1
|
Calabretta S, Bielli P, Passacantilli I, Pilozzi E, Fendrich V, Capurso G, Delle Fave G, Sette C. Modulation of PKM alternative splicing by PTBP1 promotes gemcitabine resistance in pancreatic cancer cells. Oncogene 2016; 35:2031-2039. [PMID: 26234680 PMCID: PMC4650269 DOI: 10.1038/onc.2015.270] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/11/2015] [Accepted: 06/05/2015] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and incurable disease. Poor prognosis is due to multiple reasons, including acquisition of resistance to gemcitabine, the first-line chemotherapeutic approach. Thus, there is a strong need for novel therapies, targeting more directly the molecular aberrations of this disease. We found that chronic exposure of PDAC cells to gemcitabine selected a subpopulation of cells that are drug-resistant (DR-PDAC cells). Importantly, alternative splicing (AS) of the pyruvate kinase gene (PKM) was differentially modulated in DR-PDAC cells, resulting in promotion of the cancer-related PKM2 isoform, whose high expression also correlated with shorter recurrence-free survival in PDAC patients. Switching PKM splicing by antisense oligonucleotides to favor the alternative PKM1 variant rescued sensitivity of DR-PDAC cells to gemcitabine and cisplatin, suggesting that PKM2 expression is required to withstand drug-induced genotoxic stress. Mechanistically, upregulation of the polypyrimidine-tract binding protein (PTBP1), a key modulator of PKM splicing, correlated with PKM2 expression in DR-PDAC cell lines. PTBP1 was recruited more efficiently to PKM pre-mRNA in DR- than in parental PDAC cells. Accordingly, knockdown of PTBP1 in DR-PDAC cells reduced its recruitment to the PKM pre-mRNA, promoted splicing of the PKM1 variant and abolished drug resistance. Thus, chronic exposure to gemcitabine leads to upregulation of PTBP1 and modulation of PKM AS in PDAC cells, conferring resistance to the drug. These findings point to PKM2 and PTBP1 as new potential therapeutic targets to improve response of PDAC to chemotherapy.
Collapse
|
research-article |
9 |
166 |
2
|
Adesso L, Calabretta S, Barbagallo F, Capurso G, Pilozzi E, Geremia R, Delle Fave G, Sette C. Gemcitabine triggers a pro-survival response in pancreatic cancer cells through activation of the MNK2/eIF4E pathway. Oncogene 2013; 32:2848-2857. [PMID: 22797067 DOI: 10.1038/onc.2012.306] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 05/07/2012] [Accepted: 06/05/2012] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive neoplastic disease. Gemcitabine, the currently used chemotherapeutic drug for PDAC, elicits only minor benefits, because of the development of escape pathways leading to chemoresistance. Herein, we aimed at investigating the involvement of the mitogen activating protein kinase interacting kinase (MNK)/eIF4E pathway in the acquired drug resistance of PDAC cells. Screening of a cohort of PDAC patients by immunohistochemistry showed that eIF4E phosphorylation correlated with disease grade, early onset of disease and worse prognosis. In PDAC cell lines, chemotherapeutic drugs induced MNK-dependent phosphorylation of eIF4E. Importantly, pharmacological inhibition of MNK activity synergistically enhanced the cytostatic effect of gemcitabine, by promoting apoptosis. RNA interference (RNAi) experiments indicated that MNK2 is mainly responsible for eIF4E phosphorylation and gemcitabine resistance in PDAC cells. Furthermore, we found that gemcitabine induced the expression of the oncogenic splicing factor SRSF1 and splicing of MNK2b, a splice variant that overrides upstream regulatory pathways and confers increased resistance to the drug. Silencing of SRSF1 by RNAi abolished this splicing event and recapitulated the effects of MNK pharmacological or genetic inhibition on eIF4E phosphorylation and apoptosis in gemcitabine-treated cells. Our results highlight a novel pro-survival pathway triggered by gemcitabine in PDAC cells, which leads to MNK2-dependent phosphorylation of eIF4E, suggesting that the MNK/eIF4E pathway represents an escape route utilized by PDAC cells to withstand chemotherapeutic treatments.
Collapse
|
|
12 |
101 |
3
|
Passacantilli I, Capurso G, Archibugi L, Calabretta S, Caldarola S, Loreni F, Fave GD, Sette C. Combined therapy with RAD001 e BEZ235 overcomes resistance of PET immortalized cell lines to mTOR inhibition. Oncotarget 2014; 5:5381-5391. [PMID: 25026292 PMCID: PMC4170632 DOI: 10.18632/oncotarget.2111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/17/2014] [Indexed: 12/31/2022] Open
Abstract
Pancreatic endocrine tumors (PETs) are characterised by an indolent behaviour in terms of tumor growth. However, most patients display metastasis at diagnosis and no cure is currently available. Since the PI3K/AKT/mTOR axis is deregulated in PETs, the mTOR inhibitor RAD001 represents the first line treatment. Nevertheless, some patients do not respond to treatments and most acquire resistance. Inhibition of mTOR leads to feedback re-activation of PI3K activity, which may promote resistance to RAD001. Thus, PI3K represents a novel potential target for PETs. We tested the impact of three novel PI3K inhibitors (BEZ235, BKM120 and BYL719) on proliferation of PET cells that are responsive (BON-1) or unresponsive (QGP-1) to RAD001. BEZ235 was the most efficient in inhibiting proliferation in PET cells. Furthermore, combined treatment with BEZ235 and RAD001 exhibited synergic effects and was also effective in BON-1 that acquired resistance to RAD001 (BON-1 RR). Analysis of PI3K/AKT/mTOR pathway showed that RAD001 and BEZ235 only partially inhibited mTOR-dependent phosphorylation of 4EBP1. By contrast, combined therapy with the two inhibitors strongly inhibited phosphorylation of 4EBP1, assembly of the translational initiation complex and protein synthesis. Thus, combined treatment with BEZ235 may represent suitable therapy to counteract primary and acquired resistance to RAD001 in PETs.
Collapse
|
research-article |
11 |
33 |
4
|
Calabretta S, Vogel G, Yu Z, Choquet K, Darbelli L, Nicholson TB, Kleinman CL, Richard S. Loss of PRMT5 Promotes PDGFRα Degradation during Oligodendrocyte Differentiation and Myelination. Dev Cell 2018; 46:426-440.e5. [DOI: 10.1016/j.devcel.2018.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 04/20/2018] [Accepted: 06/27/2018] [Indexed: 12/26/2022]
|
|
7 |
32 |
5
|
Accogli A, Calabretta S, St-Onge J, Boudrahem-Addour N, Dionne-Laporte A, Joset P, Azzarello-Burri S, Rauch A, Krier J, Fieg E, Pallais JC, McConkie-Rosell A, McDonald M, Freedman SF, Rivière JB, Lafond-Lapalme J, Simpson BN, Hopkin RJ, Trimouille A, Van-Gils J, Begtrup A, McWalter K, Delphine H, Keren B, Genevieve D, Argilli E, Sherr EH, Severino M, Rouleau GA, Yam PT, Charron F, Srour M. De Novo Pathogenic Variants in N-cadherin Cause a Syndromic Neurodevelopmental Disorder with Corpus Collosum, Axon, Cardiac, Ocular, and Genital Defects. Am J Hum Genet 2019; 105:854-868. [PMID: 31585109 DOI: 10.1016/j.ajhg.2019.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/05/2019] [Indexed: 01/06/2023] Open
Abstract
Cadherins constitute a family of transmembrane proteins that mediate calcium-dependent cell-cell adhesion. The extracellular domain of cadherins consists of extracellular cadherin (EC) domains, separated by calcium binding sites. The EC interacts with other cadherin molecules in cis and in trans to mechanically hold apposing cell surfaces together. CDH2 encodes N-cadherin, whose essential roles in neural development include neuronal migration and axon pathfinding. However, CDH2 has not yet been linked to a Mendelian neurodevelopmental disorder. Here, we report de novo heterozygous pathogenic variants (seven missense, two frameshift) in CDH2 in nine individuals with a syndromic neurodevelopmental disorder characterized by global developmental delay and/or intellectual disability, variable axon pathfinding defects (corpus callosum agenesis or hypoplasia, mirror movements, Duane anomaly), and ocular, cardiac, and genital anomalies. All seven missense variants (c.1057G>A [p.Asp353Asn]; c.1789G>A [p.Asp597Asn]; c.1789G>T [p.Asp597Tyr]; c.1802A>C [p.Asn601Thr]; c.1839C>G [p.Cys613Trp]; c.1880A>G [p.Asp627Gly]; c.2027A>G [p.Tyr676Cys]) result in substitution of highly conserved residues, and six of seven cluster within EC domains 4 and 5. Four of the substitutions affect the calcium-binding site in the EC4-EC5 interdomain. We show that cells expressing these variants in the EC4-EC5 domains have a defect in cell-cell adhesion; this defect includes impaired binding in trans with N-cadherin-WT expressed on apposing cells. The two frameshift variants (c.2563_2564delCT [p.Leu855Valfs∗4]; c.2564_2567dupTGTT [p.Leu856Phefs∗5]) are predicted to lead to a truncated cytoplasmic domain. Our study demonstrates that de novo heterozygous variants in CDH2 impair the adhesive activity of N-cadherin, resulting in a multisystemic developmental disorder, that could be named ACOG syndrome (agenesis of corpus callosum, axon pathfinding, cardiac, ocular, and genital defects).
Collapse
|
Research Support, N.I.H., Extramural |
6 |
26 |
6
|
Messina V, Meikar O, Paronetto MP, Calabretta S, Geremia R, Kotaja N, Sette C. The RNA binding protein SAM68 transiently localizes in the chromatoid body of male germ cells and influences expression of select microRNAs. PLoS One 2012; 7:e39729. [PMID: 22745822 PMCID: PMC3382170 DOI: 10.1371/journal.pone.0039729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/25/2012] [Indexed: 12/13/2022] Open
Abstract
The chromatoid body (CB) is a unique structure of male germ cells composed of thin filaments that condense into a perinuclear organelle after meiosis. Due to the presence of proteins involved in different steps of RNA metabolism and of different classes of RNAs, including microRNAs (miRNAs), the CB has been recently suggested to function as an RNA processing centre. Herein, we show that the RNA binding protein SAM68 transiently localizes in the CB, in concomitance with the meiotic divisions of mouse spermatocytes. Precise staging of the seminiferous tubules and co-localization studies with MVH and MILI, two well recognized CB markers, documented that SAM68 transiently associates with the CB in secondary spermatocytes and early round spermatids. Furthermore, although SAM68 co-immunoprecipitated with MVH in secondary spermatocytes, its ablation did not affect the proper localization of MVH in the CB. On the other hand, ablation of the CB constitutive component MIWI did not impair association of SAM68 with the CB. Isolation of CBs from Sam68 wild type and knockout mouse testes and comparison of their protein content by mass spectrometry indicated that Sam68 ablation did not cause overall alterations in the CB proteome. Lastly, we found that SAM68 interacts with DROSHA and DICER in secondary spermatocytes and early round spermatids and that a subset of miRNAs were altered in Sam68−/−germ cells. These results suggest a novel role for SAM68 in the miRNA pathway during spermatogenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
15 |
7
|
Vena G, Cassano N, Agnusdei C, Bellini M, Calabretta S, Centofanti S, Cervadoro G, Coviello C, Curia S, Dattola S, De Caro C, Del Brocco L, Donato L, Favero L, Ferrari A, Gianfaldoni R, Liguori G, Loconsole F, Lopreiato R, Malara G, Massimino S, Nannipieri A, Pettinato M, Postiglione D, Postorino C, Pronesti' M, Provenzano E, Guerra AP, Ricciuti F, Ruggiero G, Scudero A, Spitaleri S, Armati FT, Valenti G, Vernaci R, Verrina F, Zagni G, Zappala' F. Treatment of Psoriasis Vulgaris with Calcipotriol Betamethasone Dipropionate Combination Followed by Calcipotriol and Assessment of the Adjuvant Basic Use of Urea-Based Emollients. EUR J INFLAMM 2016. [DOI: 10.1177/1721727x0500300108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A new combination product containing betamethasone dipropionate and calcipotriol (Dovobet® ointment) has been proven very effective and well tolerated in patients with psoriasis vulgaris. Emollients are adjunctive modalities commonly used in psoriasis; however, their actual role in combination with topical drugs as well as well as their compatibility with these drugs have not been well elucidated. In 313 adult patients with psoriasis vulgaris, we studied the efficacy and tolerability of treatment with Dovobet® ointment combined with urea-based emollients (Excipial U®) for 4 weeks, followed by treatment with calcipotriol (Daivonex®) either alone (group A) or combined with urea-containing emollients (Excipial U®, group B) for 8 weeks. Clinical evaluations were performed at baseline, at 4 and 12 weeks, assessing the clinical score for erythema, scaling, infiltration and pruritus, graded on the basis of a 5-point scale. After the initial 4-week treatment, a significant improvement of all clinical parameters was observed (p<0.05). Overall, clinical results improved further during the maintenance treatment phase; significant changes (p<0.05) were observed in each group. Most patients considered treatment efficacy positively at both 4 weeks and 12 weeks. Interestingly, at the end of the study, a greater percentage of patients in group B than in group A judged the efficacy as excellent. Treatment was very well tolerated. Only two patients complained of mild and transient burning sensation during the first days of treatment. The results of this study confirm the great efficacy and tolerability of sequential treatment with Dovobet®, and Daivonex® in psoriasis vulgaris and show the enhanced acceptability of this treatment associated with urea-based emollients.
Collapse
|
|
9 |
10 |
8
|
Cassano N, Amoruso A, Masci S, De Paola S, Salvatori S, Agnusdei CP, Calabretta S, Callea A, Cellini F, Centofanti S, Cuomo M, Curia S, Dattola S, De Caro C, Del Brocco L, Donato L, Ferrari A, Lopreiato R, Puglisi A, Ruggiero G, Russo F, Valenti G, Vernaci R, Verrina F, Liotti G, Vena G. Evaluation of “Steroid-Sparing” Effects of Xanthena® Cream in Patients with Mild to Moderate Atopic Dermatitis. EUR J INFLAMM 2003. [DOI: 10.1177/1721727x0300100108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Emollients play an important role in the management of atopic dermatitis (AD). The aim of this study was to evaluate the efficacy and the “steroid-sparing” activity of an emollient cream (Xanthena® cream) in patients with mild to moderate AD. Patients were asked to apply twice a day for 7 days a cream containing hydrocortisone butyrate on the lesionai skin and then to apply Xanthena® cream only on the left side of affected areas. During the 2-month study period, the use of the corticosteroid cream was resumed in case of flare-up in any side.The results obtained show significant differences of both the total severity score and the intensity of each symptom and sign of AD between the skin areas treated with Xanthena® cream and the control areas (P<0.05); a relevant reduction of steroid requirement was also noted in correlation with the use of this emollient cream (P<0.05). A significant improvement was observed even after the first month of therapy for most symptoms, except for excoriations/fissuring, oozing/crusting and burning which improved only at 2 months. Treatment was well-tolerated by the majority of patients; adverse local reactions, mostly transient and of mild intensity, were observed in 7% of cases.
Collapse
|
|
22 |
1 |
9
|
Chaudhari K, Zhang K, Yam PT, Zang Y, Kramer DA, Gagnon S, Schlienger S, Calabretta S, Michaud JF, Collins M, Wang J, Srour M, Chen B, Charron F, Bashaw GJ. A human DCC variant causing mirror movement disorder reveals that the WAVE regulatory complex mediates axon guidance by netrin-1-DCC. Sci Signal 2024; 17:eadk2345. [PMID: 39353037 PMCID: PMC11568466 DOI: 10.1126/scisignal.adk2345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/06/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
The axon guidance cue netrin-1 signals through its receptor DCC (deleted in colorectal cancer) to attract commissural axons to the midline. Variants in DCC are frequently associated with congenital mirror movements (CMMs). A CMM-associated variant in the cytoplasmic tail of DCC is located in a conserved motif predicted to bind to a regulator of actin dynamics called the WAVE (Wiskott-Aldrich syndrome protein-family verprolin homologous protein) regulatory complex (WRC). Here, we explored how this variant affects DCC function and may contribute to CMM. We found that a conserved WRC-interacting receptor sequence (WIRS) motif in the cytoplasmic tail of DCC mediated the interaction between DCC and the WRC. This interaction was required for netrin-1-mediated axon guidance in cultured rodent commissural neurons. Furthermore, the WIRS motif of Fra, the Drosophila DCC ortholog, was required for attractive signaling in vivo at the Drosophila midline. The CMM-associated R1343H variant of DCC, which altered the WIRS motif, prevented the DCC-WRC interaction and impaired axon guidance in cultured commissural neurons and in Drosophila. The findings reveal the WRC as a pivotal component of netrin-1-DCC signaling and uncover a molecular mechanism explaining how a human genetic variant in the cytoplasmic tail of DCC may lead to CMM.
Collapse
|
research-article |
1 |
|