1
|
Yanguas SC, Cogliati B, Willebrords J, Maes M, Colle I, van den Bossche B, de Oliveira CPMS, Andraus W, Alves VAF, Leclercq I, Vinken M. Experimental models of liver fibrosis. Arch Toxicol 2015; 90:1025-1048. [PMID: 26047667 DOI: 10.1007/s00204-015-1543-4] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/28/2015] [Indexed: 02/08/2023]
Abstract
Hepatic fibrosis is a wound healing response to insults and as such affects the entire world population. In industrialized countries, the main causes of liver fibrosis include alcohol abuse, chronic hepatitis virus infection and non-alcoholic steatohepatitis. A central event in liver fibrosis is the activation of hepatic stellate cells, which is triggered by a plethora of signaling pathways. Liver fibrosis can progress into more severe stages, known as cirrhosis, when liver acini are substituted by nodules, and further to hepatocellular carcinoma. Considerable efforts are currently devoted to liver fibrosis research, not only with the goal of further elucidating the molecular mechanisms that drive this disease, but equally in view of establishing effective diagnostic and therapeutic strategies. The present paper provides a state-of-the-art overview of in vivo and in vitro models used in the field of experimental liver fibrosis research.
Collapse
|
Review |
10 |
236 |
2
|
Willebrords J, Pereira IVA, Maes M, Crespo Yanguas S, Colle I, Van Den Bossche B, Da Silva TC, de Oliveira CPMS, Andraus W, Alves VA, Cogliati B, Vinken M. Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research. Prog Lipid Res 2015; 59:106-25. [PMID: 26073454 DOI: 10.1016/j.plipres.2015.05.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease encompasses a spectrum of liver diseases, including simple steatosis, steatohepatitis, liver fibrosis and cirrhosis and hepatocellular carcinoma. Non-alcoholic fatty liver disease is currently the most dominant chronic liver disease in Western countries due to the fact that hepatic steatosis is associated with insulin resistance, type 2 diabetes mellitus, obesity, metabolic syndrome and drug-induced injury. A variety of chemicals, mainly drugs, and diets is known to cause hepatic steatosis in humans and rodents. Experimental non-alcoholic fatty liver disease models rely on the application of a diet or the administration of drugs to laboratory animals or the exposure of hepatic cell lines to these drugs. More recently, genetically modified rodents or zebrafish have been introduced as non-alcoholic fatty liver disease models. Considerable interest now lies in the discovery and development of novel non-invasive biomarkers of non-alcoholic fatty liver disease, with specific focus on hepatic steatosis. Experimental diagnostic biomarkers of non-alcoholic fatty liver disease, such as (epi)genetic parameters and '-omics'-based read-outs are still in their infancy, but show great promise. In this paper, the array of tools and models for the study of liver steatosis is discussed. Furthermore, the current state-of-art regarding experimental biomarkers such as epigenetic, genetic, transcriptomic, proteomic and metabonomic biomarkers will be reviewed.
Collapse
|
Review |
10 |
127 |
3
|
Willebrords J, Maes M, Crespo Yanguas S, Vinken M. Inhibitors of connexin and pannexin channels as potential therapeutics. Pharmacol Ther 2017; 180:144-160. [PMID: 28720428 PMCID: PMC5802387 DOI: 10.1016/j.pharmthera.2017.07.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
While gap junctions support the exchange of a number of molecules between neighboring cells, connexin hemichannels provide communication between the cytosol and the extracellular environment of an individual cell. The latter equally holds true for channels composed of pannexin proteins, which display an architecture reminiscent of connexin hemichannels. In physiological conditions, gap junctions are usually open, while connexin hemichannels and, to a lesser extent, pannexin channels are typically closed, yet they can be activated by a number of pathological triggers. Several agents are available to inhibit channels built up by connexin and pannexin proteins, including alcoholic substances, glycyrrhetinic acid, anesthetics and fatty acids. These compounds not always strictly distinguish between gap junctions, connexin hemichannels and pannexin channels, and may have effects on other targets as well. An exception lies with mimetic peptides, which reproduce specific amino acid sequences in connexin or pannexin primary protein structure. In this paper, a state-of-the-art overview is provided on inhibitors of cellular channels consisting of connexins and pannexins with specific focus on their mode-of-action and therapeutic potential.
Collapse
|
Review |
8 |
116 |
4
|
Willebrords J, Crespo Yanguas S, Maes M, Decrock E, Wang N, Leybaert L, Kwak BR, Green CR, Cogliati B, Vinken M. Connexins and their channels in inflammation. Crit Rev Biochem Mol Biol 2016; 51:413-439. [PMID: 27387655 PMCID: PMC5584657 DOI: 10.1080/10409238.2016.1204980] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammation may be caused by a variety of factors and is a hallmark of a plethora of acute and chronic diseases. The purpose of inflammation is to eliminate the initial cell injury trigger, to clear out dead cells from damaged tissue and to initiate tissue regeneration. Despite the wealth of knowledge regarding the involvement of cellular communication in inflammation, studies on the role of connexin-based channels in this process have only begun to emerge in the last few years. In this paper, a state-of-the-art overview of the effects of inflammation on connexin signaling is provided. Vice versa, the involvement of connexins and their channels in inflammation will be discussed by relying on studies that use a variety of experimental tools, such as genetically modified animals, small interfering RNA and connexin-based channel blockers. A better understanding of the importance of connexin signaling in inflammation may open up towards clinical perspectives.
Collapse
|
Review |
9 |
90 |
5
|
Crespo Yanguas S, Willebrords J, Johnstone SR, Maes M, Decrock E, De Bock M, Leybaert L, Cogliati B, Vinken M. Pannexin1 as mediator of inflammation and cell death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:51-61. [PMID: 27741412 DOI: 10.1016/j.bbamcr.2016.10.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 02/06/2023]
Abstract
Pannexins form channels at the plasma membrane surface that establish a pathway for communication between the cytosol of individual cells and their extracellular environment. By doing so, pannexin signaling dictates several physiological functions, but equally underlies a number of pathological processes. Indeed, pannexin channels drive inflammation by assisting in the activation of inflammasomes, the release of pro-inflammatory cytokines, and the activation and migration of leukocytes. Furthermore, these cellular pores facilitate cell death, including apoptosis, pyroptosis and autophagy. The present paper reviews the roles of pannexin channels in inflammation and cell death. In a first part, a state-of-the-art overview of pannexin channel structure, regulation and function is provided. In a second part, the mechanisms behind their involvement in inflammation and cell death are discussed.
Collapse
|
Review |
9 |
83 |
6
|
Maes M, Crespo Yanguas S, Willebrords J, Cogliati B, Vinken M. Connexin and pannexin signaling in gastrointestinal and liver disease. Transl Res 2015; 166:332-43. [PMID: 26051630 PMCID: PMC4570182 DOI: 10.1016/j.trsl.2015.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/29/2015] [Accepted: 05/08/2015] [Indexed: 12/20/2022]
Abstract
Gap junctions, which mediate intercellular communication, are key players in digestive homeostasis. They are also frequently involved in gastrointestinal and liver pathology. This equally holds true for connexin (Cx) hemichannels, the structural precursors of gap junctions, and pannexin (Panx) channels, Cx-like proteins assembled in a hemichannel configuration. Both Cx hemichannels and Panx channels facilitate extracellular communication and drive a number of deteriorative processes, such as cell death and inflammation. Cxs, Panxs, and their channels underlie a wide spectrum of gastrointestinal and liver diseases, including gastritis and peptic ulcer disease, inflammatory intestinal conditions, acute liver failure, cholestasis, hepatitis and steatosis, liver fibrosis and cirrhosis, infectious gastrointestinal pathologies, and gastrointestinal and liver cancer. This could open promising perspectives for the characterization of new targets and biomarkers for therapeutic and diagnostic clinical purposes in the area of gastroenterology and hepatology.
Collapse
|
Review |
10 |
36 |
7
|
Maes M, Vanhaecke T, Cogliati B, Yanguas SC, Willebrords J, Rogiers V, Vinken M. Measurement of Apoptotic and Necrotic Cell Death in Primary Hepatocyte Cultures. Methods Mol Biol 2015; 1250:349-61. [PMID: 26272157 PMCID: PMC4579552 DOI: 10.1007/978-1-4939-2074-7_27] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hepatotoxicity, including drug-induced liver injury, is frequently accompanied by cell death. The latter is typically driven by apoptosis or necrosis, which substantially differ based upon biochemical and morphological criteria. This chapter describes two commonly used methods to probe apoptotic and necrotic activities in adherent monolayer cultures of primary hepatocytes. The apoptosis assay uses a prototypical substrate of caspase 3, the main executor of apoptotic cell death, which can be cleaved, yielding a product that can be measured fluorimetrically. The second assay relies on the disruption of the cell plasma membrane, which typically occurs in necrotic cell death and that results in the extracellular release of cytoplasmic enzymes, such as lactate dehydrogenase. The latter can be indirectly assessed by spectrophotometrically measuring the consumption of reduced nicotinamide adenine dinucleotide.
Collapse
|
research-article |
10 |
34 |
8
|
Willebrords J, Cogliati B, Pereira IVA, da Silva TC, Crespo Yanguas S, Maes M, Govoni VM, Lima A, Felisbino DA, Decrock E, Nogueira MS, de Castro IA, Leclercq I, Leybaert L, Rodrigues RM, Vinken M. Inhibition of connexin hemichannels alleviates non-alcoholic steatohepatitis in mice. Sci Rep 2017; 7:8268. [PMID: 28811572 PMCID: PMC5557827 DOI: 10.1038/s41598-017-08583-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/27/2017] [Indexed: 12/26/2022] Open
Abstract
While gap junctions mediate intercellular communication and support liver homeostasis, connexin hemichannels are preferentially opened by pathological stimuli, including inflammation and oxidative stress. The latter are essential features of non-alcoholic steatohepatitis. In this study, it was investigated whether connexin32 and connexin43 hemichannels play a role in non-alcoholic steatohepatitis. Mice were fed a choline-deficient high-fat diet or normal diet for 8 weeks. Thereafter, TAT-Gap24 or TAT-Gap19, specific inhibitors of hemichannels composed of connexin32 and connexin43, respectively, were administered for 2 weeks. Subsequently, histopathological examination was carried out and various indicators of inflammation, liver damage and oxidative stress were tested. In addition, whole transcriptome microarray analysis of liver tissue was performed. Channel specificity of TAT-Gap24 and TAT-Gap19 was examined in vitro by fluorescence recovery after photobleaching analysis and measurement of extracellular release of adenosine triphosphate. TAT-Gap24 and TAT-Gap19 were shown to be hemichannel-specific in cultured primary hepatocytes. Diet-fed animals treated with TAT-Gap24 or TAT-Gap19 displayed decreased amounts of liver lipids and inflammatory markers, and augmented levels of superoxide dismutase, which was supported by the microarray results. These findings show the involvement of connexin32 and connexin43 hemichannels in non-alcoholic steatohepatitis and, simultaneously, suggest a role as potential drug targets in non-alcoholic steatohepatitis.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
33 |
9
|
Maes M, Crespo Yanguas S, Willebrords J, Weemhoff JL, da Silva TC, Decrock E, Lebofsky M, Pereira IVA, Leybaert L, Farhood A, Jaeschke H, Cogliati B, Vinken M. Connexin hemichannel inhibition reduces acetaminophen-induced liver injury in mice. Toxicol Lett 2017; 278:30-37. [PMID: 28687253 PMCID: PMC5800489 DOI: 10.1016/j.toxlet.2017.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/27/2017] [Accepted: 07/01/2017] [Indexed: 02/07/2023]
Abstract
Historically, connexin hemichannels have been considered as structural precursors of gap junctions. However, accumulating evidence points to independent roles for connexin hemichannels in cellular signaling by connecting the intracellular compartment with the extracellular environment. Unlike gap junctions, connexin hemichannels seem to be mainly activated in pathological processes. The present study was set up to test the potential involvement of hemichannels composed of connexin32 and connexin43 in acute hepatotoxicity induced by acetaminophen. Prior to this, in vitro testing was performed to confirm the specificity and efficacy of TAT-Gap24 and TAT-Gap19 in blocking connexin32 and connexin43 hemichannels, respectively. Subsequently, mice were overdosed with acetaminophen followed by treatment with TAT-Gap24 or TAT-Gap19 or a combination of both after 1.5h. Sampling was performed 3, 6, 24 and 48h following acetaminophen administration. Evaluation of the effects of connexin hemichannel inhibition was based on a series of clinically relevant read-outs, measurement of inflammatory cytokines and oxidative stress. Subsequent treatment of acetaminophen-overdosed mice with TAT-Gap19 only marginally affected liver injury. In contrast, a significant reduction in serum alanine aminotransferase activity was found upon administration of TAT-Gap24 to intoxicated animals. Furthermore, co-treatment of acetaminophen-overdosed mice with both peptides revealed an additive effect as even lower serum alanine aminotransferase activity was observed. Blocking of connexin32 or connexin43 hemichannels individually was found to decrease serum quantities of pro-inflammatory cytokines, while no effects were observed on the occurrence of hepatic oxidative stress. This study shows for the first time a role for connexin hemichannels in acetaminophen-induced acute liver failure.
Collapse
|
research-article |
8 |
31 |
10
|
Maes M, McGill MR, da Silva TC, Abels C, Lebofsky M, Maria Monteiro de Araújo C, Tiburcio T, Veloso Alves Pereira I, Willebrords J, Crespo Yanguas S, Farhood A, Beschin A, Van Ginderachter JA, Zaidan Dagli ML, Jaeschke H, Cogliati B, Vinken M. Involvement of connexin43 in acetaminophen-induced liver injury. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1111-21. [PMID: 26912412 DOI: 10.1016/j.bbadis.2016.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 02/06/2016] [Accepted: 02/17/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND AIMS Being goalkeepers of liver homeostasis, gap junctions are also involved in hepatotoxicity. However, their role in this process is ambiguous, as gap junctions can act as both targets and effectors of liver toxicity. This particularly holds true for drug-induced liver insults. In the present study, the involvement of connexin26, connexin32 and connexin43, the building blocks of liver gap junctions, was investigated in acetaminophen-induced hepatotoxicity. METHODS C57BL/6 mice were overdosed with 300mg/kg body weight acetaminophen followed by analysis of the expression and localization of connexins as well as monitoring of hepatic gap junction functionality. Furthermore, acetaminophen-induced liver injury was compared between mice genetically deficient in connexin43 and wild type littermates. Evaluation of the toxicological response was based on a set of clinically relevant parameters, including protein adduct formation, measurement of alanine aminotransferase activity, cytokines and glutathione. RESULTS It was found that gap junction communication deteriorates upon acetaminophen intoxication in wild type mice, which is associated with a switch in mRNA and protein production from connexin32 and connexin26 to connexin43. The upregulation of connexin43 expression is due, at least in part, to de novo production by hepatocytes. Connexin43-deficient animals tended to show increased liver cell death, inflammation and oxidative stress in comparison with wild type counterparts. CONCLUSION These results suggest that hepatic connexin43-based signaling may protect against acetaminophen-induced liver toxicity.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
26 |
11
|
Willebrords J, Crespo Yanguas S, Maes M, Decrock E, Wang N, Leybaert L, da Silva TC, Veloso Alves Pereira I, Jaeschke H, Cogliati B, Vinken M. Structure, Regulation and Function of Gap Junctions in Liver. ACTA ACUST UNITED AC 2016; 22:29-37. [PMID: 27001459 DOI: 10.3109/15419061.2016.1151875] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gap junctions are a specialized group of cell-to-cell junctions that mediate direct intercellular communication between cells. They arise from the interaction of two hemichannels of adjacent cells, which in turn are composed of six connexin proteins. In liver, gap junctions are predominantly found in hepatocytes and play critical roles in virtually all phases of the hepatic life cycle, including cell growth, differentiation, liver-specific functionality and cell death. Liver gap junctions are directed through a broad variety of mechanisms ranging from epigenetic control of connexin expression to post-translational regulation of gap junction activity. This paper reviews established and novel aspects regarding the architecture, control and functional relevance of liver gap junctions.
Collapse
|
Review |
9 |
24 |
12
|
Tiburcio TC, Willebrords J, da Silva TC, Alves Pereira IV, Nogueira MS, Crespo Yanguas S, Maes M, dos Anjos Silva E, Zaidan Dagli ML, Alves de Castro I, Pinto Oliveira C, Vinken M, Cogliati B. Connexin32 deficiency is associated with liver injury, inflammation and oxidative stress in experimental non-alcoholic steatohepatitis. Clin Exp Pharmacol Physiol 2017; 44:197-206. [PMID: 27859493 PMCID: PMC5689377 DOI: 10.1111/1440-1681.12701] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 01/09/2023]
Abstract
Non-alcoholic steatohepatitis is a highly prevalent liver pathology featured by hepatocellular fat deposition and inflammation. Connexin32, which is the major building block of hepatocellular gap junctions, has a protective role in hepatocarcinogenesis and is downregulated in chronic liver diseases. However, the role of connexin32 in non-alcoholic steatohepatitis remains unclear. Connexin32-/- mice and their wild-type littermates were fed a choline-deficient high-fat diet. The manifestation of non-alcoholic steatohepatitis was evaluated based on a battery of clinically relevant read-outs, including histopathological examination, diverse indicators of inflammation and liver damage, in-depth lipid analysis, assessment of oxidative stress, insulin and glucose tolerance, liver regeneration and lipid-related biomarkers. Overall, more pronounced liver damage, inflammation and oxidative stress were observed in connexin32-/- mice compared to wild-type animals. No differences were found in insulin and glucose tolerance measurements and liver regeneration. However, two lipid-related genes, srebf1 and fabp3, were upregulated in Cx32-/- mice in comparison with wild-type animals. These findings suggest that connexin32-based signalling is not directly involved in steatosis as such, but rather in the sequelae of this process, which underlie progression of non-alcoholic steatohepatitis.
Collapse
|
research-article |
8 |
17 |
13
|
Maes M, Cogliati B, Crespo Yanguas S, Willebrords J, Vinken M. Roles of connexins and pannexins in digestive homeostasis. Cell Mol Life Sci 2015; 72:2809-21. [PMID: 26084872 DOI: 10.1007/s00018-015-1961-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 12/21/2022]
Abstract
Connexin proteins are abundantly present in the digestive system. They primarily form gap junctions, which control the intercellular exchange of critical homeostasis regulators. By doing so, gap junctions drive a plethora of gastrointestinal and hepatic functional features, including gastric and gut motility, gastric acid secretion, intestinal innate immune defense, xenobiotic biotransformation, glycogenolysis, bile secretion, ammonia detoxification and plasma protein synthesis. In the last decade, it has become clear that connexin hemichannels, which are the structural precursors of gap junctions, also provide a pathway for cellular communication, namely between the cytosol and the extracellular environment. Although merely pathological functions have been described, some physiological roles have been attributed to connexin hemichannels, in particular in the modulation of colonic motility. This equally holds true for cellular channels composed of pannexins, connexin-like proteins recently identified in the intestine and the liver, which have become acknowledged key players in inflammatory processes and that have been proposed to control colonic motility, secretion and blood flow.
Collapse
|
Review |
10 |
16 |
14
|
Maes M, McGill MR, da Silva TC, Lebofsky M, de Araújo CMM, Tiburcio T, Pereira IVA, Willebrords J, Yanguas SC, Farhood A, Dagli MLZ, Jaeschke H, Cogliati B, Vinken M. Connexin32: a mediator of acetaminophen-induced liver injury? Toxicol Mech Methods 2016; 26:88-96. [PMID: 26739117 PMCID: PMC4965445 DOI: 10.3109/15376516.2015.1103000] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 09/29/2015] [Indexed: 01/14/2023]
Abstract
Connexin32 is the building block of hepatocellular gap junctions, which control direct intercellular communication and thereby act as goalkeepers of liver homeostasis. This study was set up to investigate whether connexin32 is involved in hepatotoxicity induced by the analgesic and antipyretic drug acetaminophen. To this end, whole body connexin32 knock-out mice were overdosed with acetaminophen followed by sampling at different time points within a 24-h time frame. Evaluation was done based upon a series of clinically and mechanistically relevant read-outs, including protein adduct formation, histopathological examination, measurement of alanine aminotransferase activity, cytokine production, levels of reduced and oxidized glutathione and hepatic protein amounts of proliferating cell nuclear antigen. In essence, it was found that genetic ablation of connexin32 has no influence on several key events in acetaminophen-induced hepatotoxicity, including cell death, inflammation or oxidative stress, yet it does affect production of protein adducts as well as proliferating cell nuclear antigen steady-state protein levels. This outcome is not in line with previous studies, which are contradicting on their own, as both amplification and alleviation of this toxicological process by connexin32 have been described. This could question the suitability of the currently available models and tools to investigate the role of connexin32 in acetaminophen-triggered hepatotoxicity.
Collapse
|
research-article |
9 |
14 |
15
|
Willebrords J, Maes M, Pereira IVA, da Silva TC, Govoni VM, Lopes VV, Crespo Yanguas S, Shestopalov VI, Nogueira MS, de Castro IA, Farhood A, Mannaerts I, van Grunsven L, Akakpo J, Lebofsky M, Jaeschke H, Cogliati B, Vinken M. Protective effect of genetic deletion of pannexin1 in experimental mouse models of acute and chronic liver disease. Biochim Biophys Acta Mol Basis Dis 2017; 1864:819-830. [PMID: 29246445 DOI: 10.1016/j.bbadis.2017.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/27/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022]
Abstract
Pannexins are transmembrane proteins that form communication channels connecting the cytosol of an individual cell with its extracellular environment. A number of studies have documented the presence of pannexin1 in liver as well as its involvement in inflammatory responses. In this study, it was investigated whether pannexin1 plays a role in acute liver failure and non-alcoholic steatohepatitis, being prototypical acute and chronic liver pathologies, respectively, both featured by liver damage, oxidative stress and inflammation. To this end, wild-type and pannexin1-/- mice were overdosed with acetaminophen for 1, 6, 24 or 48h or were fed a choline-deficient high-fat diet for 8weeks. Evaluation of the effects of genetic pannexin1 deletion was based on a number of clinically relevant read-outs, including markers of liver damage, histopathological analysis, lipid accumulation, protein adduct formation, oxidative stress and inflammation. In parallel, in order to elucidate molecular pathways affected by pannexin1 deletion as well as to mechanistically anchor the clinical observations, whole transcriptome analysis of liver tissue was performed. The results of this study show that pannexin1-/- diseased mice present less liver damage and oxidative stress, while inflammation was only decreased in pannexin1-/- mice in which non-alcoholic steatohepatitis was induced. A multitude of genes related to inflammation, oxidative stress and xenobiotic metabolism were differentially modulated in both liver disease models in wild-type and in pannexin1-/- mice. Overall, the results of this study suggest that pannexin1 may play a role in the pathogenesis of liver disease.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
14 |
16
|
Crespo Yanguas S, Willebrords J, Maes M, da Silva TC, Veloso Alves Pereira I, Cogliati B, Zaidan Dagli ML, Vinken M. Connexins and pannexins in liver damage. EXCLI JOURNAL 2016; 15:177-86. [PMID: 27065778 PMCID: PMC4822047 DOI: 10.17179/excli2016-119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/15/2016] [Indexed: 12/19/2022]
Abstract
Connexins and pannexins are key players in the control of cellular communication and thus in the maintenance of tissue homeostasis. Inherent to this function these proteins are frequently involved in pathological processes. The present paper reviews the role of connexins and pannexins in liver toxicity and disease. As they act both as sensors and effectors in these deleterious events connexins and pannexins could represent a set of novel clinical diagnostic biomarkers and drug targets.
Collapse
|
Review |
9 |
13 |
17
|
Cogliati B, Crespo Yanguas S, da Silva TC, Aloia TP, Nogueira MS, Real-Lima MA, Chaible LM, Sanches DS, Willebrords J, Maes M, Pereira IV, de Castro IA, Vinken M, Dagli ML. Connexin32 deficiency exacerbates carbon tetrachloride-induced hepatocellular injury and liver fibrosis in mice. Toxicol Mech Methods 2016; 26:362-370. [PMID: 27268753 PMCID: PMC5417356 DOI: 10.1080/15376516.2016.1190991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Liver fibrosis results from the perpetuation of the normal wound healing response to several types of injury. Despite the wealth of knowledge regarding the involvement of intracellular and extracellular signaling pathways in liver fibrogenesis, information about the role of intercellular communication mediated by gap junctions is scarce. METHODS In this study, liver fibrosis was chemically induced by carbon tetrachloride in mice lacking connexin32, the major liver gap junction constituent. The manifestation of liver fibrosis was evaluated based on a series of read-outs, including collagen morphometric and mRNA analysis, oxidative stress, apoptotic, proliferative and inflammatory markers. RESULTS More pronounced liver damage and enhanced collagen deposition were observed in connexin32 knockout mice compared to wild-type animals in experimentally triggered induced liver fibrosis. No differences between both groups were noticed in apoptotic signaling nor in inflammation markers. However, connexin32 deficient mice displayed decreased catalase activity and increased malondialdehyde levels. CONCLUSION These findings could suggest that connexin32-based signaling mediates tissue resistance against liver damage by the modulation of the antioxidant capacity. In turn, this could point to a role for connexin32 signaling as a therapeutic target in the treatment of liver fibrosis.
Collapse
|
research-article |
9 |
10 |
18
|
Maes M, McGill MR, da Silva TC, Abels C, Lebofsky M, Weemhoff JL, Tiburcio T, Veloso Alves Pereira I, Willebrords J, Crespo Yanguas S, Farhood A, Beschin A, Van Ginderachter JA, Penuela S, Jaeschke H, Cogliati B, Vinken M. Inhibition of pannexin1 channels alleviates acetaminophen-induced hepatotoxicity. Arch Toxicol 2017; 91:2245-2261. [PMID: 27826632 PMCID: PMC5654513 DOI: 10.1007/s00204-016-1885-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/02/2016] [Indexed: 01/04/2023]
Abstract
Pannexins constitute a relatively new family of transmembrane proteins that form channels linking the cytoplasmic compartment with the extracellular environment. The presence of pannexin1 in the liver has been documented previously, where it underlies inflammatory responses, such as those occurring upon ischemia-reperfusion injury. In the present study, we investigated whether pannexin1 plays a role in acute drug-induced liver toxicity. Hepatic expression of pannexin1 was characterized in a mouse model of acetaminophen-induced hepatotoxicity. Subsequently, mice were overdosed with acetaminophen followed by treatment with the pannexin1 channel inhibitor 10Panx1. Sampling was performed 1, 3, 6, 24 and 48 h after acetaminophen administration. Evaluation of the effects of pannexin1 channel inhibition was based on a number of clinically relevant readouts, including protein adduct formation, measurement of aminotransferase activity and histopathological examination of liver tissue as well as on a series of markers of inflammation, oxidative stress and regeneration. Although no significant differences were found in histopathological analysis, pannexin1 channel inhibition reduced serum levels of alanine and aspartate aminotransferase. This was paralleled by a reduced amount of neutrophils recruited to the liver. Furthermore, alterations in the oxidized status were noticed with upregulation of glutathione levels upon suppression of pannexin1 channel opening. Concomitant promotion of regenerative activity was detected as judged on increased proliferating cell nuclear antigen protein quantities in 10Panx1-treated mice. Pannexin1 channels are important actors in liver injury triggered by acetaminophen. Inhibition of pannexin1 channel opening could represent a novel approach for the treatment of drug-induced hepatotoxicity.
Collapse
|
research-article |
8 |
10 |
19
|
Cooreman A, Van Campenhout R, Crespo Yanguas S, Gijbels E, Leroy K, Pieters A, Tabernilla A, Van Brantegem P, Annaert P, Cogliati B, Vinken M. Cholestasis Differentially Affects Liver Connexins. Int J Mol Sci 2020; 21:E6534. [PMID: 32906817 PMCID: PMC7116118 DOI: 10.3390/ijms21186534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 09/05/2020] [Indexed: 12/11/2022] Open
Abstract
Connexins are goal keepers of tissue homeostasis, including in the liver. As a result, they are frequently involved in disease. The current study was set up to investigate the effects of cholestatic disease on the production of connexin26, connexin32 and connexin43 in the liver. For this purpose, bile duct ligation, a well-known trigger of cholestatic liver injury, was applied to mice. In parallel, human hepatoma HepaRG cell cultures were exposed to cholestatic drugs and bile acids. Samples from both the in vivo and in vitro settings were subsequently subjected to assessment of mRNA and protein quantities as well as to in situ immunostaining. While the outcome of cholestasis on connexin26 and connexin43 varied among experimental settings, a more generalized repressing effect was seen for connexin32. This has also been observed in many other liver pathologies and could suggest a role for connexin32 as a robust biomarker of liver disease and toxicity.
Collapse
|
research-article |
5 |
8 |
20
|
Maes M, Yanguas SC, Willebrords J, Vinken M. Models and methods for in vitro testing of hepatic gap junctional communication. Toxicol In Vitro 2015; 30:569-577. [PMID: 26420514 PMCID: PMC4685743 DOI: 10.1016/j.tiv.2015.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/11/2015] [Accepted: 09/24/2015] [Indexed: 12/17/2022]
Abstract
Inherent to their pivotal roles in controlling all aspects of the liver cell life cycle, hepatocellular gap junctions are frequently disrupted upon impairment of the homeostatic balance, as occurs during liver toxicity. Hepatic gap junctions, which are mainly built up by connexin32, are specifically targeted by tumor promoters and epigenetic carcinogens. This renders inhibition of gap junction functionality a suitable indicator for the in vitro detection of nongenotoxic hepatocarcinogenicity. The establishment of a reliable liver gap junction inhibition assay for routine in vitro testing purposes requires a cellular system in which gap junctions are expressed at an in vivo-like level as well as an appropriate technique to probe gap junction activity. Both these models and methods are discussed in the current paper, thereby focusing on connexin32-based gap junctions.
Collapse
|
Review |
10 |
6 |
21
|
Cogliati B, Maes M, Pereira IVA, Willebrords J, Da Silva TC, Crespo Yanguas S, Vinken M. Immunohisto- and Cytochemistry Analysis of Connexins. Methods Mol Biol 2016; 1437:55-70. [PMID: 27207286 DOI: 10.1007/978-1-4939-3664-9_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Immunohistochemistry (IHC) is a ubiquitous used technique to identify and analyze protein expression in the context of tissue and cell morphology. In the connexin research field, IHC is applied to identify the subcellular location of connexin proteins, as this can be directly linked to their functionality. The present chapter describes a protocol for fluorescent IHC to detect connexin proteins in tissues slices and cells, with slight modifications depending on the nature of biological sample, histological processing, and/or protein expression level. Basically, fluorescent IHC is a short, simple, and cost-effective technique, which allows the visualization of proteins based on fluorescent-labeled antibody-antigen recognition.
Collapse
|
|
9 |
4 |
22
|
Maes M, Willebrords J, Crespo Yanguas S, Cogliati B, Vinken M. Analysis of Liver Connexin Expression Using Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction. Methods Mol Biol 2016; 1437:1-19. [PMID: 27207283 DOI: 10.1007/978-1-4939-3664-9_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although connexin production is mainly regulated at the protein level, altered connexin gene expression has been identified as the underlying mechanism of several pathologies. When studying the latter, appropriate methods to quantify connexin RNA levels are required. The present chapter describes a well-established reverse transcription quantitative real-time polymerase chain reaction procedure optimized for analysis of hepatic connexins. The method includes RNA extraction and subsequent quantification, generation of complementary DNA, quantitative real-time polymerase chain reaction, and data analysis.
Collapse
|
|
9 |
4 |
23
|
Willebrords J, Maes M, Yanguas SC, Cogliati B, Vinken M. Detection of Connexins in Liver Cells Using Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis and Immunoblot Analysis. Methods Mol Biol 2016; 1437:37-53. [PMID: 27207285 DOI: 10.1007/978-1-4939-3664-9_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since connexin expression is partly regulated at the protein level, immunoblot analysis represents a frequently addressed technique in the connexin research field. The present chapter describes the setup of an immunoblot procedure, including protein extraction and quantification from biological samples, gel electrophoresis, protein transfer, and immunoblotting, which is optimized for analysis of connexins in liver tissue. In essence, proteins are separated on a polyacrylamide gel using sodium dodecyl sulfate followed by transfer of proteins on a nitrocellulose membrane. The latter allows specific detection of connexins with antibodies combined with revelation through enhanced chemiluminescence.
Collapse
|
|
9 |
2 |
24
|
Maes M, McGill MR, da Silva TC, Abels C, Lebofsky M, Weemhoff JL, Tiburcio T, Pereira IVA, Willebrords J, Yanguas SC, Farhood A, Beschin A, Van Ginderachter JA, Penuela S, Jaeschke H, Cogliati B, Vinken M. Erratum to: Inhibition of pannexin1 channels alleviates acetaminophen-induced hepatotoxicity. Arch Toxicol 2017; 91:2263-2264. [PMID: 28243680 DOI: 10.1007/s00204-016-1929-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
Published Erratum |
8 |
2 |
25
|
Vinken M, Maes M, Crespo Yanguas S, Willebrords J, Vanhaecke T, Rogiers V. Establishment and Characterization of an In Vitro Model of Fas-Mediated Hepatocyte Cell Death. Methods Mol Biol 2015; 1250:95-103. [PMID: 26272136 DOI: 10.1007/978-1-4939-2074-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fas-mediated apoptosis underlies a plethora of liver pathologies and toxicities. As a consequence, this process is a major research topic in the field of experimental and clinical hepatology. The present chapter describes the setup of an in vitro model of hepatocellular apoptotic cell death. In essence, this system consists of freshly isolated hepatocytes cultured in a monolayer configuration, which are exposed to a combination of Fas ligand and cycloheximide. This in vitro model has been characterized by using a set of well-acknowledged cell death markers. This experimental system allows the study of the entire course of Fas-mediated hepatocellular cell death, going from early apoptosis to secondary necrosis, and hence can serve a broad range of in vitro pharmaco-toxicological purposes.
Collapse
|
|
10 |
0 |