1
|
Takahara M, Takahashi H, Matsunaga S, Miyagishima S, Takano H, Sakai A, Kawano S, Kuroiwa T. A putative mitochondrial ftsZ gene is present in the unicellular primitive red alga Cyanidioschyzon merolae. MOLECULAR & GENERAL GENETICS : MGG 2000; 264:452-60. [PMID: 11129049 DOI: 10.1007/s004380000307] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Two ftsZ homologues were isolated from the unicellular primitive red alga Cyanidioschyzon merolae (CmftsZ1 and CmftsZ2). Phylogenetic analysis revealed that CmftsZ1 is most closely related to the ftsZ genes of alpha-Proteobacteria, suggesting that it is a mitochondrial-type ftsZ gene, whereas CmftsZ2 is most closely related to the ftsZ genes of cyanobacteria, suggesting that it is a plastid-type ftsZ gene. Southern analysis indicates that CmftsZ1 and CmftsZ2 are both single-copy genes located on chromosome XIV in the C. merolae genome. Northern analysis revealed that both CmftsZ1 and CmftsZ2 are transcribed, and accumulate specifically before cell and organelle division. The results of Western analysis suggest that CmFtsZ1 is localized in mitochondria.
Collapse
|
|
25 |
77 |
2
|
Miyazawa Y, Sakai A, Miyagishima S, Takano H, Kawano S, Kuroiwa T. Auxin and cytokinin have opposite effects on amyloplast development and the expression of starch synthesis genes in cultured bright yellow-2 tobacco cells. PLANT PHYSIOLOGY 1999; 121:461-69. [PMID: 10517837 PMCID: PMC59408 DOI: 10.1104/pp.121.2.461] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/1999] [Accepted: 06/17/1999] [Indexed: 05/18/2023]
Abstract
In cultured Bright Yellow-2 (BY-2) tobacco (Nicotiana tabacum) cells, the depletion of auxin (2,4-dichlorophenoxyacetic acid) in the culture medium induces the accumulation of starch. This is accelerated by the addition of cytokinin (benzyladenine). Light and electron microscopic observations revealed that this amyloplast formation involves drastic changes in plastid morphology. The effects of auxin and cytokinin on amyloplast development were investigated by adding auxin or cytokinin to cells grown in a hormone-free culture. Auxin repressed amyloplast development, whereas cytokinin accelerated starch accumulation regardless of the timing of hormone addition. RNA gel-blot analysis revealed that the accumulation of the ADP-glucose pyrophosphorylase small subunit gene (AgpS), granule-bound starch synthase, and starch branching enzyme transcripts were also affected by hormonal conditions. High levels of AgpS, granule-bound starch synthase, and starch branching enzyme transcripts accumulated in amyloplast-developing cells grown in auxin-depleted conditions. Furthermore, the addition of auxin to the cells cultured in hormone-free medium reduced the level of AgpS transcripts, whereas the addition of cytokinin increased it, irrespective of the timing of hormone addition. These results suggest that auxin and cytokinin exert opposite effects on amyloplast development by regulating the expression of the genes required for starch biosynthesis.
Collapse
|
research-article |
26 |
38 |
3
|
Miyagishima S, Takahara M, Kuroiwa T. Novel filaments 5 nm in diameter constitute the cytosolic ring of the plastid division apparatus. THE PLANT CELL 2001; 13:707-21. [PMID: 11251107 PMCID: PMC135517 DOI: 10.1105/tpc.13.3.707] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2000] [Accepted: 01/20/2001] [Indexed: 05/18/2023]
Abstract
The plastid division apparatus (called the plastid-dividing ring) has been detected in several plant and algal species at the constricted region of plastids by transmission electron microscopy. The apparatus is composed of two or three rings: an outer ring in the cytosol, an inner ring in the stroma, and a middle ring in the intermembrane space. The components of these rings are not clear. FtsZ, which forms the bacterial cytokinetic ring, has been proposed as a component of both the inner and outer rings. Here, we present the ultrastructure of the outer ring at high resolution. To visualize the outer ring by negative staining, we isolated dividing chloroplasts from a synchronized culture of a red alga, Cyanidioschyzon merolae, and lysed them with nonionic detergent Nonidet P-40. Nonidet P-40 extracted primarily stroma, thylakoids, and the inner and middle rings, leaving the envelope and outer ring largely intact. Negative staining revealed that the outer ring consists of a bundle of 5-nm filaments in which globular proteins are spaced 4.8 nm apart. Immunoblotting using an FtsZ-specific antibody failed to show immunoreactivity in the fraction containing the filament. Moreover, the filament structure and properties are unlike those of known cytoskeletal filaments. The bundle of filaments forms a very rigid structure and does not disassemble in 2 M urea. We also identified a dividing phase-specific 56-kD protein of chloroplasts as a candidate component of the ring. Our results suggest that the main architecture of the outer ring did not descend from cyanobacteria during the course of endosymbiosis but was added by the host cell early in plant evolution.
Collapse
|
research-article |
24 |
35 |
4
|
Toda K, Takano H, Miyagishima S, Kuroiwa H, Kuroiwa T. Characterization of a chloroplast isoform of serine acetyltransferase from the thermo-acidiphilic red alga Cyanidioschyzon merolae. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1403:72-84. [PMID: 9622597 DOI: 10.1016/s0167-4889(98)00031-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We isolated a gene for serine acetyltransferase (SAT), a key enzyme in sulfate assimilation, from the primitive red alga Cyanidioschyzon merolae, an inhabitant of sulfurous hot springs, and designated this gene cmSAT. The N-terminal region of the cmSAT protein has characteristics of a chloroplast targeting peptide. cmSAT protein fused with a 6x histidine tag complemented a SAT deficient Escherichia coli mutant. The protein was purified with its SAT activity, which was inhibited by cysteine, using the high affinity of the histidine tag in an Ni-NTA column. The Km values for acetyl-CoA and l-serine were 0.3 and 0.1 mM, respectively. Southern blotting indicated the existence of other SAT isoforms in C. merolae. A 2.4 kb transcript was always detected when growth was synchronized under a 12-h light/dark cycle. Under these conditions, a 31-kDa protein was always detected on immunoblots, indicating processing of the cmSAT protein and constitutive expression of cmSAT. A 45-kDa protein, thought to be the unprocessed cmSAT protein, was detected in the dark period, from M phase to early G1 phase. No significant change in the level of protein expression was detected under continuous darkness or in a sulfate-deficient medium. Using immunoelectron microscopy, the cmSAT protein was primarily detected in the stroma and a few were detected in the cytoplasm, which indicate that cmSAT protein is transported to and functions in a chloroplast.
Collapse
|
|
27 |
35 |
5
|
Miyagishima S, Itoh R, Aita S, Kuroiwa H, Kuroiwa T. Isolation of dividing chloroplasts with intact plastid-dividing rings from a synchronous culture of the unicellular red alga cyanidioschyzon merolae. PLANTA 1999; 209:371-5. [PMID: 10502105 DOI: 10.1007/s004250050645] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In order to obtain a three-dimensional view of the plastid-dividing ring (PD ring) and promote the biochemical study of plastid division, we developed a procedure to isolate structurally intact dividing chloroplasts (rhodoplasts) possessing PD rings from a highly synchronized culture of the unicellular red alga Cyanidioschyzon merolae. The procedure consists of five steps. (1) The chloroplast division cycle is synchronized by light/dark cycles and treatment with 5-fluorodeoxyuridine. (2) The synchronized cells are treated with hypotonic solution. (3) The swollen cells are lysed in a French Pressure Cell. (4) The lysate is treated with DNase I. (5) The intact chloroplasts are separated by density-gradient centrifugation. The PD ring was visualized by fluorescence microscopy, after labeling the surface proteins of isolated chloroplasts with N-hydroxy-sulfo-succinimidyl biotin and detecting them with fluorescein isothiocyanate avidin. Scanning electron microscopy (SEM) showed that the outer envelopes and PD rings were conserved on the isolated dividing chloroplasts. These are the first fluorescence microscopic and SEM images of the PD ring and they clearly show PD rings encircling isolated dividing chloroplasts in three dimensions.
Collapse
|
|
26 |
25 |
6
|
Nakabachi A, Koshikawa S, Miura T, Miyagishima S. Genome size of Pachypsylla venusta (Hemiptera: Psyllidae) and the ploidy of its bacteriocyte, the symbiotic host cell that harbors intracellular mutualistic bacteria with the smallest cellular genome. BULLETIN OF ENTOMOLOGICAL RESEARCH 2010; 100:27-33. [PMID: 19302725 DOI: 10.1017/s0007485309006737] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Psyllids harbor the primary symbiont, Carsonella ruddii (gamma-Proteobacteria), within the cytoplasm of specialized cells called bacteriocytes. Carsonella has the smallest known cellular genome (160 kb), lacking numerous genes that appear to be essential for bacterial life. This raises the question regarding the genetic mechanisms of the host which supports the survival of Carsonella. Our preceding analyses have indicated that some of the genes that are encoded in the psyllid genome and which are highly expressed in the bacteriocyte are of bacterial origin. This implies that psyllids acquired genes from bacteria by lateral gene transfer (LGT) and are using these genes to maintain the primary symbiont, Carsonella. To reveal the complete picture of LGT from symbiotic bacteria to the genome of psyllids, whole genome analysis of psyllids is essential. In order to assess the feasibility of whole genome analysis of the host psyllid, the genome size of the hackberry petiole gall psyllid, Pachypsylla venusta, was estimated. Feulgen image analysis densitometry and flow cytometry demonstrated that the haploid genome size of P. venusta is 0.74 pg (724 Mb), verifying the feasibility of whole genome analysis. Feulgen image analysis densitometry further revealed that bacteriocytes of P. venusta are invariably 16-ploid. This higher ploidy may be essential to facilitate the symbiotic relationship with bacteria, as it appears to be a feature common to insect bacteriocytes. These results provide a foundation for genomics-based research into host-symbiont interactions.
Collapse
|
|
15 |
22 |
7
|
Miyagishima S, Kuroiwa H, Kuroiwa T. The timing and manner of disassembly of the apparatuses for chloroplast and mitochondrial division in the red alga Cyanidioschyzon merolae. PLANTA 2001; 212:517-528. [PMID: 11525508 DOI: 10.1007/s004250000426] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The timing and manner of disassembly of the apparatuses for chloroplast division (the plastid-dividing ring; PD ring) and mitochondrial division (the mitochondrion-dividing ring; MD ring) were investigated in the red alga Cyanidioschyzon merolae De Luca, Taddei and Varano. To do this, we synchronized cells both at the final stage of and just after chloroplast and mitochondrial division, and observed the rings in three dimensions by transmission electron microscopy. The inner (beneath the stromal face of the inner envelope) and middle (in the inter-membrane space) PD rings disassembled completely, and disappeared just before completion of chloroplast division. In contrast, the outer PD and MD rings (on the cytoplasmic face of the outer envelope) remained in the cytosol between daughter organelles after chloroplast and mitochondrial division. The outer rings started to disassemble and disappear from their surface just after organelle division, initially clinging to the outer envelopes at both edges before detaching. The results suggest that the two rings inside the chloroplast disappear just before division, and that this does not interfere with completion of division, while the outer PD and MD rings function throughout and complete chloroplast and mitochondrial division. These results, together with previous studies of C. merolae, disclose the entire cycle of change of the PD and MD rings.
Collapse
|
|
24 |
21 |
8
|
Miyagishima S, Asaka T, Kamatsuka K, Kozuka N, Kobayashi M, Igarashi R, Hori T, Yoto Y, Tsutsumi H. Characteristics of antigravity spontaneous movements in preterm infants up to 3 months of corrected age. Infant Behav Dev 2016; 44:227-39. [PMID: 27470926 DOI: 10.1016/j.infbeh.2016.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 11/25/2022]
Abstract
AIMS We investigated whether spontaneous antigravity limbs movements in very low birth weight preterm infants were insufficient compared to those in term infants. The relationship between the quality of general movements (GMs) and antigravity limbs movements was also examined. METHODS Preterm infants with very low birth weight without central nervous system disorders nor severe respiration disorders, and healthy term infants were recruited. The infants were set in a supine position. The distance between both hands and between both feet, and the height of both hands and feet from the floor were recorded at 1-3 corrected months for preterm infants, and at 1-3 months for term infants by a 3D motion capture system. The measurements were adjusted for body proportions. GMs in preterm and term infants were assessed similarly. RESULTS Thirteen preterm and 15 term infants completed the study. In preterm infants, the distance between both hands and between both feet were longer, and the height of both hands and feet were lower than those in term infants in all measurements. In term infants, the height of both hands and feet increased as they developed, but no change was observed in preterm infants. In preterm infants with abnormal GMs, the distance between both hands was longer, and the height of both hands and feet was lower than that in those with normal GMs. There were no such differences between preterm infants with normal GMs and term infants with normal GMs. CONCLUSION Antigravity limbs movements in preterm infants within the first 3 month of corrected age were insufficient compared with those in term infants. Furthermore, no improvement with development was observed in preterm infants. In addition, preterm infants with abnormal GMs showed worse antigravity limbs movements than preterm and term infants with normal GMs. The preterm infants with normal GMs could behave similar to the full term infants.
Collapse
|
Comparative Study |
9 |
10 |
9
|
Itoh R, Takano H, Ohta N, Miyagishima S, Kuroiwa H, Kuroiwa T. Two ftsH-family genes encoded in the nuclear and chloroplast genomes of the primitive red alga Cyanidioschyzon merolae. PLANT MOLECULAR BIOLOGY 1999; 41:321-337. [PMID: 10598100 DOI: 10.1023/a:1006369104530] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The red algal chloroplast genome encodes an essential prokaryotic cell division gene, ftsH, which has never been found in the mitochondrial genome of any organism. To compare the conserved prokaryote-derived mechanism for mitochondrial division with that of chloroplasts, we cloned chloroplast- and nuclear-encoded ftsH genes from the primitive red alga Cyanidioschyzon merolae. The deduced amino-acid sequence of chloroplast ftsH (ftsHcp) consists of 603 amino acids and shows the highest similarity with algal-chloroplast and cyanobacterial FtsH. On the other hand, the nuclear-encoded ftsH (ftsH2) encodes a protein of 920 amino acids and has the highest similarity with two yeast mitochondrial FtsHs, Rca1p and Afg3p. Furthermore, the amino-terminal extension of FtsH2 appears to be an amphipathic alpha-helix, a characteristic mitochondrial targeting signal, suggesting that FtsH2 is a mitochondrial protein. Southern hybridization revealed that ftsH2 is a single gene located on chromosome III of the 17 C. merolae chromosomes. The level of expression of the 3.0 and 4.0 kb transcripts of this gene decreased in concert during the organelle division phase of a synchronized culture, indicating a cell-cycle-dependent manner of ftsH2 transcription, while northern hybridization did not detect ftsHcp transcripts. Nevertheless, reverse transcription-PCR and immunoblotting demonstrated for the first time that chloroplast-encoded ftsH is transcriptionally and translationally active. Overproduction of FtsHcp and FtsH2 in Escherichia coli disrupted cytokinesis and produced filamentous cells, but had no effect on the replication, segregation, or distribution of their nucleoids, as also occurs in ftsH-deficient E. coli. These observations suggest the possible involvement of both C. merolae FtsHs in organelle division.
Collapse
|
Comparative Study |
26 |
10 |
10
|
Miyagishima S, Asaka T, Kamatsuka K, Kozuka N, Kobayashi M, Igarashi L, Hori T, Tsutsumi H. Spontaneous movements of preterm infants is associated with outcome of gross motor development. Brain Dev 2018; 40:627-633. [PMID: 29724577 DOI: 10.1016/j.braindev.2018.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/07/2018] [Accepted: 04/17/2018] [Indexed: 11/24/2022]
Abstract
AIMS We conducted a longitudinal cohort study to analyze the relationship between outcome of gross motor development in preterm infants and factors that might affect their development. METHODS Preterm infants with a birth weight of <1500 g were recruited. We measured spontaneous antigravity limbs movements by 3D motion capture system at 3 months corrected age. Gross motor developmental outcomes at 6 and 12 months corrected age were evaluated using the Alberta Infant Motor Scale (AIMS). Statistical analysis was carried out by canonical correlation analysis. RESULTS Eighteen preterm infants were included. In the 6 months corrected age analysis, spontaneous movement had a major effect on Prone and Sitting at 6 months corrected age of AIMS. In the 12 months corrected age analysis, spontaneous movement had a major effect on Sitting and Standing at 12 months corrected age of AIMS. CONCLUSIONS In preterm infants, better antigravity spontaneous movements at 3 months corrected age were significantly correlated with better gross motor development at 6 or 12 months corrected age.
Collapse
|
|
7 |
9 |
11
|
Kuroiwa T, Takahara M, Miyagishima S, Ohashi Y, Kawamura F, Kuroiwa H. The FtsZ Protein Is not Located on Outer Plastid Dividing Rings. CYTOLOGIA 1999. [DOI: 10.1508/cytologia.64.333] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
26 |
8 |
12
|
Unoki T, Hayashida K, Kawai Y, Taito S, Ando M, Iida Y, Kasai F, Kawasaki T, Kozu R, Kondo Y, Saitoh M, Sakuramoto H, Sasaki N, Saura R, Nakamura K, Ouchi A, Okamoto S, Okamura M, Kuribara T, Kuriyama A, Matsuishi Y, Yamamoto N, Yoshihiro S, Yasaka T, Abe R, Iitsuka T, Inoue H, Uchiyama Y, Endo S, Okura K, Ota K, Otsuka T, Okada D, Obata K, Katayama Y, Kaneda N, Kitayama M, Kina S, Kusaba R, Kuwabara M, Sasanuma N, Takahashi M, Takayama C, Tashiro N, Tatsuno J, Tamura T, Tamoto M, Tsuchiya A, Tsutsumi Y, Nagato T, Narita C, Nawa T, Nonoyama T, Hanada M, Hirakawa K, Makino A, Masaki H, Matsuki R, Matsushima S, Matsuda W, Miyagishima S, Moromizato M, Yanagi N, Yamauchi K, Yamashita Y, Yamamoto N, Liu K, Wakabayashi Y, Watanabe S, Yonekura H, Nakanishi N, Takahashi T, Nishida O. Japanese Clinical Practice Guidelines for Rehabilitation in Critically Ill Patients 2023 (J-ReCIP 2023). J Intensive Care 2023; 11:47. [PMID: 37932849 PMCID: PMC10629099 DOI: 10.1186/s40560-023-00697-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
Providing standardized, high-quality rehabilitation for critically ill patients is a crucial issue. In 2017, the Japanese Society of Intensive Care Medicine (JSICM) promulgated the "Evidence-Based Expert Consensus for Early Rehabilitation in the Intensive Care Unit" to advocate for the early initiation of rehabilitations in Japanese intensive care settings. Building upon this seminal work, JSICM has recently conducted a rigorous systematic review utilizing the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology. This endeavor resulted in the formulation of Clinical Practice Guidelines (CPGs), designed to elucidate best practices in early ICU rehabilitation. The primary objective of this guideline is to augment clinical understanding and thereby facilitate evidence-based decision-making, ultimately contributing to the enhancement of patient outcomes in critical care settings. No previous CPGs in the world has focused specifically on rehabilitation of critically ill patients, using the GRADE approach. Multidisciplinary collaboration is extremely important in rehabilitation. Thus, the CPGs were developed by 73 members of a Guideline Development Group consisting of a working group, a systematic review group, and an academic guideline promotion group, with the Committee for the Clinical Practice Guidelines of Early Mobilization and Rehabilitation in Intensive Care of the JSICM at its core. Many members contributed to the development of the guideline, including physicians and healthcare professionals with multiple and diverse specialties, as well as a person who had been patients in ICU. Based on discussions among the group members, eight important clinical areas of focus for this CPG were identified. Fourteen important clinical questions (CQs) were then developed for each area. The public was invited to comment twice, and the answers to the CQs were presented in the form of 10 GRADE recommendations and commentary on the four background questions. In addition, information for each CQ has been created as a visual clinical flow to ensure that the positioning of each CQ can be easily understood. We hope that the CPGs will be a useful tool in the rehabilitation of critically ill patients for multiple professions.
Collapse
|
Review |
2 |
7 |
13
|
Himuro N, Miyagishima S, Kozuka N, Tsutsumi H, Mori M. Measurement of family-centered care in the neonatal intensive care unit and professional background. J Perinatol 2015; 35:284-9. [PMID: 25429382 DOI: 10.1038/jp.2014.204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The aims of this study were to examine the validity and reliability of the Measure of Processes of Care for Service Providers (MPOC-SP) for multidisciplinary teams in neonatal intensive care units (NICUs) and to examine differences among professions. STUDY DESIGN A Japanese language version of the MPOC-SP questionnaire was distributed among the professionals employed at three perinatal medical centers. RESULT A total of 83 multidisciplinary team members completed the questionnaire. The construct validity was examined by a confirmative analysis of each scale structure. The MPOC-SP showed adequate internal consistency. The test-retest analysis showed that the MPOC-SP, except the 'providing general information' scale, is a reliable tool. The results suggest that professional background affects the attitude and behavior of professionals involved in family-centered care. CONCLUSION The MPOC-SP has good psychometric properties and can be used to identify areas for improvement in the family-centered care provided by multidisciplinary teams in the NICUs.
Collapse
|
Multicenter Study |
10 |
7 |
14
|
Miyagishima S, Himuro N, Kozuka N, Mori M, Tsutsumi H. Family-centered care for preterm infants: Parent and physical therapist perceptions. Pediatr Int 2017; 59:698-703. [PMID: 28218813 DOI: 10.1111/ped.13266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 01/30/2017] [Accepted: 02/15/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND The aim of this study was to compare perceptions between physical therapists and parents about family-centered care for preterm infants. METHODS Translated versions of the Measure of Processes of Care-20 and Measures of Processes of Care for Service Providers were used to evaluate the family-centered care for preterm infants. RESULTS A total of 42 parents of 44 preterm infants and nine physical therapists completed questionnaires. Parent perceptions of the family-centered care were generally positive. The highest rating was in the domain Enable and Partnership. Physical therapists gave lower scores in all information domains. There were some gaps between parent and physical therapist perceptions of information domains. CONCLUSIONS Strengths and weaknesses in family-centered care for preterm infants have been identified. Parents viewed the role of physical therapists in family-centered care for preterm infants as positive.
Collapse
|
|
8 |
6 |
15
|
Mori T, Takahara M, Miyagishima S, Kuroiwa H, Kuroiwa T. Visualization of FtsZ Rings in Plastids of the Microspore in Lilium longiflorum. CYTOLOGIA 2001. [DOI: 10.1508/cytologia.66.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
24 |
6 |
16
|
Mani H, Miyagishima S, Kozuka N, Kodama Y, Takeda K, Asaka T. Development of postural control during single-leg standing in children aged 3-10 years. Gait Posture 2019; 68:174-180. [PMID: 30497037 DOI: 10.1016/j.gaitpost.2018.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/25/2018] [Accepted: 11/17/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND The ability to control the center of mass (COM) during single-leg standing (SLS) is imperative for individuals to walk independently. However, detailed biomechanical features of postural control during SLS performed by children remain to be comprehensively investigated. RESEARCH QUESTION We aimed to investigate the development of postural control during SLS in children aged 3-10 years. METHODS Forty-eight healthy children (26 boys and 22 girls) aged 3-10 years and 11 young adults participated in this experiment. The child population was divided into four groups by age: 3-4, 5-6, 7-8, and 9-10 years. The SLS task included standing on a single leg as long and as steady as possible for up to 30 s. A three-dimensional motion capture system and two force plates were used for calculating the COM and center of pressure (COP). The task was divided into three phases (accelerated, decelerated, and steady) on the basis of the relationship between COM and COP. RESULTS COP-COM distances in the 5-6 years' and 7-8 years' groups were significantly increased during the acceleration phase when compared with those in the adult group. Furthermore, COP-COM distances during the decelerated phase were significantly higher in all children's groups compared with those in the adult group. Lastly, COP-COM distance during the steady phase was significantly higher in the 3-4 year age group than in the 9-10 year age and adults groups. SIGNIFICANCE These results suggest that postural control during the acceleration and steady phases mature by 9 years. Conversely, children ∼10 years did not attain adult-like levels of postural control during the decelerated phase. The developmental process for postural control at each phase possibly plays a significant role in the basic biomechanics of movement and does not display a monotonic pattern.
Collapse
|
|
6 |
3 |
17
|
Mani H, Miyagishima S, Kozuka N, Takeda K, Taneda K, Inoue T, Sato Y, Asaka T. Development of temporal and spatial characteristics of anticipatory postural adjustments during gait initiation in children aged 3-10 years. Hum Mov Sci 2020; 75:102736. [PMID: 33310381 DOI: 10.1016/j.humov.2020.102736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 10/30/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
This study aimed to analyze the development of direction specificities of temporal and spatial control and the coordination pattern of anticipatory postural adjustment (APA) along the anteroposterior (AP) and mediolateral (ML) directions during gait initiation (GI) in children aged 3-10 years. This study included 72 healthy children aged 3-10 years and 14 young adults. The child population was divided into four groups by age: 3-4, 5-6, 7-8, and 9-10 years. The GI task included GI using the dominant limb. The peak center of feet pressure (COP) shifts during APAs (APApeak), initiation time of COP shifts (APAonset), and the COP vectors in the horizontal plane were calculated to evaluate the direction specificity of spatial, temporal, and coordination control, respectively. A difference in direction specificity development was found for the APApeak. The APApeak in the mediolateral axis, but not in the anteroposterior axis, was significantly higher in the 7-8 years age group than in other groups. Although APAonset was not found for direction specificity, a significant difference between the adult and children groups (5-6 years, 7-8 years, and 9-10 years) was observed in the direction of the COP vector. In conclusion, the developmental process of the spatial, temporal, and coordination control of APAs during GI varied with age. Furthermore, the spatial control and coordination pattern of APAs was found to be direction specific. All components of APAs, namely temporal and spatial control, coordination pattern, and direction specificities, should be analyzed to capture the developmental process of anticipatory postural control.
Collapse
|
Journal Article |
5 |
1 |
18
|
Miyagishima S, Kuroiwa T. [Structure and function of the plastid-dividing apparatus]. TANPAKUSHITSU KAKUSAN KOSO. PROTEIN, NUCLEIC ACID, ENZYME 2000; 45:108-15. [PMID: 10667065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
|
Review |
25 |
|
19
|
Akatsuka M, Nakajima T, Miyagishima S, Iba Y, Masuda Y. Diaphragmatic paralysis following open-heart surgery in an adult. Oxf Med Case Reports 2023; 2023:omad140. [PMID: 38145262 PMCID: PMC10735543 DOI: 10.1093/omcr/omad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
|
Case Reports |
2 |
|
20
|
Miyagishima S, Mani H, Sato Y, Inoue T, Asaka T, Kozuka N. Developmental changes in straight gait in childhood. PLoS One 2023; 18:e0281037. [PMID: 36758023 PMCID: PMC9910736 DOI: 10.1371/journal.pone.0281037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Understanding typical gait development is critical in developing suitable physical therapy methods for gait disorders. This study investigated the developmental changes and controlling mechanisms of straight gait. METHODS We conducted an experimental procedure among 90 participants, including 76 typically developing children and 14 healthy adults. The children were divided according to age into 3-4, 5-6, 7-8, and 9-10-year age groups. We created two indices to quantify straight gait using the extrapolated center of mass (XCOM; goal index, XCOMG and actual progress index, XCOMP), which were calculated and compared between the groups. Stepwise multiple regression was used to examine the effects of each gait variable on XCOMG and XCOMP. To eliminate the effects of multicollinearity, correlation coefficients were calculated for all gait variables. RESULTS Both XCOMG and XCOMP decreased gradually with age and were significantly larger in the 3-4 and 5-6 year groups than in the adult group. Multiple regression analysis showed that step velocity, step width, and the coefficiente of variation (CV) of the step width had independent coefficients of variation for the XCOMG, and the symmetry index of step time, step width, and the CV of the step width had independent CV for the XCOMP. These variables were selected as significant variables. The results showed that meandering gait was more pronounced at younger ages. Furthermore, straight gait observed in adulthood was achieved by the age of 7. CONCLUSION Pace (step velocity) and stability (step width and CV of step width) may contribute to XCOMG, which assesses the ability to proceed in the direction of the target. Stability and symmetry may contribute to XCOMP, which assesses the ability to walk straight in one's own direction of progress. Physical therapists could apply these indices in children to assess their ability to walk straight.
Collapse
|
research-article |
2 |
|
21
|
Miyagishima S, Akatsuka M, Tatsumi H, Takahashi K, Bunya N, Sawamoto K, Narimatsu E, Masuda Y. Neuromuscular Electrical Stimulation Under Deep Sedation Reduces the Incidence of ICU-Acquired Weakness in Critically Ill Patients With COVID-19 With Acute Respiratory Distress Syndrome. Cureus 2024; 16:e71029. [PMID: 39507129 PMCID: PMC11540548 DOI: 10.7759/cureus.71029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic has led to an unprecedented increase in cases of acute respiratory distress syndrome (ARDS). In such cases, deep sedation using sedatives and muscle relaxants is commonly used to prevent patient self-inflicted lung injury during the early phase. However, such sedation limits the ability to perform early rehabilitation, leading to ICU-acquired muscle weakness (ICU-AW) and a worse prognosis. SUBJECTS This study aimed to clarify the preventive effect of neuromuscular electrical stimulation (NMES) during deep sedation on ICU-AW and physical function at discharge in critically ill patients with COVID-19 with ARDS. METHODS A retrospective, single-center study was conducted on patients admitted to the ICU or advanced critical care center with severe COVID-19 with ARDS between March 1, 2020, and March 31, 2022. Patients who were managed with the Richmond Agitation-Sedation Scale between -4 and -5 for at least three days were included. Patients in the NMES group received NMES within two days of deep sedation, whereas those in the non-NMES group did not. The primary endpoint was the incidence of ICU-AW at discharge from the ICU, and the secondary endpoints included physical activity levels, skeletal muscle mass index, time to active mobilization, and Barthel index (BI) at discharge. Statistical analyses included Pearson's chi-squared test, Fisher's exact test, and multiple logistic and linear regression analyses. RESULTS Of the 129 patients, 68 (54 males and 14 females) were included after applying the exclusion criteria, with 38 in the NMES group and 30 in the non-NMES group. The incidence of ICU-AW was significantly lower in the NMES group (28.95% vs. 56.67%, p = 0.0211). NMES implementation (OR: 0.20, p = 0.03), ventilator weaning (OR: 0.10, p = 0.01), and duration of deep sedation (OR: 0.81, p < 0.01) were significant predictors of ICU-AW. Higher ICU Mobility Scale scores and shorter time to active mobilization were associated with a higher BI at discharge. CONCLUSIONS Early rehabilitation using NMES during deep sedation may prevent ICU-AW in critically ill patients with COVID-19 with ARDS. NMES is associated with a reduced risk of ICU-AW and improved functional independence at discharge. This procedure can be safely performed in sedated patients and may help prevent ICU-AW, supporting early mobilization strategies in ARDS rehabilitation.
Collapse
|
research-article |
1 |
|
22
|
Mani H, Miyagishima S, Kozuka N, Inoue T, Hasegawa N, Asaka T. Development of the Relationships Among Dynamic Balance Control, Inter-limb Coordination, and Torso Coordination During Gait in Children Aged 3-10 Years. Front Hum Neurosci 2021; 15:740509. [PMID: 34776908 PMCID: PMC8582286 DOI: 10.3389/fnhum.2021.740509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022] Open
Abstract
Knowledge about the developmental process of dynamic balance control comprised of upper arms and upper legs coordination and trunk and pelvis twist coordination is important to advance effective balance assessment for abnormal development. However, the mechanisms of these coordination and stability control during gait in childhood are unknown.This study examined the development of dynamic postural stability, upper arm and upper leg coordination, and trunk and pelvic twist coordination during gait, and investigated the potential mechanisms integrating the central nervous system with inter-limb coordination and trunk and pelvic twist coordination to control extrapolated center of the body mass (XCOM). This study included 77 healthy children aged 3-10 years and 15 young adults. The child cohort was divided into four groups by age: 3-4, 5-6, 7-8, and 9-10 years. Participants walked barefoot at a self-selected walking speed along an 8 m walkway. A three-dimensional motion capture system was used for calculating the XCOM, the spatial margin of stability (MoS), and phase coupling movements of the upper arms, upper legs, trunk, and pelvic segments. MoS in the mediolateral axis was significantly higher in the young adults than in all children groups. Contralateral coordination (ipsilateral upper arm and contralateral upper leg combination) gradually changed to an in-phase pattern with increasing age until age 9 years. Significant correlations of XCOMML with contralateral coordination and with trunk and pelvic twist coordination (trunk/pelvis coordination) were found. Significant correlations between contralateral coordination and trunk/pelvis coordination were observed only in the 5-6 years and at 7-8 years groups.Dynamic postural stability during gait was not fully mature at age 10. XCOM control is associated with the development of contralateral coordination and trunk and pelvic twist coordination. The closer to in-phase pattern of contralateral upper limb coordination improved the XCOM fluctuations. Conversely, the out-of-phase pattern (about 90 degrees) of the trunk/pelvis coordination increased theXCOM fluctuation. Additionally, a different control strategy was used among children 3-8 years of age and individuals over 9 years of age, which suggests that 3-4-year-old children showed a disorderly coordination strategy between limb swing and torso movement, and in children 5-8 years of age, limb swing depended on trunk/pelvis coordination.
Collapse
|
research-article |
4 |
|