessed sequentially by MRI, (ii) significant decrease in prostate (64%) and genitourinary (GU) (72%) weight, (iii) significant inhibition in serum insulin-like growth factor-I and restoration of insulin-like growth factor binding protein-3 levels, and (iv) marked reduction in the protein expression of proliferating cell nuclear antigen (PCNA) in the prostate compared with water-fed TRAMP mice. The striking observation of this study was that GTP infusion resulted in almost complete inhibition of distant site metastases. Furthermore, GTP consumption caused significant apoptosis of CaP cells, which possibly resulted in reduced dissemination of cancer cells, thereby causing inhibition of prostate cancer development, progression, and metastasis of CaP to distant organ sites.
Collapse
|
research-article |
24 |
344 |
17
|
Abstract
Cancer initiation and progression is controlled by both genetic and epigenetic events. The complexity of carcinogenesis cannot be accounted for by genetic alterations alone but also involves epigenetic changes. Epigenetics refers to the study of mechanisms that alter gene expression without altering the primary DNA sequence. Epigenetic mechanisms are heritable and reversible, and include changes in DNA methylation, histone modifications and small noncoding microRNAs (miRNA). Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Aberrant epigenetic modifications probably occur at a very early stage in neoplastic development, and they are widely described as essential players in cancer progression. Recent advances in epigenetics offer a better understanding of the underlying mechanism(s) of carcinogenesis and provide insight into the discovery of putative cancer biomarkers for early detection, disease monitoring, prognosis, and risk assessment. In this review, we summarize the current literature on epigenetic changes causing genetic alterations that are thought to contribute to cancer, and discuss the potential impact of epigenetics future research.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
341 |
18
|
Rehemtulla A, Stegman LD, Cardozo SJ, Gupta S, Hall DE, Contag CH, Ross BD. Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia 2000; 2:491-5. [PMID: 11228541 PMCID: PMC1508085 DOI: 10.1038/sj.neo.7900121] [Citation(s) in RCA: 339] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Current assessment of orthotopic tumor models in animals utilizes survival as the primary therapeutic end point. In vivo bioluminescence imaging (BLI) is a sensitive imaging modality that is rapid and accessible, and may comprise an ideal tool for evaluating antineoplastic therapies. Using human tumor cell lines constitutively expressing luciferase, the kinetics of tumor growth and response to therapy have been assessed in intraperitoneal, and subcutaneous, and intravascular cancer models. However, use of this approach for evaluating orthotopic tumor models has not been demonstrated. In this report, the ability of BLI to noninvasively quantitate the growth and therapeutic-induced cell kill of orthotopic rat brain tumors derived from 9L gliosarcoma cells genetically engineered to stably express firefly luciferase (9LLuc) was investigated. Intracerebral tumor burden was monitored over time by quantitation of photon emission and tumor volume using a cryogenically cooled CCD camera and magnetic resonance imaging (MRI), respectively. There was excellent correlation (r=0.91) between detected photons and tumor volume. A quantitative comparison of tumor cell kill determined from serial MRI volume measurements and BLI photon counts following 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) treatment revealed that both imaging modalities yielded statistically similar cell kill values (P=.951). These results provide direct validation of BLI imaging as a powerful and quantitative tool for the assessment of antineoplastic therapies in living animals.
Collapse
|
brief-report |
25 |
339 |
19
|
Abstract
Human peripheral T lymphocytes were studied at 20-24 degrees C using the gigaohm seal recording technique in whole-cell or outside-out patch conformations. The predominant ion channel present under the conditions employed was a voltage-gated K+ channel closely resembling delayed rectifier K+ channels of nerve and muscle. The maximum K+ conductance in ninety T lymphocytes ranged from 0.7 to 8.9 nS, with a mean of 4.2 nS. The estimated number of K+ channels per cell is 400, corresponding to a density of about three channels/micron2 apparent membrane area. The activation of K+ currents could be fitted by Hodgkin-Huxley type n4 kinetics. The K+ conductance in Ringer solution was half-maximal at -40 mV. The time constant of K+ current inactivation was practically independent of voltage except near the threshold for activating the K+ conductance. Recovery from inactivation was slow and followed complex kinetics. Steady-state inactivation was half-maximal at -70 mV, and was complete at positive potentials. Permeability ratios, relative to K+, determined from reversal potential measurements were: K+(1.0) greater than Rb+(0.77) greater than NH4+(0.10) greater than Cs+ (0.02) greater than Na+(less than 0.01). Currents through K+ channels display deviations from the independence principle. The limiting outward current increases when external K+ is increased, and Rb+ carries less inward current than expected from its relative permeability. Tail current kinetics were slowed about 2-fold by raising the external K+ concentration from 4.5 to 160 mM, and were 5 times slower in Rb+ Ringer solution than in K+ Ringer solution. Single K+ channel currents had two amplitudes corresponding to about 9 and 16 pS in Ringer solution. Replacing Ringer solution with isotonic K+ Ringer solution increased the unitary conductance and resulted in inward rectification of the unitary current-voltage relation. Comparable effects of external K+ were seen in the whole-cell conductance and instantaneous current-voltage relation. Several changes in the K+ conductance occurred during the first few minutes after achievement of the whole-cell conformation. Most are explainable by dissipation of a 10-20 mV junction potential between pipette solution and the cytoplasm, and by the use of a holding potential more negative than the resting potential. However, inactivation of K+ currents became faster and more complete, changes not accounted for by these mechanisms. K+ efflux through open K+ channels in intact lymphocytes, calculated from measured properties of K+ channels, can account for efflux values reported in resting lymphocytes, and for the increase in K+ efflux upon mitogenic stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
research-article |
40 |
327 |
20
|
Leshin LA, Mahaffy PR, Webster CR, Cabane M, Coll P, Conrad PG, Archer PD, Atreya SK, Brunner AE, Buch A, Eigenbrode JL, Flesch GJ, Franz HB, Freissinet C, Glavin DP, McAdam AC, Miller KE, Ming DW, Morris RV, Navarro-Gonzalez R, Niles PB, Owen T, Pepin RO, Squyres S, Steele A, Stern JC, Summons RE, Sumner DY, Sutter B, Szopa C, Teinturier S, Trainer MG, Wray JJ, Grotzinger JP, Kemppinen O, Bridges N, Johnson JR, Minitti M, Cremers D, Bell JF, Edgar L, Farmer J, Godber A, Wadhwa M, Wellington D, McEwan I, Newman C, Richardson M, Charpentier A, Peret L, King P, Blank J, Weigle G, Schmidt M, Li S, Milliken R, Robertson K, Sun V, Baker M, Edwards C, Ehlmann B, Farley K, Griffes J, Miller H, Newcombe M, Pilorget C, Rice M, Siebach K, Stack K, Stolper E, Brunet C, Hipkin V, Leveille R, Marchand G, Sanchez PS, Favot L, Cody G, Fluckiger L, Lees D, Nefian A, Martin M, Gailhanou M, Westall F, Israel G, Agard C, Baroukh J, Donny C, Gaboriaud A, Guillemot P, Lafaille V, Lorigny E, Paillet A, Perez R, Saccoccio M, Yana C, Armiens-Aparicio C, Rodriguez JC, Blazquez IC, Gomez FG, Gomez-Elvira J, et alLeshin LA, Mahaffy PR, Webster CR, Cabane M, Coll P, Conrad PG, Archer PD, Atreya SK, Brunner AE, Buch A, Eigenbrode JL, Flesch GJ, Franz HB, Freissinet C, Glavin DP, McAdam AC, Miller KE, Ming DW, Morris RV, Navarro-Gonzalez R, Niles PB, Owen T, Pepin RO, Squyres S, Steele A, Stern JC, Summons RE, Sumner DY, Sutter B, Szopa C, Teinturier S, Trainer MG, Wray JJ, Grotzinger JP, Kemppinen O, Bridges N, Johnson JR, Minitti M, Cremers D, Bell JF, Edgar L, Farmer J, Godber A, Wadhwa M, Wellington D, McEwan I, Newman C, Richardson M, Charpentier A, Peret L, King P, Blank J, Weigle G, Schmidt M, Li S, Milliken R, Robertson K, Sun V, Baker M, Edwards C, Ehlmann B, Farley K, Griffes J, Miller H, Newcombe M, Pilorget C, Rice M, Siebach K, Stack K, Stolper E, Brunet C, Hipkin V, Leveille R, Marchand G, Sanchez PS, Favot L, Cody G, Fluckiger L, Lees D, Nefian A, Martin M, Gailhanou M, Westall F, Israel G, Agard C, Baroukh J, Donny C, Gaboriaud A, Guillemot P, Lafaille V, Lorigny E, Paillet A, Perez R, Saccoccio M, Yana C, Armiens-Aparicio C, Rodriguez JC, Blazquez IC, Gomez FG, Gomez-Elvira J, Hettrich S, Malvitte AL, Jimenez MM, Martinez-Frias J, Martin-Soler J, Martin-Torres FJ, Jurado AM, Mora-Sotomayor L, Caro GM, Lopez SN, Peinado-Gonzalez V, Pla-Garcia J, Manfredi JAR, Romeral-Planello JJ, Fuentes SAS, Martinez ES, Redondo JT, Urqui-O'Callaghan R, Mier MPZ, Chipera S, Lacour JL, Mauchien P, Sirven JB, Manning H, Fairen A, Hayes A, Joseph J, Sullivan R, Thomas P, Dupont A, Lundberg A, Melikechi N, Mezzacappa A, DeMarines J, Grinspoon D, Reitz G, Prats B, Atlaskin E, Genzer M, Harri AM, Haukka H, Kahanpaa H, Kauhanen J, Kemppinen O, Paton M, Polkko J, Schmidt W, Siili T, Fabre C, Wilhelm MB, Poitrasson F, Patel K, Gorevan S, Indyk S, Paulsen G, Gupta S, Bish D, Schieber J, Gondet B, Langevin Y, Geffroy C, Baratoux D, Berger G, Cros A, d'Uston C, Forni O, Gasnault O, Lasue J, Lee QM, Maurice S, Meslin PY, Pallier E, Parot Y, Pinet P, Schroder S, Toplis M, Lewin E, Brunner W, Heydari E, Achilles C, Oehler D, Coscia D, Israel G, Dromart G, Robert F, Sautter V, Le Mouelic S, Mangold N, Nachon M, Stalport F, Francois P, Raulin F, Cameron J, Clegg S, Cousin A, DeLapp D, Dingler R, Jackson RS, Johnstone S, Lanza N, Little C, Nelson T, Wiens RC, Williams RB, Jones A, Kirkland L, Treiman A, Baker B, Cantor B, Caplinger M, Davis S, Duston B, Edgett K, Fay D, Hardgrove C, Harker D, Herrera P, Jensen E, Kennedy MR, Krezoski G, Krysak D, Lipkaman L, Malin M, McCartney E, McNair S, Nixon B, Posiolova L, Ravine M, Salamon A, Saper L, Stoiber K, Supulver K, Van Beek J, Van Beek T, Zimdar R, French KL, Iagnemma K, Goesmann F, Goetz W, Hviid S, Johnson M, Lefavor M, Lyness E, Breves E, Dyar MD, Fassett C, Blake DF, Bristow T, DesMarais D, Edwards L, Haberle R, Hoehler T, Hollingsworth J, Kahre M, Keely L, McKay C, Wilhelm MB, Bleacher L, Brinckerhoff W, Choi D, Dworkin JP, Floyd M, Garvin J, Harpold D, Jones A, Martin DK, Pavlov A, Raaen E, Smith MD, Tan F, Meyer M, Posner A, Voytek M, Anderson RC, Aubrey A, Beegle LW, Behar A, Blaney D, Brinza D, Calef F, Christensen L, Crisp JA, DeFlores L, Ehlmann B, Feldman J, Feldman S, Hurowitz J, Jun I, Keymeulen D, Maki J, Mischna M, Morookian JM, Parker T, Pavri B, Schoppers M, Sengstacken A, Simmonds JJ, Spanovich N, Juarez MDLT, Vasavada AR, Yen A, Cucinotta F, Jones JH, Rampe E, Nolan T, Fisk M, Radziemski L, Barraclough B, Bender S, Berman D, Dobrea EN, Tokar R, Vaniman D, Williams RME, Yingst A, Lewis K, Cleghorn T, Huntress W, Manhes G, Hudgins J, Olson T, Stewart N, Sarrazin P, Grant J, Vicenzi E, Wilson SA, Bullock M, Ehresmann B, Hamilton V, Hassler D, Peterson J, Rafkin S, Zeitlin C, Fedosov F, Golovin D, Karpushkina N, Kozyrev A, Litvak M, Malakhov A, Mitrofanov I, Mokrousov M, Nikiforov S, Prokhorov V, Sanin A, Tretyakov V, Varenikov A, Vostrukhin A, Kuzmin R, Clark B, Wolff M, McLennan S, Botta O, Drake D, Bean K, Lemmon M, Schwenzer SP, Anderson RB, Herkenhoff K, Lee EM, Sucharski R, Hernandez MADP, Avalos JJB, Ramos M, Kim MH, Malespin C, Plante I, Muller JP, Ewing R, Boynton W, Downs R, Fitzgibbon M, Harshman K, Morrison S, Dietrich W, Kortmann O, Palucis M, Williams A, Lugmair G, Wilson MA, Rubin D, Jakosky B, Balic-Zunic T, Frydenvang J, Jensen JK, Kinch K, Koefoed A, Madsen MB, Stipp SLS, Boyd N, Campbell JL, Gellert R, Perrett G, Pradler I, VanBommel S, Jacob S, Rowland S, Atlaskin E, Savijarvi H, Boehm E, Bottcher S, Burmeister S, Guo J, Kohler J, Garcia CM, Mueller-Mellin R, Wimmer-Schweingruber R, Bridges JC, McConnochie T, Benna M, Bower H, Blau H, Boucher T, Carmosino M, Elliott H, Halleaux D, Renno N, Wong M, Elliott B, Spray J, Thompson L, Gordon S, Newsom H, Ollila A, Williams J, Vasconcelos P, Bentz J, Nealson K, Popa R, Kah LC, Moersch J, Tate C, Day M, Kocurek G, Hallet B, Sletten R, Francis R, McCullough E, Cloutis E, ten Kate IL, Kuzmin R, Arvidson R, Fraeman A, Scholes D, Slavney S, Stein T, Ward J, Berger J, Moores JE. Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science 2013; 341:1238937. [DOI: 10.1126/science.1238937] [Show More Authors] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
12 |
327 |
21
|
Pybus OG, Charleston MA, Gupta S, Rambaut A, Holmes EC, Harvey PH. The epidemic behavior of the hepatitis C virus. Science 2001; 292:2323-5. [PMID: 11423661 DOI: 10.1126/science.1058321] [Citation(s) in RCA: 320] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatitis C virus (HCV) is a leading worldwide cause of liver disease. Here, we use a new model of HCV spread to investigate the epidemic behavior of the virus and to estimate its basic reproductive number from gene sequence data. We find significant differences in epidemic behavior among HCV subtypes and suggest that these differences are largely the result of subtype-specific transmission patterns. Our model builds a bridge between the disciplines of population genetics and mathematical epidemiology by using pathogen gene sequences to infer the population dynamic history of an infectious disease.
Collapse
|
|
24 |
320 |
22
|
Dandri M, Burda MR, Török E, Pollok JM, Iwanska A, Sommer G, Rogiers X, Rogler CE, Gupta S, Will H, Greten H, Petersen J. Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus. Hepatology 2001; 33:981-8. [PMID: 11283864 DOI: 10.1053/jhep.2001.23314] [Citation(s) in RCA: 320] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mice containing livers repopulated with human hepatocytes would provide excellent in vivo models for studies on human liver diseases and hepatotropic viruses, for which no permissive cell lines exist. Here, we report partial repopulation of the liver of immunodeficient urokinase-type plasminogen activator (uPA)/recombinant activation gene-2 (RAG-2) mice with normal human hepatocytes isolated from the adult liver. In the transplanted mice, the production of human albumin was demonstrated, indicating that human hepatocytes remained functional in the mouse liver for at least 2 months after transplantation. Inoculation of transplanted mice with human hepatitis B virus (HBV) led to the establishment of productive HBV infection. According to human-specific genomic DNA analysis and immunostaining of cryostat liver sections, human hepatocytes were estimated to constitute up to 15% of the uPA/RAG-2 mouse liver. This is proof that normal human hepatocytes can integrate into the mouse hepatic parenchyma, undergo multiple cell divisions, and remain permissive for a human hepatotropic virus in a xenogenic liver. This system will provide new opportunities for studies on etiology and therapy of viral and nonviral human liver diseases, as well as on hepatocyte biology and hepatocellular transplantation.
Collapse
|
|
24 |
320 |
23
|
Johnston JA, Bacon CM, Finbloom DS, Rees RC, Kaplan D, Shibuya K, Ortaldo JR, Gupta S, Chen YQ, Giri JD. Tyrosine phosphorylation and activation of STAT5, STAT3, and Janus kinases by interleukins 2 and 15. Proc Natl Acad Sci U S A 1995; 92:8705-9. [PMID: 7568001 PMCID: PMC41035 DOI: 10.1073/pnas.92.19.8705] [Citation(s) in RCA: 316] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The cytokines interleukin 2 (IL-2) and IL-15 have similar biological effects on T cells and bind common hematopoietin receptor subunits. Pathways that involve Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) have been shown to be important for hematopoietin receptor signaling. In this study we identify the STAT proteins activated by IL-2 and IL-15 in human T cells. IL-2 and IL-15 rapidly induced the tyrosine phosphorylation of STAT3 and STAT5, and DNA-binding complexes containing STAT3 and STAT5 were rapidly activated by these cytokines in T cells. IL-4 induced tyrosine phosphorylation and activation of STAT3 but not STAT5. JAK1 and JAK3 were tyrosine-phosphorylated in response to IL-2 and IL-15. Hence, the JAK and STAT molecules that are activated in response to IL-2 and IL-15 are similar but differ from those induced by IL-4. These observations identify the STAT proteins activated by IL-2 and IL-15 and therefore define signaling pathways by which these T-cell growth factors may regulate gene transcription.
Collapse
|
research-article |
30 |
316 |
24
|
Ahmad N, Gupta S, Mukhtar H. Green tea polyphenol epigallocatechin-3-gallate differentially modulates nuclear factor kappaB in cancer cells versus normal cells. Arch Biochem Biophys 2000; 376:338-46. [PMID: 10775421 DOI: 10.1006/abbi.2000.1742] [Citation(s) in RCA: 308] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Green tea has shown remarkable anti-inflammatory and cancer chemopreventive effects in many animal tumor bioassays, cell culture systems, and epidemiological studies. Many of these biological effects of green tea are mediated by epigallocatechin 3-gallate (EGCG), the major polyphenol present therein. We have earlier shown that EGCG treatment results in apoptosis of several cancer cells, but not of normal cells (J. Natl. Cancer Inst. 89, 1881-1886 (1997)). The mechanism of this differential response of EGCG is not known. In this study, we investigated the involvement of NF-kappaB during these differential responses of EGCG. EGCG treatment resulted in a dose-dependent (i) inhibition of cell growth, (ii) G0/G1-phase arrest of the cell cycle, and (iii) induction of apoptosis in human epidermoid carcinoma (A431) cells, but not in normal human epidermal keratinocytes (NHEK). Electromobility shift assay revealed that EGCG (10-80 microM) treatment results in lowering of NF-kappaB levels in both the cytoplasm and nucleus in a dose-dependent manner in both A431 cells and NHEK, albeit at different concentrations. EGCG treatment was found to result in a dose-based differential inhibition of TNF-alpha- and LPS-mediated activation of NF-kappaB in these cells. The inhibition of NF-kappaB constitutive expression and activation in NHEK was observed only at high concentrations. The immunoblot analysis also demonstrated a similar pattern of inhibition of the constitutive expression as well as activation of NF-kappaB/p65 nuclear protein. This inhibition of TNF-alpha-caused NF-kappaB activation was mediated via the phosphorylative degradation of its inhibitory protein IkappaBalpha. Taken together, EGCG was found to impart differential dose-based NF-kappaB inhibitory response in cancer cells vs normal cells; i.e., EGCG-mediated inhibition of NF-kappaB constitutive expression and activation was found to occur at much higher dose of EGCG in NHEK as compared to A431 cells. This study suggests that EGCG-caused cell cycle deregulation and apoptosis of cancer cells may be mediated through NF-kappaB inhibition.
Collapse
|
Comparative Study |
25 |
308 |
25
|
Gupta S, Snow RW, Donnelly CA, Marsh K, Newbold C. Immunity to non-cerebral severe malaria is acquired after one or two infections. Nat Med 1999; 5:340-3. [PMID: 10086393 DOI: 10.1038/6560] [Citation(s) in RCA: 297] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In areas of stable transmission, clinical immunity to mild malaria is acquired slowly, so it is not usually effective until early adolescence. Life-threatening disease is, however, restricted to a much younger age group, indicating that resistance to the severe clinical consequences of infection is acquired more quickly. Understanding how rapidly immunity develops to severe malaria is essential, as severe malaria should be the primary target of intervention strategies, and predicting the result of interventions that reduce host exposure will require consideration of these dynamics. Severe disease in childhood is less frequent in areas where transmission is the greatest. One explanation for this is that infants experience increased exposure to infection while they are protected from disease, possibly by maternal antibody. They therefore emerge from this period of clinical protection with considerably more immunity than those who experience lower transmission intensities. Here we use this data, assuming a period of clinical protection, to estimate the number of prior infections needed to reduce the risk of severe disease to negligible levels. Contrary to expectations, one or two successful infective bites seem to be all that is necessary across a broad range of transmission intensities.
Collapse
|
|
26 |
297 |