1
|
Siuda ER, Copits BA, Schmidt MJ, Baird MA, Al-Hasani R, Planer WJ, Funderburk SC, McCall JG, Gereau RW, Bruchas MR. Spatiotemporal control of opioid signaling and behavior. Neuron 2015; 86:923-935. [PMID: 25937173 DOI: 10.1016/j.neuron.2015.03.066] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/06/2015] [Accepted: 03/29/2015] [Indexed: 01/06/2023]
Abstract
Optogenetics is now a widely accepted tool for spatiotemporal manipulation of neuronal activity. However, a majority of optogenetic approaches use binary on/off control schemes. Here, we extend the optogenetic toolset by developing a neuromodulatory approach using a rationale-based design to generate a Gi-coupled, optically sensitive, mu-opioid-like receptor, which we term opto-MOR. We demonstrate that opto-MOR engages canonical mu-opioid signaling through inhibition of adenylyl cyclase, activation of MAPK and G protein-gated inward rectifying potassium (GIRK) channels and internalizes with kinetics similar to that of the mu-opioid receptor. To assess in vivo utility, we expressed a Cre-dependent viral opto-MOR in RMTg/VTA GABAergic neurons, which led to a real-time place preference. In contrast, expression of opto-MOR in GABAergic neurons of the ventral pallidum hedonic cold spot led to real-time place aversion. This tool has generalizable application for spatiotemporal control of opioid signaling and, furthermore, can be used broadly for mimicking endogenous neuronal inhibition pathways.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
110 |
2
|
Li C, Navarrete J, Liang-Guallpa J, Lu C, Funderburk SC, Chang RB, Liberles SD, Olson DP, Krashes MJ. Defined Paraventricular Hypothalamic Populations Exhibit Differential Responses to Food Contingent on Caloric State. Cell Metab 2019; 29:681-694.e5. [PMID: 30472090 PMCID: PMC6402975 DOI: 10.1016/j.cmet.2018.10.016] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/12/2018] [Accepted: 10/24/2018] [Indexed: 01/15/2023]
Abstract
Understanding the neural framework behind appetite control is fundamental to developing effective therapies to combat the obesity epidemic. The paraventricular hypothalamus (PVH) is critical for appetite regulation, yet, the real-time, physiological response properties of PVH neurons to nutrients are unknown. Using a combination of fiber photometry, electrophysiology, immunohistochemistry, and neural manipulation strategies, we determined the population dynamics of four molecularly delineated PVH subsets implicated in feeding behavior: glucagon-like peptide 1 receptor (PVHGlp1r), melanocortin-4 receptor (PVHMc4r), oxytocin (PVHOxt), and corticotropin-releasing hormone (PVHCrh). We identified both calorie- and state-dependent sustained activity increases and decreases in PVHGlp1r and PVHCrh populations, respectively, while observing transient bulk changes of PVHMc4r, but no response in PVHOxt, neurons to food. Furthermore, we highlight the role of PVHGlp1r neurons in orchestrating acute feeding behavior, independent of the anti-obesity drug liraglutide, and demonstrate the indispensability of PVHGlp1r and PVHMc4r, but not PVHOxt or PVHCrh neurons, in body weight maintenance.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
97 |
3
|
Lansky LL, Funderburk S, Cuppage FE, Schimke RN, Diehl AM. Linear sebaceous nevus syndrome. A hamartoma variant. AMERICAN JOURNAL OF DISEASES OF CHILDREN (1960) 1972; 123:587-90. [PMID: 5033245 DOI: 10.1001/archpedi.1972.02110120111015] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
|
53 |
58 |
4
|
Abstract
Human leukocyte cultures have been studied for the location of secondary constrictions and their frequency of occurrence. The constrictions appear most frequently in chromosomes 9 and 1, less frequently in 2, 4L, 6L, 11, 13, 16 and rarely in 3, 5L, 6S, 17, 19 and 21. In general, only one homolog bears the constriction with the exception of numbers 9 and 1. The concentration of mitotic accumulating agent appears to affect the occurrence of secondary constrictions. Cultures treated with 5-bromodeoxyuridine show many of the normally-occurring constrictions and in addition other regularly-occurring morphological markers of a similar nature.
Collapse
|
|
60 |
47 |
5
|
Burnett CJ, Funderburk SC, Navarrete J, Sabol A, Liang-Guallpa J, Desrochers TM, Krashes MJ. Need-based prioritization of behavior. eLife 2019; 8:44527. [PMID: 30907726 PMCID: PMC6433464 DOI: 10.7554/elife.44527] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/06/2019] [Indexed: 02/07/2023] Open
Abstract
When presented with a choice, organisms need to assimilate internal information with external stimuli and past experiences to rapidly and flexibly optimize decisions on a moment-to-moment basis. We hypothesized that increasing hunger intensity would curb expression of social behaviors such as mating or territorial aggression; we further hypothesized social interactions, reciprocally, would influence food consumption. We assessed competition between these motivations from both perspectives of mice within a resident-intruder paradigm. We found that as hunger state escalated, resident animal social interactions with either a female or male intruder decreased. Furthermore, intense hunger states, especially those evoked via AgRP photoactivation, fundamentally altered sequences of behavioral choice; effects dependent on food availibility. Additionally, female, but not male, intrusion attenuated resident mouse feeding. Lastly, we noted environmental context-dependent gating of food intake in intruding mice, suggesting a dynamic influence of context cues on the expression of feeding behaviors.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
30 |
6
|
Al-Massadi O, Quiñones M, Clasadonte J, Hernandez-Bautista R, Romero-Picó A, Folgueira C, Morgan DA, Kalló I, Heras V, Senra A, Funderburk SC, Krashes MJ, Souto Y, Fidalgo M, Luquet S, Chee MJ, Imbernon M, Beiroa D, García-Caballero L, Gallego R, Lam BYH, Yeo G, Lopez M, Liposits Z, Rahmouni K, Prevot V, Dieguez C, Nogueiras R. MCH Regulates SIRT1/FoxO1 and Reduces POMC Neuronal Activity to Induce Hyperphagia, Adiposity, and Glucose Intolerance. Diabetes 2019; 68:2210-2222. [PMID: 31530579 PMCID: PMC6868473 DOI: 10.2337/db19-0029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Melanin-concentrating hormone (MCH) is an important regulator of food intake, glucose metabolism, and adiposity. However, the mechanisms mediating these actions remain largely unknown. We used pharmacological and genetic approaches to show that the sirtuin 1 (SIRT1)/FoxO1 signaling pathway in the hypothalamic arcuate nucleus (ARC) mediates MCH-induced feeding, adiposity, and glucose intolerance. MCH reduces proopiomelanocortin (POMC) neuronal activity, and the SIRT1/FoxO1 pathway regulates the inhibitory effect of MCH on POMC expression. Remarkably, the metabolic actions of MCH are compromised in mice lacking SIRT1 specifically in POMC neurons. Of note, the actions of MCH are independent of agouti-related peptide (AgRP) neurons because inhibition of γ-aminobutyric acid receptor in the ARC did not prevent the orexigenic action of MCH, and the hypophagic effect of MCH silencing was maintained after chemogenetic stimulation of AgRP neurons. Central SIRT1 is required for MCH-induced weight gain through its actions on the sympathetic nervous system. The central MCH knockdown causes hypophagia and weight loss in diet-induced obese wild-type mice; however, these effects were abolished in mice overexpressing SIRT1 fed a high-fat diet. These data reveal the neuronal basis for the effects of MCH on food intake, body weight, and glucose metabolism and highlight the relevance of SIRT1/FoxO1 pathway in obesity.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
24 |
7
|
Kim JH, Kromm GH, Barnhill OK, Sperber J, Heuer LB, Loomis S, Newman MC, Han K, Gulamali FF, Legan TB, Jensen KE, Funderburk SC, Krashes MJ, Carter ME. A discrete parasubthalamic nucleus subpopulation plays a critical role in appetite suppression. eLife 2022; 11:e75470. [PMID: 35507386 PMCID: PMC9119672 DOI: 10.7554/elife.75470] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/03/2022] [Indexed: 11/22/2022] Open
Abstract
Food intake behavior is regulated by a network of appetite-inducing and appetite-suppressing neuronal populations throughout the brain. The parasubthalamic nucleus (PSTN), a relatively unexplored population of neurons in the posterior hypothalamus, has been hypothesized to regulate appetite due to its connectivity with other anorexigenic neuronal populations and because these neurons express Fos, a marker of neuronal activation, following a meal. However, the individual cell types that make up the PSTN are not well characterized, nor are their functional roles in food intake behavior. Here, we identify and distinguish between two discrete PSTN subpopulations, those that express tachykinin-1 (PSTNTac1 neurons) and those that express corticotropin-releasing hormone (PSTNCRH neurons), and use a panel of genetically encoded tools in mice to show that PSTNTac1 neurons play an important role in appetite suppression. Both subpopulations increase activity following a meal and in response to administration of the anorexigenic hormones amylin, cholecystokinin (CCK), and peptide YY (PYY). Interestingly, chemogenetic inhibition of PSTNTac1, but not PSTNCRH neurons, reduces the appetite-suppressing effects of these hormones. Consistently, optogenetic and chemogenetic stimulation of PSTNTac1 neurons, but not PSTNCRH neurons, reduces food intake in hungry mice. PSTNTac1 and PSTNCRH neurons project to distinct downstream brain regions, and stimulation of PSTNTac1 projections to individual anorexigenic populations reduces food consumption. Taken together, these results reveal the functional properties and projection patterns of distinct PSTN cell types and demonstrate an anorexigenic role for PSTNTac1 neurons in the hormonal and central regulation of appetite.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
17 |
8
|
Funderburk SC, Krashes MJ. Neuroendocrinology: Electromagnetic control of neural activity - prospective physics for physicians. Nat Rev Endocrinol 2016; 12:316-7. [PMID: 27172377 PMCID: PMC8851209 DOI: 10.1038/nrendo.2016.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rapid, minimally invasive control of explicit neural activity would be a major advance for basic and clinical research in the neuroscience and neuroendocrinology fields, and could have applications for the potential treatment of neurological disorders. A new study by Stanley et al. brings us closer to this goal.
Collapse
|
Comment |
9 |
1 |
9
|
Parks DF, Schneider AM, Xu Y, Brunwasser SJ, Funderburk S, Thurber D, Blanche T, Dyer EL, Haussler D, Hengen KB. A non-oscillatory, millisecond-scale embedding of brain state provides insight into behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544399. [PMID: 37333381 PMCID: PMC10274881 DOI: 10.1101/2023.06.09.544399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Sleep and wake are understood to be slow, long-lasting processes that span the entire brain. Brain states correlate with many neurophysiological changes, yet the most robust and reliable signature of state is enriched in rhythms between 0.1 and 20 Hz. The possibility that the fundamental unit of brain state could be a reliable structure at the scale of milliseconds and microns has not been addressed due to the physical limits associated with oscillation-based definitions. Here, by analyzing high resolution neural activity recorded in 10 anatomically and functionally diverse regions of the murine brain over 24 h, we reveal a mechanistically distinct embedding of state in the brain. Sleep and wake states can be accurately classified from on the order of 100 to 101 ms of neuronal activity sampled from 100 μm of brain tissue. In contrast to canonical rhythms, this embedding persists above 1,000 Hz. This high frequency embedding is robust to substates and rapid events such as sharp wave ripples and cortical ON/OFF states. To ascertain whether such fast and local structure is meaningful, we leveraged our observation that individual circuits intermittently switch states independently of the rest of the brain. Brief state discontinuities in subsets of circuits correspond with brief behavioral discontinuities during both sleep and wake. Our results suggest that the fundamental unit of state in the brain is consistent with the spatial and temporal scale of neuronal computation, and that this resolution can contribute to an understanding of cognition and behavior.
Collapse
|
Preprint |
2 |
|
10
|
Funderburk S, Richardson K, Johnson J. The adaptation of parents: postpartum crisis counseling. Pediatrics 1977; 60:383. [PMID: 561363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
Letter |
48 |
|
11
|
Stewart RE, Funderburk S, Setoguchi Y. A malformation complex of ectrodactyly, clefting and hypomelanosis of ito (incontinentia pigmenti achromians). THE CLEFT PALATE JOURNAL 1979; 16:358-62. [PMID: 290427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A case is described which, at birth, had a bizarre pattern of hypopigmentation (incontinentia pigmenti achromians), ectrodactyly involving all four extremities, and unilateral cleft lip and palate. This patient does not have the seizures or other neurological and developmental anomalies previously described as associated with hypopigmentation of Ito. This condition is also clearly different from the syndrome of ectrodactyly, ectodermal dysplasia, and clefting (EEC).
Collapse
|
Case Reports |
46 |
|
12
|
Parks DF, Schneider AM, Xu Y, Brunwasser SJ, Funderburk S, Thurber D, Blanche T, Dyer EL, Haussler D, Hengen KB. A nonoscillatory, millisecond-scale embedding of brain state provides insight into behavior. Nat Neurosci 2024; 27:1829-1843. [PMID: 39009836 DOI: 10.1038/s41593-024-01715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/19/2024] [Indexed: 07/17/2024]
Abstract
The most robust and reliable signatures of brain states are enriched in rhythms between 0.1 and 20 Hz. Here we address the possibility that the fundamental unit of brain state could be at the scale of milliseconds and micrometers. By analyzing high-resolution neural activity recorded in ten mouse brain regions over 24 h, we reveal that brain states are reliably identifiable (embedded) in fast, nonoscillatory activity. Sleep and wake states could be classified from 100 to 101 ms of neuronal activity sampled from 100 µm of brain tissue. In contrast to canonical rhythms, this embedding persists above 1,000 Hz. This high-frequency embedding is robust to substates, sharp-wave ripples and cortical on/off states. Individual regions intermittently switched states independently of the rest of the brain, and such brief state discontinuities coincided with brief behavioral discontinuities. Our results suggest that the fundamental unit of state in the brain is consistent with the spatial and temporal scale of neuronal computation.
Collapse
|
|
1 |
|