1
|
Giribet G, Carranza S, Baguñà J, Riutort M, Ribera C. First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Mol Biol Evol 1996; 13:76-84. [PMID: 8583909 DOI: 10.1093/oxfordjournals.molbev.a025573] [Citation(s) in RCA: 328] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The complete 18S rDNA gene sequence of Macrobiotus group hufelandi (Tardigrada) was obtained and aligned with 18S rDNA and rRNA gene sequences of 24 metazoans (mainly protostomes). Discrete character (maximum-parsimony) and distance (neighbor-joining) methods were used to infer their phylogeny. The evolution of bootstrap proportions with sequence length (pattern of resolved nodes, PRN) was studied to test the resolution of the nodes in neighbor-joining trees. The results show that arthropods are monophyletic. Tardigrades represent the sister group of arthropods (in parsimony analyses) or they are related with crustaceans (distance analysis and PRN). Arthropoda are divided into two main evolutionary lines, the Hexapoda + Crustacea line (weakly supported), and the Myriapoda + Chelicerata line. The Hexapoda + Crustacea line includes Pentastomida, but the internal resolution is far from clear. The Insecta (Ectognatha) are monophyletic, but no evidence for the monophyly of Hexapoda is found. The Chelicerata are a monophyletic group and the Myriapoda cluster close to Arachnida. Overall, the results obtained represent the first molecular evidence for a Tardigrada + Arthropoda clade. In addition, the congruence between molecular phylogenies of the Arthropoda from other authors and this obtained here indicates the need to review those obtained solely on morphological characters.
Collapse
|
|
29 |
328 |
2
|
Carranza S, Baguñà J, Riutort M. Are the Platyhelminthes a monophyletic primitive group? An assessment using 18S rDNA sequences. Mol Biol Evol 1997; 14:485-97. [PMID: 9159926 DOI: 10.1093/oxfordjournals.molbev.a025785] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In most zoological textbooks, Platyhelminthes are depicted as an early-emerging clade forming the likely sister group of all the other Bilateria. Other phylogenetic proposals see them either as the sister group of most of the Protostomia or as a group derived from protostome coelomate ancestors by progenesis. The main difficulty in their correct phylogenetic placing is the lack of convincing synapomorphies for all Platyhelminthes, which may indicate that they are polyphyletic. Moreover, their internal phylogenetic relationships are still uncertain. To test these hypotheses, new complete 18S rDNA sequences from 13 species of "Turbellaria" have been obtained and compared to published sequences of 2 other "Turbellaria," 3 species of parasitic Platyhelminthes, and several diploblastic and deuterostome and protostome triploblastics. Maximum-parsimony, maximum-likelihood, and neighbor-joining methods were used to infer their phylogeny. The results show the order Catenulida to form an independent early-branching clade and emerge as a potential sister group of the rest of the Bilateria, while the rest of Platyhelminthes (Rhabditophora), which includes the parasites, form a clear monophyletic group closely related to the protostomes. The order Acoela, morphologically considered as candidates to be ancestral, are shown to be fast-clock organisms for the 18S rDNA gene. Hence, long-branching of acoels and insufficient sampling of catenulids and acoels leave their position still unresolved and call for further studies. Within the Rhabditophora, our analyses suggest (1) a close relationship between orders Macrostomida and Polycladida, forming a clear sister group to the rest of orders; (2) that parasitic platyhelminthes appeared early in the evolution of the group and form a sister group to a still-unresolved clade made by Nemertodermatida, Lecithoepitheliata, Prolecithophora, Proseriata, Tricladida, and Rhabdocoela; and (3) that Seriata is paraphyletic.
Collapse
|
Comparative Study |
28 |
161 |
3
|
Carranza S, Arnold EN, Mateo JA, López-Jurado LF. Long-distance colonization and radiation in gekkonid lizards, Tarentola (Reptilia: Gekkonidae), revealed by mitochondrial DNA sequences. Proc Biol Sci 2000; 267:637-49. [PMID: 10821607 PMCID: PMC1690580 DOI: 10.1098/rspb.2000.1050] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Morphological systematics makes it clear that many non-volant animal groups have undergone extensive transmarine dispersal with subsequent radiation in new, often island, areas. However, details of such events are often lacking. Here we use partial DNA sequences derived from the mitochondrial cytochrome b and 12S rRNA genes (up to 684 and 320 bp, respectively) to trace migration and speciation in Tarentola geckos, a primarily North African clade which has invaded many of the warmer islands in the North Atlantic Ocean. There were four main invasions of archipelagos presumably by rafting. (i) The subgenus Neotarentola reached Cuba up to 23 million years (Myr) ago, apparently via the North Equatorial current, a journey of at least 6000 km. (ii) The subgenus Tarentola invaded the eastern Canary Islands relatively recently covering a minimum of 120 km. (iii) The subgenus Makariogecko got to Gran Canaria and the western Canary Islands 7-17.5 Myr ago, either directly from the mainland or via the Selvages or the archipelago of Madeira, an excursion of 200-1200 km. (iv) A single species of Makariogecko from Gomera or Tenerife in the western Canaries made the 1400 km journey to the Cape Verde Islands tip to 7 Myr ago by way of the south-running Canary current. Many journeys have also occurred within archipelagos, a minimum of five taking place in the Canaries and perhaps 16 in the Cape Verde Islands. Occupation of the Cape Verde archipelago first involved an island in the northern group, perhaps São Nicolau, with subsequent spread to its close neighbours. The eastern and southern islands were colonized from these northern islands, at least two invasions widely separated in time being involved. While there are just three allopatric species of Makariogecko in the Canaries, the single invader of the Cape Verde Islands radiated into five, most of the islands being inhabited by two of these which differ in size. While size difference may possibly be a product of character displacement in the northern islands, taxa of different sizes reached the southern islands independently.
Collapse
|
research-article |
25 |
144 |
4
|
Carranza S, Arnold EN. Systematics, biogeography, and evolution of Hemidactylus geckos (Reptilia: Gekkonidae) elucidated using mitochondrial DNA sequences. Mol Phylogenet Evol 2005; 38:531-45. [PMID: 16154768 DOI: 10.1016/j.ympev.2005.07.012] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 07/12/2005] [Accepted: 07/19/2005] [Indexed: 11/20/2022]
Abstract
With more than 80 species inhabiting all warm continental land masses and hundreds of intervening continental and oceanic islands, Hemidactylus geckos are one of the most species-rich and widely distributed of all reptile genera. They consequently represent an excellent model for biogeographic, ecological, and evolutionary studies. A molecular phylogeny for Hemidactylus is presented here, based on 702 bp of mtDNA (303 bp cytochrome b and 399 bp 12S rRNA) from 166 individuals of 30 species of Hemidactylus plus Briba brasiliana, Cosymbotus platyurus, and several outgroups. The phylogeny indicates that Hemidactylus may have initially undergone rapid radiation, and long-distance dispersal is more extensive than in any other reptilian genus. In the last 15 My, African lineages have naturally crossed the Atlantic Ocean at least twice. They also colonized the Gulf of Guinea, Cape Verde and Socotra islands, again sometimes on more than one occasion. Many extensive range extensions have occurred much more recently, sometimes with devastating consequences for other geckos. These colonizations are likely to be largely anthropogenic, involving the 'weedy' commensal species, H. brookii s. lat, H. mabouia, H. turcicus, H. garnotii, and H. frenatus. These species collectively have colonized the Mediterranean region, tropical Africa, much of the Americas and hundreds of islands in the Pacific, Indian, and Atlantic oceans. Five well-supported clades are discernable in Hemidactylus, with the African H. fasciatus unallocated. 1. Tropical Asian clade: (Cosymbotus platyurus (H. bowringii, H. karenorum, H. garnotii)) (H. flaviviridis (Asian H. brookii, H. frenatus)). 2. African H. angulatus and Caribbean H. haitianus. 3. Arid clade, of NE Africa, SW Asia, etc.: (H. modestus (H. citernii, H. foudai)) (H. pumilio (H. granti, H. dracaenacolus) (H. persicus, H. macropholis, H. robustus, H. turcicus (H. oxyrhinus (H. homoeolepis, H. forbesii))). 4. H. mabouia clade (H. yerburii, H. mabouia). 5. African-Atlantic clade: H. platycephalus ((H. agrius, H. palaichthus) (H. longicephalus, H. greeffi, H. bouvieri, Briba brasiliana))). Cosymbotus and Briba are synonymized with Hemidactylus, and African populations of H. brookii separated as H. angulatus, with which H. haitianus may be conspecific. Some comparatively well-sampled widespread species show high genetic variability (10-15% divergence) and need revision, including Cosymbotus platyurus, H. bowringii, Asian H. brookii, H. frenatus, H. angulatus, and H. macropholis. In contrast, most populations of H. mabouia and H. turcicus are very uniform (1-2% divergence). Plasticity of some of the morphological features of Hemidactylus is confirmed, although retention of primitive morphologies also occurs.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
127 |
5
|
Carranza S, Giribet G, Ribera C, Riutort M. Evidence that two types of 18S rDNA coexist in the genome of Dugesia (Schmidtea) mediterranea (Platyhelminthes, Turbellaria, Tricladida). Mol Biol Evol 1996; 13:824-32. [PMID: 8754218 DOI: 10.1093/oxfordjournals.molbev.a025643] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sequences of 18S ribosomal DNA (rDNA) are increasingly being used to infer phylogenetic relationships among living taxa. Although the 18S rDNA belongs to a multigene family, all its copies are kept homogeneous by concerted evolution (Dover 1982; Hillis and Dixon 1991). To date, there is only one well-characterized exception to this rule, the protozoan Plasmodium (Gunderson et al. 1987; Waters, Syin, and McCutchan 1989; Qari et al. 1994). Here we report the 1st case of 18S rDNA polymorphism within a metazoan species. Two types (I and II) of 18S rDNA have been found and sequenced in the platyhelminth Dugesia (Schmidtea) mediterranea (Turbellaria, Seriata, Tricladida). Southern blot analysis suggested that both types of rDNA are present in the genome of this flatworm. This was confirmed through sequence comparisons and phylogenetic analysis using the neighbor-joining method and bootstrap test. Although secondary structure analysis suggests that both types are functional, only type I seems to be transcribed to RNA, as demonstrated by Northern blot analysis. The finding of different types of 18S rDNAs in a single genome stresses the need for analyzing a large number of clones whenever 18S sequences obtained by PCR amplification and cloning are being used in phylogenetic reconstruction.
Collapse
|
Comparative Study |
29 |
101 |
6
|
Carranza S, Arnold EN, Mateo JA, Geniez P. Relationships and evolution of the North African geckos, Geckonia and Tarentola (Reptilia: Gekkonidae), based on mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 2002; 23:244-56. [PMID: 12069554 DOI: 10.1016/s1055-7903(02)00024-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mitochondrial (cytochrome b and 12S rRNA) and nuclear (c-mos) genes, analyzed by a variety of methods, indicate that the distinctive northwest African gecko Geckonia chazaliae is a member of the Tarentola clade, being most closely related to the species of the western Canary and Cape Verde islands. Relationships in Tarentola as a whole are as follows: (T. americana ((T. mauritanica, T. angustimentalis) ((T. deserti, T. boehmei) ((T. b. boettgeri-South (T. b. boettgeri-North (T. b. bischoffi, T. b. hierrensis))) ((T. annularis, T. ephippiata) (Geckonia, T. delalandii, T. gomerensis, Cape Verde species)))))); nearly all nodes have high bootstrap support. Results confirm that T. americana of Cuba and the Bahamas separated at the most basal dichotomy of the phylogeny and give no positive support for the monophyly of the subgenera Tarentola s. str. and Makariogecko. The latter includes Geckonia and the subgenus Sahelogecko. Continental Tarentola appear to have invaded the Sahara desert from its northern edge. They have also colonized groups of Atlantic islands five times: a single invasion of the West Indies and three of the Canary islands, one of which then went on to invade the Cape Verde archipelago. The phylogeny corroborates anatomical evidence that the ground-dwelling Geckonia had a climbing ancestry, something that is paralleled in some southern African terrestrial gekkonids related to Pachydactylus. Distinctive derived features of Geckonia occur in other gekkonids that are ground dwelling in arid habitats and may be functionally related to this environment. The evolution of such features indicates that, although Tarentola is generally very uniform and may have been so for over 10 million years, this is not due to any overwhelming phylogenetic constraint. G. chazaliae should be included in Tarentola, as Tarentola chazaliae.
Collapse
|
|
23 |
92 |
7
|
Carranza S, Arnold EN, Geniez P, Roca J, Mateo JA. Radiation, multiple dispersal and parallelism in the skinks, Chalcides and Sphenops (Squamata: Scincidae), with comments on Scincus and Scincopus and the age of the Sahara Desert. Mol Phylogenet Evol 2007; 46:1071-94. [PMID: 18276164 DOI: 10.1016/j.ympev.2007.11.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 11/19/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
Abstract
Phylogenetic analysis using up to 1325 base pairs of mitochondrial DNA from 179 specimens and 30 species of Chalcides, Sphenops, Eumeces, Scincopus and Scincus indicates that Sphenops arose twice independently within Chalcides. It is consequently synonymized with that genus. Chalcides in this broader sense originated in Morocco, diversifying into four main clades about 10 Ma, after which some of its lineages dispersed widely to cover an area 40 times as large. Two separate lineages invaded the Canary Islands and at least five main lineages colonized southern Europe. At least five more spread across northern Africa, one extending into southwest Asia. Elongate bodies with reduced limbs have evolved at least four times in Chalcides, mesic 'grass-swimmers' being produced in one case and extensive adaptation to life in loose desert sand in two others. In clade, Chalcides striatus colonized SW Europe from NW Africa 2.6 Ma and C. chalcides mainland Italy 1.4 Ma, both invasions being across water, while C. c. vittatus reached Sardinia more recently, perhaps anthropogenically, and C. guentheri spread 1200km further east to Israel. C. minutus is a composite, with individuals from the type locality forming a long independent lineage and the remaining ones investigated being most closely related to C. mertensi. In the Northern clade, C. boulengeri and C. sepsoides spread east through sandy habitats north of the Sahara about 5 Ma, the latter reaching Egypt. C. bedriagai invaded Spain around the same time, perhaps during the Messinian period when the Mediterranean was dry, and shows considerable diversification. Although it is currently recognized as one species, the C. ocellatus clade exhibits as much phylogenetic depth as the other main clades of Chalcides, having at least six main lineages. These have independently invaded Malta and Sardinia from Tunisia and also southwest Arabia C. o. humilis appears to have spread over 4000 km through the Sahel, south of the Sahara quite recently, perhaps in the Pleistocene. In the Western clade of Chalcides, C. delislei appears to have dispersed in a similar way. There were also two invasions of the Canary Islands: one around 5 Ma by C. simonyi, and the other about 7 Ma by the ancestor of C. viridanus+C. sexlineatus. C. montanus was believed to be related to C. lanzai of the Northern clade, but in the mtDNA tree it is placed within C. polylepis of the Western clade, although this may possibly be an artifact of introgression. The Eumeces schneideri group, Scincopus and Scincus form a clade separate from Chalcides. Within this clade, the geographically disjunct E. schneideri group is paraphyletic. One of its members, E. algeriensis is the sister taxon to Scincopus, and Scincus may also be related to these taxa. The phylogeny suggests Scincopus entered desert conditions in Africa, up to 9.6 Ma and the same may have been true of Scincus up to 11.7 Ma. Scincus appears to have diversified and spread into Arabia around 6 Ma. Dates of origin and divergence of these skinks, desert Chalcides and other squamates agree with recent geological evidence that the Sahara is at least 5-7 My old. The subspecies Chalcides viridanus coeruleopunctatus is upgraded to the species level as C. coeruleopunctatus stat nov., on the basis of its large genetic divergence from C. v. viridanus.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
92 |
8
|
Carranza S, Arnold EN, Pleguezuelos JM. Phylogeny, biogeography, and evolution of two Mediterranean snakes, Malpolon monspessulanus and Hemorrhois hippocrepis (Squamata, Colubridae), using mtDNA sequences. Mol Phylogenet Evol 2006; 40:532-46. [PMID: 16679033 DOI: 10.1016/j.ympev.2006.03.028] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 03/20/2006] [Accepted: 03/22/2006] [Indexed: 10/24/2022]
Abstract
Variation in 815bp of mitochondrial DNA from two gene fragments (300bp of cytochrome b and 395-515bp of 12S rRNA) for 26 Malpolon monspessulanus, and cytochrome b for a further 21 individuals, indicates that this species originated in the Maghreb area of Northwest Africa. Here, an estimated 3.5-6Mya, it divided into the western M. m. monspessulanus, and an eastern clade including M. m. insignitus and M. m. fuscus. The very limited genetic differentiation between Maghreb and Southwest European populations of this form suggests that it arrived in the Iberian Peninsula only recently. Population genetics and demographic tests indicate subsequent expansion in this area around 83,000-168,000 year ago. Because present populations of Malpolon arrived recently, mid-Pliocene and at least some Pleistocene fossils of the genus Malpolon in Southwest Europe are probably derived from an earlier invasion from the Maghreb, possibly as early as the end of the Miocene period, 5.3-5.9Mya, when there was a temporary land bridge across the site of the Strait of Gibraltar and the Mediterranean Sea desiccated. The descendants of this earlier invasion must have eventually become extinct, perhaps during one of the Pleistocene glaciations. In contrast to the western M. m. monspessulanus, the greater genetic divergence found in the eastern clade of M. monspessulanus suggests that it dispersed at an earlier date and probably over a longer period, spreading eastwards through northern Libya and Egypt to Syria, Iraq, and Iran, and around the Mediterranean Sea through Turkey into the Aegean archipelagos and the Balkan peninsula. The western and eastern units of M. monspessulanus have different dorsal color pattern, differences in skull structure and exhibit an 8.4% uncorrected genetic divergence in the combined gene fragments investigated here. It is consequently recommended that they should be treated as separate species: M. monspessulanus (sensu stricto) and Malpolon insignitusstat. nov., the latter including the subspecies Malpolon insignitus fuscuscomb. nov. The same combined mitochondrial gene fragments used in Malpolon were investigated in 20 individuals of Hemorrhois hippocrepis, and of cytochrome b alone in a further 17. They indicate that this species also originated in the Maghreb and again invaded the Iberian Peninsula quite recently. Some of the most recent invasions of the Iberian Peninsula by reptiles and amphibian taxa could probably be anthropogenic in origin. Some other species including M. monspessulanus and H. hippocrepis, may have crossed naturally, by "hopping" across the Strait of Gibraltar via temporary islands on the shallowest parts that were exposed during sea-level fall associated with Pleistocene glaciations.
Collapse
|
|
19 |
79 |
9
|
Giribet G, Carranza S, Riutort M, Baguñà J, Ribera C. Internal phylogeny of the Chilopoda (Myriapoda, Arthropoda) using complete 18S rDNA and partial 28S rDNA sequences. Philos Trans R Soc Lond B Biol Sci 1999; 354:215-22. [PMID: 10087567 PMCID: PMC1692478 DOI: 10.1098/rstb.1999.0373] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The internal phylogeny of the 'myriapod' class Chilopoda is evaluated for 12 species belonging to the five extant centipede orders, using 18S rDNA complete gene sequence and 28S rDNA partial gene sequence data. Equally and differentially weighted parsimony, neighbour-joining and maximum-likelihood were used for phylogenetic reconstruction, and bootstrapping and branch support analyses were performed to evaluate tree topology stability. The results show that the Chilopoda constitute a monophyletic group that is divided into two lines, Notostigmophora (= Scutigeromorpha) and Pleurostigmophora, as found in previous morphological analyses. The Notostigmophora are markedly modified for their epigenic mode of life. The first offshoot of the Pleurostigmophora are the Lithobiomorpha, followed by the Craterostigmomorpha and by the Epimorpha s. str. (= Scolopendromorpha + Geophilomorpha), although strong support for the monophyly of the Epimorpha s. lat. (= Craterostigmomorpha + Epimorpha s. str.) is only found in the differentially weighted parsimony analysis.
Collapse
|
research-article |
26 |
73 |
10
|
Carranza S, Arnold EN, Wade E, Fahd S. Phylogeography of the false smooth snakes, Macroprotodon (Serpentes, Colubridae): mitochondrial DNA sequences show European populations arrived recently from Northwest Africa. Mol Phylogenet Evol 2004; 33:523-32. [PMID: 15522785 DOI: 10.1016/j.ympev.2004.07.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 05/21/2004] [Indexed: 11/30/2022]
Abstract
Mitochondrial DNA (1075 bp: cytochrome b, 300 bp; 12S rRNA, 393 bp; and 16S rRNA, 382 bp) corroborates the monophyly of the genus Macroprotodon and of the species M. mauritanicus, M. abubakeri, and M. brevis. The subspecies M. brevis ibericus is also monophyletic. The mtDNA tree presented here indicates that M. cucullatus consists of at least two separate units and may possibly represent a primitive morphology rather than a species in its own right. However, this hypothesis is tentative since it is only reflects the history of a single evolutionary unit (mtDNA). A definitive understanding of the evolution of M. cucullatus will not be possible until informative nuclear markers are added to the mitochondrial data. Macroprotodon appears to have originated in the Maghreb region of NW Africa and speciated there around 4-5.5 million years ago around the end of the Miocene period, after which its three main lineages may each have expanded north into more mesic conditions. The group also spread eastwards into coastal areas of Libya quite recently and on to Egypt and Israel. Later still, M. b. ibericus from extreme north Morocco reached the Iberian Peninsula, and M. mauritanicus from Tunisia or Algeria colonised the Balearic Islands of Menorca and Mallorca. Both these range extensions may result from very recent natural colonisations or even from accidental human introduction. Recency of origin of Iberian and Balearic populations is indicated by uniformity of their mtDNA even across large distances, and its great similarity to that of populations in source regions. Isolated populations assigned to M. cucullatus in the Hoggar mountains (southern Algeria) and Western Sahara are probably relicts from quite recent periods of climatic amelioration in the North African desert.
Collapse
|
|
21 |
59 |
11
|
Giribet G, Rambla M, Carranza S, Baguñà J, Riutort M, Ribera C. Phylogeny of the arachnid order Opiliones (Arthropoda) inferred from a combined approach of complete 18S and partial 28S ribosomal DNA sequences and morphology. Mol Phylogenet Evol 1999; 11:296-307. [PMID: 10191074 DOI: 10.1006/mpev.1998.0583] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phylogenetic relationships among the main evolutionary lines of the arachnid order Opiliones were investigated by means of molecular (complete 18S rDNA and the D3 region of the 28S rDNA genes) and morphological data sets. Equally and differentially weighted parsimony analyses of independent and combined data sets provide evidence for the monophyly of the Opiliones. In all the analyses, the internal relationships of the group coincide in the monophyly of the following main groups: Cyphophthalmi, Eupnoi Palpatores, Dyspnoi Palpatores, and Laniatores. The Cyphophthalmi are monophyletic and sister to a clade that includes all the remaining opilionid taxa (=Phalangida). Within the Phalangida the most supported hypothesis suggests that Palpatores are paraphyletic, as follows: (Eupnoi (Dyspnoi + Laniatores)), but the alternative hypothesis (Laniatores (Eupnoi + Dyspnoi)) is more parsimonious in some molecular data analyses. Relationships within the four main clades are also addressed. Evolution of some morphological characters is discussed, and plesiomorphic states of these characters are evaluated using molecular data outgroup polarization. Finally, Martens' hypothesis of opilionid evolution is assessed in relation to our results.
Collapse
|
|
26 |
54 |
12
|
Carranza S, Littlewood DT, Clough KA, Ruiz-Trillo I, Baguñà J, Riutort M. A robust molecular phylogeny of the Tricladida (Platyhelminthes: Seriata) with a discussion on morphological synapomorphies. Proc Biol Sci 1998; 265:631-40. [PMID: 9881470 PMCID: PMC1689013 DOI: 10.1098/rspb.1998.0341] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The suborder Tricladida (Platyhelminthes: Turbellaria, Seriata) comprises most well-known species of free-living flatworms. Four infraorders are recognized: (i) the Maricola (marine planarians); (ii) the Cavernicola (a group of primarily cavernicolan planarians); (iii) the Paludicola (freshwater planarians); and (iv) the Terricola (land planarians). The phylogenetic relationships among these infraorders have been analysed using morphological characters, but they remain uncertain. Here we analyse the phylogeny and classification of the Tricladida, with additional, independent, molecular data from complete sequences of 18S rDNA and 18S rRNA. We use maximum parsimony and neighbour-joining methods and the characterization of a unique gene duplication event involving the Terricola and the dugesiids to reconstruct the phylogeny. The results show that the Maricola is monophyletic and is the primitive sister group to the rest of the Tricladida (the Paludicola plus the Terricola). The Paludicola are paraphyletic since the Terricola and one paludicolan family, the Dugesiidae, share a more recent common ancestor than the dugesiids with other paludicolans (dendrocoelids and planariids). A reassessment of morphological evidence may confirm the apparent redundancy of the existing infraorders Paludicola and Terricola. In the meantime, we suggest replacing the Paludicola and Terricola with a new clade, the Continenticola, which comprises the families Dugesiidae, Planariidae, Dendrocoelidae and the Terricola.
Collapse
|
research-article |
27 |
37 |
13
|
Carranza S, Baguñà J, Riutort M. Origin and evolution of paralogous rRNA gene clusters within the flatworm family Dugesiidae (Platyhelminthes, Tricladida). J Mol Evol 1999; 49:250-9. [PMID: 10441676 DOI: 10.1007/pl00006547] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Analysis of the 18S rDNA sequences of five species of the family Dugesiidae (phylum Platyhelminthes, suborder Tricladida, infraorder Paludicola) and eight species belonging to families Dendrocoelidae and Planaridae and to the infraorder Maricola showed that members of the family Dugesiidae have two types of 18S rDNA genes, while the rest of the species have only one. The duplication event also affected the ITS-1, 5.8S, ITS-2 region and probably the 28S gene. The mean divergence value between the type I and the type II sequences is 9% and type II 18S rDNA genes are evolving 2.3 times more rapidly than type I. The evolutionary rates of type I and type II genes were calibrated from biogeographical data, and an approximate date for the duplication event of 80-120 million years ago was calculated. The type II gene was shown, by RT-PCR, to be transcribed in adult individuals of Schmidtea polychroa, though at very low levels. This result, together with the fact that most of the functionally important positions for small-subunit rRNA in prokaryotes have been conserved, indicates that the type II gene is probably functional.
Collapse
|
|
26 |
35 |
14
|
Carranza S, Arnold EN, Mateo JA, López-Jurado LF. Parallel gigantism and complex colonization patterns in the Cape Verde scincid lizards Mabuya and Macroscincus (Reptilia: Scincidae) revealed by mitochondrial DNA sequences. Proc Biol Sci 2001; 268:1595-603. [PMID: 11487407 PMCID: PMC1088783 DOI: 10.1098/rspb.2001.1699] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The scincid lizards of the Cape Verde islands comprise the extinct endemic giant Macroscincus coctei and at least five species of Mabuya, one of which, Mabuya vaillanti, also had populations with large body size. Phylogenetic analysis based on DNA sequences derived from the mitochondrial cytochrome b, cytochrome oxidase I and 12S rRNA genes (711, 498 and 378 base pairs (bp), respectively) corroborates morphological evidence that these species constitute a clade and that Macroscincus is unrelated to very large skinks in other areas. The relationships are ((M. vaillanti and Mabuya delalandii) (Mabuya spinalis and Macroscincus coctei (Mabuya fogoensis nicolauensis (Mabuya fogoensis antaoensis and Mabuya stangeri)))). The Cape Verde archipelago was colonized from West Africa, probably in the Late Miocene or Early Pliocene period. The north-eastern islands were probably occupied first, after which the ancestor of M. vaillanti and M. delalandii may have originated on Boavista, the ancestor of the latter species arriving on Santiago or Fogo later. The M. fogoensis--M. stangeri clade colonized the islands of Branco, Razo, Santa Luzia and São Vicente from São Nicolau and reached Santo Antão after this. Colonization of these northeastern islands was slow, perhaps because the recipient islands had not developed earlier or because colonization cut across the path of the Canary Current and the Northeast Trade Winds, the main dispersing agents in the region. Rapid extension of range into the southwestern islands occurred later in M. spinalis and then in M. vaillanti and M. delalandii. The long apparent delay between the origin of these species and their southwestern dispersal may have been because there were earlier colonizations of the southern islands which excluded later ones until the earlier inhabitants were exterminated by volcanic or climatic events. The evolution of large size in Macroscincus occurred in the northwestern islands and was paralleled in the eastern and southern islands by populations of M. vaillanti. Both cases of size increase in Cape Verde skinks were accompanied by the development of herbivory.
Collapse
|
research-article |
24 |
33 |
15
|
De Leon-Oliva D, Barrena-Blázquez S, Jiménez-Álvarez L, Fraile-Martinez O, García-Montero C, López-González L, Torres-Carranza D, García-Puente LM, Carranza ST, Álvarez-Mon MÁ, Álvarez-Mon M, Diaz R, Ortega MA. The RANK-RANKL-OPG System: A Multifaceted Regulator of Homeostasis, Immunity, and Cancer. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1752. [PMID: 37893470 PMCID: PMC10608105 DOI: 10.3390/medicina59101752] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023]
Abstract
The RANK-RANKL-OPG system is a complex signaling pathway that plays a critical role in bone metabolism, mammary epithelial cell development, immune function, and cancer. RANKL is a ligand that binds to RANK, a receptor expressed on osteoclasts, dendritic cells, T cells, and other cells. RANKL signaling promotes osteoclast differentiation and activation, which leads to bone resorption. OPG is a decoy receptor that binds to RANKL and inhibits its signaling. In cancer cells, RANKL expression is often increased, which can lead to increased bone resorption and the development of bone metastases. RANKL-neutralizing antibodies, such as denosumab, have been shown to be effective in the treatment of skeletal-related events, including osteoporosis or bone metastases, and cancer. This review will provide a comprehensive overview of the functions of the RANK-RANKL-OPG system in bone metabolism, mammary epithelial cells, immune function, and cancer, together with the potential therapeutic implications of the RANK-RANKL pathway for cancer management.
Collapse
|
Review |
2 |
28 |
16
|
|
|
26 |
23 |
17
|
Bassol S, Cravioto MC, Durand M, Bailon R, Carranza S, Fugarolas J, Gaona R, Parada LM, Celis C, Santoyo S, Garza-Flores J, Vazquez L, Lopez C, Gurucharri C, Novelli J, Carneiro de Oliveira H, Mendez J, de Andrade ME, de Mello NR, de Melo K, Chada E, Yassle ME, Castañeda A, Gomez P, Arboleda C, Trujillo L, Bucheli R, Hidalgo I, Olavide R, Parejarios J, Succar J, Reyes-Marquez R, Albrecht G. Mesigyna once-a-month combined injectable contraceptive: experience in Latin America. Contraception 2000; 61:309-16. [PMID: 10906501 DOI: 10.1016/s0010-7824(00)00109-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A phase III clinical study was carried out among 534 fertile Latin American women to evaluate cycle control, side effects, and contraceptive efficacy of a once-a-month combined injectable, Mesigyna, consisting of 50 mg norethisterone enanthate and 5 mg estradiol valerate. The pregnancy rate at 1 year was 0 per 100 woman-years for a total experience of 4688 woman-months. The overall discontinuation rate at one year was 17.9%. Discontinuation rate for bleeding problems was 5.1%. The Colombian women had a significant increase (p <0.001) in bleeding problems compared to other countries. The discontinuation rate for amenorrhea was 1.1%. There were no significant differences between the groups regarding discontinuation for other medical or non-medical reasons. Mean weight gain after one year of use was 1.02 kg. Mesigyna is an appropiate once-a-month injectable contraceptive for Latin American women since it is highly effective and its perception of normal menstrual bleeding is of importance in the Latin American population.
Collapse
|
Clinical Trial |
25 |
8 |
18
|
Ramachandran S, Beukeboom LW, Gerace L, Pavlovic N, Carranza S, Michiels NK. Isolation and characterization of microsatellite loci from the planarian Dugesia polychroa (Schmidt) (Platyhelminthes:Tricladida). Mol Ecol 1997; 6:389-91. [PMID: 9131815 DOI: 10.1046/j.1365-294x.1997.00190.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
|
28 |
4 |
19
|
Schmiedt MI, Shettigar UR, Siddique M, Barbier G, Bialow M, Carranza S. Unpredictable response to vasodilator therapy in primary pulmonary hypertension. Int J Clin Pharmacol Ther 1998; 36:435-40. [PMID: 9726697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A 49-year-old man with severe primary pulmonary hypertension unresponsive to multiple vasodilators showed beneficial response to intravenous (i.v.) isoproterenol with significant decrease in the pulmonary vascular resistance and increase in the cardiac output. However, the patient became dependent on i.v. isoproterenol and eventually died suddenly following an episode of bradyarrhythmia. Autopsy confirmed severe primary pulmonary hypertension. As the response to vasodilator therapy can be unpredictable in PPH, sequential hemodynamic evaluation of drugs is necessary for finding an optimal therapeutic agent.
Collapse
|
Case Reports |
27 |
|
20
|
Cebrià F, Vispo M, Bueno D, Carranza S, Newmark P, Romero R. Myosin heavy chain gene in Dugesia (G.) tigrina: a tool for studying muscle regeneration in planarians. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 1996; Suppl 1:177S-178S. [PMID: 9087750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
|
29 |
|
21
|
Goletti D, Carranza S, Lange C, Mengoni F, Mastroianni C, Cirillo D, Markova R, Drenska R, Amicosante M, Domínguez Benitez J, Saltini C, Giradi E. RD-1 selected peptides for the immunodiagnosis of active tuberculosis. Pneumologie 2008. [DOI: 10.1055/s-2008-1074370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
|
17 |
|
22
|
Vispo M, Cebrià F, Bueno D, Carranza S, Newmark P, Romero R. Regionalisation along the anteroposterior axis of the freshwater planarian Dugesia(Girardia)tigrina by TCEN49 protein. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 1996; Suppl 1:209S-210S. [PMID: 9087764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
|
29 |
|
23
|
Carranza S, Handley J, Ralph V, Wildner K, Yeazel D. Uncompensated care among Wisconsin physicians. WISCONSIN MEDICAL JOURNAL 1989; 88:23-5. [PMID: 2728478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
|
36 |
|