1
|
Mao X, Ou MT, Karuppagounder SS, Kam TI, Yin X, Xiong Y, Ge P, Umanah GE, Brahmachari S, Shin JH, Kang HC, Zhang J, Xu J, Chen R, Park H, Andrabi SA, Kang SU, Gonçalves RA, Liang Y, Zhang S, Qi C, Lam S, Keiler JA, Tyson J, Kim D, Panicker N, Yun SP, Workman CJ, Vignali DAA, Dawson VL, Ko HS, Dawson TM. Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 2017; 353:353/6307/aah3374. [PMID: 27708076 DOI: 10.1126/science.aah3374] [Citation(s) in RCA: 523] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/24/2016] [Indexed: 12/22/2022]
Abstract
Emerging evidence indicates that the pathogenesis of Parkinson's disease (PD) may be due to cell-to-cell transmission of misfolded preformed fibrils (PFF) of α-synuclein (α-syn). The mechanism by which α-syn PFF spreads from neuron to neuron is not known. Here, we show that LAG3 (lymphocyte-activation gene 3) binds α-syn PFF with high affinity (dissociation constant = 77 nanomolar), whereas the α-syn monomer exhibited minimal binding. α-Syn-biotin PFF binding to LAG3 initiated α-syn PFF endocytosis, transmission, and toxicity. Lack of LAG3 substantially delayed α-syn PFF-induced loss of dopamine neurons, as well as biochemical and behavioral deficits in vivo. The identification of LAG3 as a receptor that binds α-syn PFF provides a target for developing therapeutics designed to slow the progression of PD and related α-synucleinopathies.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
523 |
2
|
Kam TI, Mao X, Park H, Chou SC, Karuppagounder SS, Umanah GE, Yun SP, Brahmachari S, Panicker N, Chen R, Andrabi SA, Qi C, Poirier GG, Pletnikova O, Troncoso JC, Bekris LM, Leverenz JB, Pantelyat A, Ko HS, Rosenthal LS, Dawson TM, Dawson VL. Poly(ADP-ribose) drives pathologic α-synuclein neurodegeneration in Parkinson's disease. Science 2018; 362:eaat8407. [PMID: 30385548 PMCID: PMC6431793 DOI: 10.1126/science.aat8407] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/13/2018] [Accepted: 09/26/2018] [Indexed: 12/29/2022]
Abstract
The pathologic accumulation and aggregation of α-synuclein (α-syn) underlies Parkinson's disease (PD). The molecular mechanisms by which pathologic α-syn causes neurodegeneration in PD are not known. Here, we found that pathologic α-syn activates poly(adenosine 5'-diphosphate-ribose) (PAR) polymerase-1 (PARP-1), and PAR generation accelerates the formation of pathologic α-syn, resulting in cell death via parthanatos. PARP inhibitors or genetic deletion of PARP-1 prevented pathologic α-syn toxicity. In a feed-forward loop, PAR converted pathologic α-syn to a more toxic strain. PAR levels were increased in the cerebrospinal fluid and brains of patients with PD, suggesting that PARP activation plays a role in PD pathogenesis. Thus, strategies aimed at inhibiting PARP-1 activation could hold promise as a disease-modifying therapy to prevent the loss of dopamine neurons in PD.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
329 |
3
|
Brahmachari S, Fung YK, Pahan K. Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide. J Neurosci 2006; 26:4930-9. [PMID: 16672668 PMCID: PMC1963412 DOI: 10.1523/jneurosci.5480-05.2006] [Citation(s) in RCA: 294] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 03/21/2006] [Accepted: 03/25/2006] [Indexed: 11/21/2022] Open
Abstract
Increased expression of glial fibrillary acidic protein (GFAP) represents astroglial activation and gliosis during neurodegeneration. However, the molecular mechanism behind increased expression of GFAP in astrocytes is poorly understood. The present study was undertaken to explore the role of nitric oxide (NO) in the expression of GFAP. Bacterial lipopolysachharides (LPSs) induced the production of NO and the expression of GFAP in mouse primary astrocytes. Either a scavenger of NO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO)] or an inhibitor of inducible nitric oxide synthase [l-N6-(I-iminoethyl)-lysine hydrochloride] blocked this induction of GFAP expression. Similarly, other inducers of NO production such as interferon-gamma, interleukin-1beta, human immunodeficiency virus type 1 gp120, fibrillar amyloid beta peptides, and double-stranded RNA (polyinosinic-polycytidilic acid) also induced the expression of GFAP through NO. The role of NO in the expression of GFAP was supported further by increased expression of GFAP by S-nitroso glutathione (GSNO), an NO donor. Interestingly, inhibition of nuclear factor kappaB (NF-kappaB) suppressed LPS- but not GSNO-induced expression of GFAP, suggesting that NO does not require NF-kappaB to induce GFAP and that NF-kappaB functions upstream of NO production. However, inhibition of LPS- and GSNO-induced expression of GFAP either by NS-2028 [a specific inhibitor of guanylate cyclase (GC)] or by KT5823 [a specific inhibitor of cGMP-activated protein kinase (PKG)], and induction of GFAP expression by either 8-Br cGMP (a cell-permeable cGMP analog) or MY-5445 (a specific inhibitor of cGMP phosphodiesterase) suggests that NO induces GFAP via GC-cGMP-PKG. This study illustrates a novel biological role of NO in regulating the expression of GFAP in astrocytes through the GC-cGMP-PKG pathway that may participate in the pathogenesis of neurodegenerative disorders.
Collapse
|
Comparative Study |
19 |
294 |
4
|
Karuppagounder SS, Brahmachari S, Lee Y, Dawson VL, Dawson TM, Ko HS. The c-Abl inhibitor, nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson's disease. Sci Rep 2014; 4:4874. [PMID: 24786396 PMCID: PMC4007078 DOI: 10.1038/srep04874] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 04/15/2014] [Indexed: 01/20/2023] Open
Abstract
c-Abl is activated in the brain of Parkinson's disease (PD) patients and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice where it inhibits parkin through tyrosine phosphorylation leading to the accumulation of parkin substrates, and neuronal cell death. In the present study, we evaluated the in vivo efficacy of nilotinib, a brain penetrant c-Abl inhibitor, in the acute MPTP-induced model of PD. Our results show that administration of nilotinib reduces c-Abl activation and the levels of the parkin substrate, PARIS, resulting in prevention of dopamine (DA) neuron loss and behavioral deficits following MPTP intoxication. On the other hand, we observe no reduction in the tyrosine phosphorylation of parkin and the parkin substrate, AIMP2 suggesting that the protective effect of nilotinib may, in part, be parkin-independent or to the pharmacodynamics properties of nilotinib. This study provides a strong rationale for testing other brain permeable c-Abl inhibitors as potential therapeutic agents for the treatment of PD.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
184 |
5
|
Lee Y, Stevens DA, Kang SU, Jiang H, Lee YI, Ko HS, Scarffe LA, Umanah GE, Kang H, Ham S, Kam TI, Allen K, Brahmachari S, Kim JW, Neifert S, Yun SP, Fiesel FC, Springer W, Dawson VL, Shin JH, Dawson TM. PINK1 Primes Parkin-Mediated Ubiquitination of PARIS in Dopaminergic Neuronal Survival. Cell Rep 2017; 18:918-932. [PMID: 28122242 PMCID: PMC5312976 DOI: 10.1016/j.celrep.2016.12.090] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/08/2016] [Accepted: 12/27/2016] [Indexed: 02/03/2023] Open
Abstract
Mutations in PTEN-induced putative kinase 1 (PINK1) and parkin cause autosomal-recessive Parkinson's disease through a common pathway involving mitochondrial quality control. Parkin inactivation leads to accumulation of the parkin interacting substrate (PARIS, ZNF746) that plays an important role in dopamine cell loss through repression of proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α) promoter activity. Here, we show that PARIS links PINK1 and parkin in a common pathway that regulates dopaminergic neuron survival. PINK1 interacts with and phosphorylates serines 322 and 613 of PARIS to control its ubiquitination and clearance by parkin. PINK1 phosphorylation of PARIS alleviates PARIS toxicity, as well as repression of PGC-1α promoter activity. Conditional knockdown of PINK1 in adult mouse brains leads to a progressive loss of dopaminergic neurons in the substantia nigra that is dependent on PARIS. Altogether, these results uncover a function of PINK1 to direct parkin-PARIS-regulated PGC-1α expression and dopaminergic neuronal survival.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
154 |
6
|
Brahmachari S, Ge P, Lee SH, Kim D, Karuppagounder SS, Kumar M, Mao X, Shin JH, Lee Y, Pletnikova O, Troncoso JC, Dawson VL, Dawson TM, Ko HS. Activation of tyrosine kinase c-Abl contributes to α-synuclein-induced neurodegeneration. J Clin Invest 2016; 126:2970-88. [PMID: 27348587 PMCID: PMC4966315 DOI: 10.1172/jci85456] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/05/2016] [Indexed: 12/20/2022] Open
Abstract
Aggregation of α-synuclein contributes to the formation of Lewy bodies and neurites, the pathologic hallmarks of Parkinson disease (PD) and α-synucleinopathies. Although a number of human mutations have been identified in familial PD, the mechanisms that promote α-synuclein accumulation and toxicity are poorly understood. Here, we report that hyperactivity of the nonreceptor tyrosine kinase c-Abl critically regulates α-synuclein-induced neuropathology. In mice expressing a human α-synucleinopathy-associated mutation (hA53Tα-syn mice), deletion of the gene encoding c-Abl reduced α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Conversely, overexpression of constitutively active c-Abl in hA53Tα-syn mice accelerated α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Moreover, c-Abl activation led to an age-dependent increase in phosphotyrosine 39 α-synuclein. In human postmortem samples, there was an accumulation of phosphotyrosine 39 α-synuclein in brain tissues and Lewy bodies of PD patients compared with age-matched controls. Furthermore, in vitro studies show that c-Abl phosphorylation of α-synuclein at tyrosine 39 enhances α-synuclein aggregation. Taken together, this work establishes a critical role for c-Abl in α-synuclein-induced neurodegeneration and demonstrates that selective inhibition of c-Abl may be neuroprotective. This study further indicates that phosphotyrosine 39 α-synuclein is a potential disease indicator for PD and related α-synucleinopathies.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
139 |
7
|
Hinkle JT, Patel J, Panicker N, Karuppagounder SS, Biswas D, Belingon B, Chen R, Brahmachari S, Pletnikova O, Troncoso JC, Dawson VL, Dawson TM. STING mediates neurodegeneration and neuroinflammation in nigrostriatal α-synucleinopathy. Proc Natl Acad Sci U S A 2022; 119:e2118819119. [PMID: 35394877 PMCID: PMC9169780 DOI: 10.1073/pnas.2118819119] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/06/2022] [Indexed: 12/18/2022] Open
Abstract
In idiopathic Parkinson’s disease (PD), pathologic αSyn aggregates drive oxidative and nitrative stress that may cause genomic and mitochondrial DNA damage. These events are associated with activation of the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) immune pathway, but it is not known whether STING is activated in or contributes to α-synucleinopathies. Herein, we used primary cell cultures and the intrastriatal αSyn preformed fibril (αSyn-PFF) mouse model of PD to demonstrate that αSyn pathology causes STING-dependent neuroinflammation and dopaminergic neurodegeneration. In microglia-astrocyte cultures, αSyn-PFFs induced DNA double-strand break (DSB) damage response signaling (γH2A.X), as well as TBK1 activation that was blocked by STING inhibition. In the αSyn-PFF mouse model, we similarly observed TBK1 activation and increased γH2A.X within striatal microglia prior to the onset of dopaminergic neurodegeneration. Using STING-deficient (Stinggt) mice, we demonstrated that striatal interferon activation in the α-Syn PFF model is STING-dependent. Furthermore, Stinggt mice were protected from α-Syn PFF-induced motor deficits, pathologic αSyn accumulation, and dopaminergic neuron loss. We also observed upregulation of STING protein in the substantia nigra pars compacta (SNpc) of human PD patients that correlated significantly with pathologic αSyn accumulation. STING was similarly upregulated in microglia cultures treated with αSyn-PFFs, which primed the pathway to mount stronger interferon responses when exposed to a STING agonist. Our results suggest that microglial STING activation contributes to both the neuroinflammation and neurodegeneration arising from α-synucleinopathies, including PD.
Collapse
|
research-article |
3 |
118 |
8
|
Panicker N, Kam TI, Wang H, Neifert S, Chou SC, Kumar M, Brahmachari S, Jhaldiyal A, Hinkle JT, Akkentli F, Mao X, Xu E, Karuppagounder SS, Hsu ET, Kang SU, Pletnikova O, Troncoso J, Dawson VL, Dawson TM. Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson's disease. Neuron 2022; 110:2422-2437.e9. [PMID: 35654037 PMCID: PMC9357148 DOI: 10.1016/j.neuron.2022.05.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 04/09/2022] [Accepted: 05/12/2022] [Indexed: 02/09/2023]
Abstract
Parkinson's disease (PD) is mediated, in part, by intraneuronal accumulation of α-synuclein aggregates andsubsequent death of dopamine (DA) neurons in the substantia nigra pars compacta (SNpc). Microglial hyperactivation of the NOD-like receptor protein 3 (NLRP3) inflammasome has been well-documented in various neurodegenerative diseases, including PD. We show here that loss of parkin activity in mouse and human DA neurons results in spontaneous neuronal NLRP3 inflammasome assembly, leading to DA neuron death. Parkin normally inhibits inflammasome priming by ubiquitinating and targeting NLRP3 for proteasomal degradation. Loss of parkin activity also contributes to the assembly of an active NLRP3 inflammasome complex via mitochondrial-derived reactive oxygen species (mitoROS) generation through the accumulation of another parkin ubiquitination substrate, ZNF746/PARIS. Inhibition of neuronal NLRP3 inflammasome assembly prevents degeneration of DA neurons in familial and sporadic PD models. Strategies aimed at limiting neuronal NLRP3 inflammasome activation hold promise as a disease-modifying therapy for PD.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
116 |
9
|
Brahmachari S, Jana A, Pahan K. Sodium benzoate, a metabolite of cinnamon and a food additive, reduces microglial and astroglial inflammatory responses. THE JOURNAL OF IMMUNOLOGY 2009; 183:5917-27. [PMID: 19812204 DOI: 10.4049/jimmunol.0803336] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Upon activation, microglia and astrocytes produce a number of proinflammatory molecules that participate in the pathophysiology of several neurodegenerative disorders. This study explores the anti-inflammatory property of cinnamon metabolite sodium benzoate (NaB) in microglia and astrocytes. NaB, but not sodium formate, was found to inhibit LPS-induced expression of inducible NO synthase (iNOS), proinflammatory cytokines (TNF-alpha and IL-1beta) and surface markers (CD11b, CD11c, and CD68) in mouse microglia. Similarly, NaB also inhibited fibrillar amyloid beta (Abeta)-, prion peptide-, double-stranded RNA (polyinosinic-polycytidylic acid)-, HIV-1 Tat-, 1-methyl-4-phenylpyridinium(+)-, IL-1beta-, and IL-12 p40(2)-induced microglial expression of iNOS. In addition to microglia, NaB also suppressed the expression of iNOS in mouse peritoneal macrophages and primary human astrocytes. Inhibition of NF-kappaB activation by NaB suggests that NaB exerts its anti-inflammatory effect through the inhibition of NF-kappaB. Although NaB reduced the level of cholesterol in vivo in mice, reversal of the inhibitory effect of NaB on iNOS expression, and NF-kappaB activation by hydroxymethylglutaryl-CoA, mevalonate, and farnesyl pyrophosphate, but not cholesterol and ubiquinone, suggests that depletion of intermediates, but not end products, of the mevalonate pathway is involved in the anti-inflammatory effect of NaB. Furthermore, we demonstrate that an inhibitor of p21(ras) farnesyl protein transferase suppressed the expression of iNOS, that activation of p21(ras) alone was sufficient to induce the expression of iNOS, and that NaB suppressed the activation of p21(ras) in microglia. These results highlight a novel anti-inflammatory role of NaB via modulation of the mevalonate pathway and p21(ras).
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
110 |
10
|
Roy A, Ghosh A, Jana A, Liu X, Brahmachari S, Gendelman HE, Pahan K. Sodium phenylbutyrate controls neuroinflammatory and antioxidant activities and protects dopaminergic neurons in mouse models of Parkinson's disease. PLoS One 2012; 7:e38113. [PMID: 22723850 PMCID: PMC3377667 DOI: 10.1371/journal.pone.0038113] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/30/2012] [Indexed: 11/19/2022] Open
Abstract
Neuroinflammation and oxidative stress underlie the pathogenesis of various neurodegenerative disorders. Here we demonstrate that sodium phenylbutyrate (NaPB), an FDA-approved therapy for reducing plasma ammonia and glutamine in urea cycle disorders, can suppress both proinflammatory molecules and reactive oxygen species (ROS) in activated glial cells. Interestingly, NaPB also decreased the level of cholesterol but involved only intermediates, not the end product of cholesterol biosynthesis pathway for these functions. While inhibitors of both geranylgeranyl transferase (GGTI) and farnesyl transferase (FTI) inhibited the activation of NF-κB, inhibitor of GGTI, but not FTI, suppressed the production of ROS. Accordingly, a dominant-negative mutant of p21(rac), but not p21(ras), attenuated the production of ROS from activated microglia. Inhibition of both p21(ras) and p21(rac) activation by NaPB in microglial cells suggests that NaPB exerts anti-inflammatory and antioxidative effects via inhibition of these small G proteins. Consistently, we found activation of both p21(ras) and p21(rac)in vivo in the substantia nigra of acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Oral administration of NaPB reduced nigral activation of p21(ras) and p21(rac), protected nigral reduced glutathione, attenuated nigral activation of NF-κB, inhibited nigral expression of proinflammatory molecules, and suppressed nigral activation of glial cells. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. Consistently, FTI and GGTI also protected nigrostriata in MPTP-intoxicated mice. Furthermore, NaPB also halted the disease progression in a chronic MPTP mouse model. These results identify novel mode of action of NaPB and suggest that NaPB may be of therapeutic benefit for neurodegenerative disorders.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
110 |
11
|
Nam JH, Park ES, Won SY, Lee YA, Kim KI, Jeong JY, Baek JY, Cho EJ, Jin M, Chung YC, Lee BD, Kim SH, Kim EG, Byun K, Lee B, Woo DH, Lee CJ, Kim SR, Bok E, Kim YS, Ahn TB, Ko HW, Brahmachari S, Pletinkova O, Troconso JC, Dawson VL, Dawson TM, Jin BK. TRPV1 on astrocytes rescues nigral dopamine neurons in Parkinson's disease via CNTF. Brain 2015; 138:3610-22. [PMID: 26490328 DOI: 10.1093/brain/awv297] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/23/2015] [Indexed: 11/12/2022] Open
Abstract
Currently there is no neuroprotective or neurorestorative therapy for Parkinson's disease. Here we report that transient receptor potential vanilloid 1 (TRPV1) on astrocytes mediates endogenous production of ciliary neurotrophic factor (CNTF), which prevents the active degeneration of dopamine neurons and leads to behavioural recovery through CNTF receptor alpha (CNTFRα) on nigral dopamine neurons in both the MPP(+)-lesioned or adeno-associated virus α-synuclein rat models of Parkinson's disease. Western blot and immunohistochemical analysis of human post-mortem substantia nigra from Parkinson's disease suggests that this endogenous neuroprotective system (TRPV1 and CNTF on astrocytes, and CNTFRα on dopamine neurons) might have relevance to human Parkinson's disease. Our results suggest that activation of astrocytic TRPV1 activates endogenous neuroprotective machinery in vivo and that it is a novel therapeutic target for the treatment of Parkinson's disease.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
109 |
12
|
Brahmachari S, Pahan K. Sodium benzoate, a food additive and a metabolite of cinnamon, modifies T cells at multiple steps and inhibits adoptive transfer of experimental allergic encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:275-83. [PMID: 17579047 PMCID: PMC1976122 DOI: 10.4049/jimmunol.179.1.275] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Experimental allergic encephalomyelitis (EAE) is the animal model for multiple sclerosis. This study explores a novel use of sodium benzoate (NaB), a commonly used food additive and a Food and Drug Administration-approved nontoxic drug for urea cycle disorders, in treating the disease process of relapsing-remitting EAE in female SJL/J mice. NaB, administered through drinking water at physiologically tolerable doses, ameliorated clinical symptoms and disease progression of EAE in recipient mice and suppressed the generation of encephalitogenic T cells in donor mice. Histological studies reveal that NaB effectively inhibited infiltration of mononuclear cells and demyelination in the spinal cord of EAE mice. Consequently, NaB also suppressed the expression of proinflammatory molecules and normalized myelin gene expression in the CNS of EAE mice. Furthermore, we observed that NaB switched the differentiation of myelin basic protein-primed T cells from Th1 to Th2 mode, enriched regulatory T cell population, and down-regulated the expression of various contact molecules in T cells. Taken together, our results suggest that NaB modifies encephalitogenic T cells at multiple steps and that NaB may have therapeutic importance in multiple sclerosis.
Collapse
MESH Headings
- Administration, Oral
- Adoptive Transfer/methods
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/metabolism
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Cell Movement/immunology
- Cells, Cultured
- Cinnamomum zeylanicum/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- Food Preservatives/metabolism
- Food Preservatives/pharmacology
- Food Preservatives/therapeutic use
- Growth Inhibitors/metabolism
- Growth Inhibitors/pharmacology
- Growth Inhibitors/therapeutic use
- Injections, Subcutaneous
- Mice
- Mice, Inbred Strains
- Mycobacterium tuberculosis/immunology
- Myelin Basic Protein/administration & dosage
- Myelin Basic Protein/immunology
- Severity of Illness Index
- Sodium Benzoate/metabolism
- Sodium Benzoate/pharmacology
- Sodium Benzoate/therapeutic use
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- T-Lymphocytes/transplantation
Collapse
|
Research Support, N.I.H., Extramural |
18 |
73 |
13
|
Brahmachari S, Karuppagounder SS, Ge P, Lee S, Dawson VL, Dawson TM, Ko HS. c-Abl and Parkinson's Disease: Mechanisms and Therapeutic Potential. JOURNAL OF PARKINSON'S DISEASE 2017; 7:589-601. [PMID: 29103051 PMCID: PMC5676866 DOI: 10.3233/jpd-171191] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although the etiology of Parkinson's disease (PD) is poorly understood, oxidative stress has long been implicated in the pathogenesis of the disease. However, multifaceted and divergent signaling cascades downstream of oxidative stress have posed challenges for researchers to identify a central component of the oxidative stress-induced pathways causing neurodegeneration in PD. Since 2010, c-Abl-a non-receptor tyrosine kinase and an indicator of oxidative stress-has shown remarkable potential as a future promising drug target in PD therapeutics. Although, the constitutively active form of c-Abl, Bcr-Abl, has a long history in chronic myeloid leukemia and acute lymphocytic leukemia, the role of c-Abl in PD and relevant neurodegenerative diseases was completely unknown. Recently, others and we have identified and validated c-Abl as an important pathogenic mediator of the disease, where activated c-Abl emerges as a common link to various PD-related inducers of oxidative stress relevant to both sporadic and familial forms of PD and α-synucleinopathies. This review discusses the role of c-Abl in PD and the latest advancement on c-Abl as a drug target and as a prospective biomarker.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
64 |
14
|
Brahmachari S, Lee S, Kim S, Yuan C, Karuppagounder SS, Ge P, Shi R, Kim EJ, Liu A, Kim D, Quintin S, Jiang H, Kumar M, Yun SP, Kam TI, Mao X, Lee Y, Swing DA, Tessarollo L, Ko HS, Dawson VL, Dawson TM. Parkin interacting substrate zinc finger protein 746 is a pathological mediator in Parkinson's disease. Brain 2020; 142:2380-2401. [PMID: 31237944 DOI: 10.1093/brain/awz172] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
α-Synuclein misfolding and aggregation plays a major role in the pathogenesis of Parkinson's disease. Although loss of function mutations in the ubiquitin ligase, parkin, cause autosomal recessive Parkinson's disease, there is evidence that parkin is inactivated in sporadic Parkinson's disease. Whether parkin inactivation is a driver of neurodegeneration in sporadic Parkinson's disease or a mere spectator is unknown. Here we show that parkin in inactivated through c-Abelson kinase phosphorylation of parkin in three α-synuclein-induced models of neurodegeneration. This results in the accumulation of parkin interacting substrate protein (zinc finger protein 746) and aminoacyl tRNA synthetase complex interacting multifunctional protein 2 with increased parkin interacting substrate protein levels playing a critical role in α-synuclein-induced neurodegeneration, since knockout of parkin interacting substrate protein attenuates the degenerative process. Thus, accumulation of parkin interacting substrate protein links parkin inactivation and α-synuclein in a common pathogenic neurodegenerative pathway relevant to both sporadic and familial forms Parkinson's disease. Thus, suppression of parkin interacting substrate protein could be a potential therapeutic strategy to halt the progression of Parkinson's disease and related α-synucleinopathies.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
57 |
15
|
Kumar M, Acevedo-Cintrón J, Jhaldiyal A, Wang H, Andrabi SA, Eacker S, Karuppagounder SS, Brahmachari S, Chen R, Kim H, Ko HS, Dawson VL, Dawson TM. Defects in Mitochondrial Biogenesis Drive Mitochondrial Alterations in PARKIN-Deficient Human Dopamine Neurons. Stem Cell Reports 2020; 15:629-645. [PMID: 32795422 PMCID: PMC7486221 DOI: 10.1016/j.stemcr.2020.07.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022] Open
Abstract
Mutations and loss of activity in PARKIN, an E3 ubiquitin ligase, play a role in the pathogenesis of Parkinson's disease (PD). PARKIN regulates many aspects of mitochondrial quality control including mitochondrial autophagy (mitophagy) and mitochondrial biogenesis. Defects in mitophagy have been hypothesized to play a predominant role in the loss of dopamine (DA) neurons in PD. Here, we show that although there are defects in mitophagy in human DA neurons lacking PARKIN, the mitochondrial deficits are primarily due to defects in mitochondrial biogenesis that are driven by the upregulation of PARIS and the subsequent downregulation of PGC-1α. CRISPR/Cas9 knockdown of PARIS completely restores the mitochondrial biogenesis defects and mitochondrial function without affecting the deficits in mitophagy. These results highlight the importance mitochondrial biogenesis versus mitophagy in the pathogenesis of PD due to inactivation or loss of PARKIN in human DA neurons.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
52 |
16
|
Brahmachari S, Pahan K. Suppression of regulatory T cells by IL-12p40 homodimer via nitric oxide. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:2045-58. [PMID: 19587012 PMCID: PMC2713791 DOI: 10.4049/jimmunol.0800276] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Regulatory T cells (Tregs) play a pivotal role in the maintenance of homeostasis between immune response and immune tolerance. The transcription factor Foxp3 and the surface protein CD25 are the two key molecules characterizing Tregs. In autoimmune and various other chronic inflammatory diseases, the expression of Foxp3 is severely down-regulated. However, the molecular mechanism underlying the down-regulation of Foxp3 is not understood yet. Because the IL-12p40 homodimer (p40(2)) is markedly up-regulated in response to various inflammatory stimuli, the present study was undertaken to explore the role of p40(2) in the regulation of Foxp3 in naive mouse splenocytes. IL-12p40(2) dose-dependently inhibited the expression of Foxp3 and CD25, but not CD4. Interestingly, this inhibition was absent in splenocytes of IL-12Rbeta1(-/-), but not IL-12Rbeta2(-/-), mice. Moreover, suppression of Foxp3 in wild-type and IL-12Rbeta2(-/-) splenocytes was accompanied by production of NO. Consistently, l-N(6)-(1-iminoethyl)-lysine hydrochloride, an inhibitor of inducible NO synthase (iNOS), and PTIO, a scavenger of NO, restored the expression of Foxp3 and CD25 in p40(2)-stimulated splenocytes, and p40(2) was unable to down-regulate Foxp3 and CD25 in splenocytes from iNOS(-/-) mice. Furthermore, NO, but not p40(2), was able to inhibit Foxp3 in purified CD4(+)CD25(+) T cells in the absence of iNOS-expressing cells. Hence, our results clearly demonstrate that p40(2) induces NO production via IL-12Rbeta1 and that NO subsequently suppresses Tregs in naive mouse splenocytes. This study, therefore, delineates an unprecedented biological function of p40(2) in the regulation of Foxp3 via IL-12Rbeta1-mediated NO production.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
51 |
17
|
Brahmachari S, Pahan K. Myelin basic protein priming reduces the expression of Foxp3 in T cells via nitric oxide. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:1799-809. [PMID: 20083653 PMCID: PMC2855656 DOI: 10.4049/jimmunol.0804394] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Regulatory T cells (Tregs) play a vital role in autoimmune disorders. Among several markers, forkhead box p3 (Foxp3) is the most specific with regard to Treg activity. Therefore, understanding mechanisms that regulate Foxp3 expression is a critical step for unraveling the complicacy of autoimmune pathophysiology. The present study was undertaken to investigate the crosstalk between NO and Tregs. Interestingly, after myelin basic protein (MBP) priming, the expression of Foxp3 decreased in MBP-primed T cells. However, blocking NO either by inhibiting inducible NO synthase with l-N(6)-(1-iminoethyl)-lysine hydrochloride or through scavenging with PTIO or by pharmacological drugs, such as pravastatin, sodium benzoate, or gemfibrozil, restored the expression of Foxp3 in MBP-primed T cells. However, this restoration of Foxp3 by pharmacological drugs was reversed by S-nitrosoglutathione, an NO donor. Similarly, NO also decreased the populations of Tregs characterized by CD4(+)CD25(+) and CD25(+)FoxP3(+) phenotypes. We have further confirmed this inverse relationship between NO and Foxp3 by analyzing the mRNA expression of Foxp3 and characterizing CD25(+)FoxP3(+) or CD4(+)Foxp3(+) phenotypes from inducible NO synthase knockout mice. Moreover, this inverse relation between NO and Foxp3 also was observed during priming with myelin oligodendrocyte glycoprotein, another target neuroantigen in multiple sclerosis, as well as collagen, a target autoantigen in rheumatoid arthritis. Finally, we demonstrate that NO inhibited the expression of Foxp3 in MBP-primed T cells via soluble guanylyl cyclase-mediated production of cGMP. Taken together, our data imply a novel role of NO in suppressing Foxp3(+) Tregs via the soluble guanylyl cyclase pathway.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
39 |
18
|
Karuppagounder SS, Xiong Y, Lee Y, Lawless MC, Kim D, Nordquist E, Martin I, Ge P, Brahmachari S, Jhaldiyal A, Kumar M, Andrabi SA, Dawson TM, Dawson VL. LRRK2 G2019S transgenic mice display increased susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated neurotoxicity. J Chem Neuroanat 2016; 76:90-97. [PMID: 26808467 DOI: 10.1016/j.jchemneu.2016.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/20/2016] [Accepted: 01/20/2016] [Indexed: 12/21/2022]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common causes of late onset autosomal dominant form of Parkinson disease (PD). Gain of kinase activity due to the substitution of Gly 2019 to Ser (G2019S) is the most common mutation in the kinase domain of LRRK2. Genetic predisposition and environmental toxins contribute to the susceptibility of neurodegeneration in PD. To identify whether the genetic mutations in LRRK2 increase the susceptibility to environmental toxins in PD models, we exposed transgenic mice expressing human G2019S mutant or wild type (WT) LRRK2 to the environmental toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP treatment resulted in a greater loss of tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta (SNpc) in LRRK2 G2019S transgenic mice compared to the LRRK2 WT overexpressing mice. Similarly loss of dopamine levels were greater in the striatum of LRRK2 G2019S mice when compared to the LRRK2 WT mice when both were treated with MPTP. This study suggests a likely interaction between genetic and environmental risk factors in the PD pathogenesis and that the G2019S mutation in LRRK2 increases the susceptibility of dopamine neurons to PD-causing toxins.
Collapse
|
Journal Article |
9 |
38 |
19
|
Ma SX, Seo BA, Kim D, Xiong Y, Kwon SH, Brahmachari S, Kim S, Kam TI, Nirujogi RS, Kwon SH, Dawson VL, Dawson TM, Pandey A, Na CH, Ko HS. Complement and Coagulation Cascades are Potentially Involved in Dopaminergic Neurodegeneration in α-Synuclein-Based Mouse Models of Parkinson's Disease. J Proteome Res 2021; 20:3428-3443. [PMID: 34061533 PMCID: PMC8628316 DOI: 10.1021/acs.jproteome.0c01002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder that results in motor dysfunction and, eventually, cognitive impairment. α-Synuclein protein is known as a central protein to the pathophysiology of PD, but the underlying pathological mechanism still remains to be elucidated. In an effort to understand how α-synuclein underlies the pathology of PD, various PD mouse models with α-synuclein overexpression have been developed. However, systemic analysis of the brain proteome of those mouse models is lacking. In this study, we established two mouse models of PD by injecting α-synuclein preformed fibrils (PFF) or by inducing overexpression of human A53T α-synuclein to investigate common pathways in the two different types of the PD mouse models. For more accurate quantification of mouse brain proteome, the proteins were quantified using the method of stable isotope labeling with amino acids in mammals . We identified a total of 8355 proteins from the two mouse models; ∼6800 and ∼7200 proteins from α-synuclein PFF-injected mice and human A53T α-synuclein transgenic mice, respectively. Through pathway analysis of the differentially expressed proteins common to both PD mouse models, it was discovered that the complement and coagulation cascade pathways were enriched in the PD mice compared to control animals. Notably, a validation study demonstrated that complement component 3 (C3)-positive astrocytes were increased in the ventral midbrain of the intrastriatal α-synuclein PFF-injected mice and C3 secreted from astrocytes could induce the degeneration of dopaminergic neurons. This is the first study that highlights the significance of the complement and coagulation pathways in the pathogenesis of PD through proteome analyses with two sophisticated mouse models of PD.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
36 |
20
|
Gu H, Yang X, Mao X, Xu E, Qi C, Wang H, Brahmachari S, York B, Sriparna M, Li A, Chang M, Patel P, Dawson VL, Dawson TM. Lymphocyte Activation Gene 3 (Lag3) Contributes to α-Synucleinopathy in α-Synuclein Transgenic Mice. Front Cell Neurosci 2021; 15:656426. [PMID: 33776654 PMCID: PMC7987675 DOI: 10.3389/fncel.2021.656426] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/18/2021] [Indexed: 12/30/2022] Open
Abstract
Aggregation of misfolded α-synuclein (α-syn) is the major component of Lewy bodies and neurites in Parkinson's disease (PD) and related α-synucleinopathies. Some α-syn mutations (e.g., A53T) in familial PD recapitulate the α-syn pathology in transgenic mice, which supports the importance of pathologic α-syn in driving the pathogenesis of α-synucleinopathies. Lymphocyte activation gene 3 (Lag3) is a receptor of α-syn fibrils facilitating pathologic α-syn spread; however, the role of Lag3 in mediating the pathogenesis in α-syn transgenic mice is not clear. Here, we report that depletion of Lag3 in human α-syn A53T transgenic (hA53T) mice significantly reduces the level of detergent-insoluble α-syn aggregates and phosphorylated ser129 α-syn, and inhibits activation of microglia and astrocytes. The absence of Lag3 significantly delays disease progression and reduces the behavioral deficits in hA53T transgenic mice leading to prolonged survival. Taken together, these results show that Lag3 contributes to the pathogenesis in the α-syn A53T transgenic mouse model.
Collapse
|
research-article |
4 |
24 |
21
|
Brahmachari S, Pahan K. Gender-specific expression of beta1 integrin of VLA-4 in myelin basic protein-primed T cells: implications for gender bias in multiple sclerosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:6103-13. [PMID: 20483780 PMCID: PMC2922040 DOI: 10.4049/jimmunol.0804356] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Susceptibility to multiple sclerosis is higher in females than males. However, the underlying mechanism behind this gender difference is poorly understood. Because the presence of neuroantigen-primed T cells in the CNS is necessary to initiate the neuroinflammatory cascade of multiple sclerosis, we first investigated how these T cells interacted with astroglia, major resident glial cells of the CNS. Interestingly, we found that myelin basic protein (MBP)-primed T cells from female and castrated male mice, but not from male mice, produced proinflammatory molecules, such as NO, IL-1beta, and IL-6 in astroglia, and these responses were purely via contact between T cells and astroglia. Because T cell:glia contact requires several integrin molecules, we examined the involvement of integrins in this process. Both alpha4 and beta1, subunits of VLA-4 integrin, were found to be necessary for T cell contact-induced generation of proinflammatory molecules in astroglia. Interestingly, the expression of beta1, but not alpha4, was absent in male MBP-primed T cells. In contrast, female and castrated male MBP-primed T cells expressed both alpha4 and beta1. Similarly, we also detected beta1 in spleen of normal young female, but not male, mice. Furthermore, we show that male sex hormones (testosterone and dihydrotestosterone), but not female sex hormones (estrogen and progesterone), were able to suppress the mRNA expression of beta1 in female MBP-primed T cells. These studies suggest that beta1, but not alpha4, integrin of VLA-4 is the sex-specific molecule on T cell surface, and that the presence or absence of beta1 determines gender-specific T cell contact-mediated glial activation.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
22 |
22
|
Khan MR, Yin X, Kang SU, Mitra J, Wang H, Ryu T, Brahmachari S, Karuppagounder SS, Kimura Y, Jhaldiyal A, Kim HH, Gu H, Chen R, Redding-Ochoa J, Troncoso J, Na CH, Ha T, Dawson VL, Dawson TM. Enhanced mTORC1 signaling and protein synthesis in pathologic α-synuclein cellular and animal models of Parkinson's disease. Sci Transl Med 2023; 15:eadd0499. [PMID: 38019930 DOI: 10.1126/scitranslmed.add0499] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
Pathologic α-synuclein plays an important role in the pathogenesis of α-synucleinopathies such as Parkinson's disease (PD). Disruption of proteostasis is thought to be central to pathologic α-synuclein toxicity; however, the molecular mechanism of this deregulation is poorly understood. Complementary proteomic approaches in cellular and animal models of PD were used to identify and characterize the pathologic α-synuclein interactome. We report that the highest biological processes that interacted with pathologic α-synuclein in mice included RNA processing and translation initiation. Regulation of catabolic processes that include autophagy were also identified. Pathologic α-synuclein was found to bind with the tuberous sclerosis protein 2 (TSC2) and to trigger the activation of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1), which augmented mRNA translation and protein synthesis, leading to neurodegeneration. Genetic and pharmacologic inhibition of mTOR and protein synthesis rescued the dopamine neuron loss, behavioral deficits, and aberrant biochemical signaling in the α-synuclein preformed fibril mouse model and Drosophila transgenic models of pathologic α-synuclein-induced degeneration. Pathologic α-synuclein furthermore led to a destabilization of the TSC1-TSC2 complex, which plays an important role in mTORC1 activity. Constitutive overexpression of TSC2 rescued motor deficits and neuropathology in α-synuclein flies. Biochemical examination of PD postmortem brain tissues also suggested deregulated mTORC1 signaling. These findings establish a connection between mRNA translation deregulation and mTORC1 pathway activation that is induced by pathologic α-synuclein in cellular and animal models of PD.
Collapse
|
|
2 |
20 |
23
|
Guyton MK, Das A, Inoue J, Azuma M, Ray SK, Brahmachari S, Banik NL. Inhibition of calpain attenuates encephalitogenicity of MBP-specific T cells. J Neurochem 2009; 110:1895-907. [PMID: 19627443 PMCID: PMC2748265 DOI: 10.1111/j.1471-4159.2009.06287.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a T-cell mediated autoimmune disease of the CNS, possessing both immune and neurodegenerative events that lead to disability. Adoptive transfer (AT) of myelin basic protein (MBP)-specific T cells into naïve female SJL/J mice results in a relapsing-remitting (RR) form of experimental autoimmune encephalomyelitis (EAE). Blocking the mechanisms by which MBP-specific T cells are activated before AT may help characterize the immune arm of MS and offer novel targets for therapy. One such target is calpain, which is involved in activation of T cells, migration of immune cells into the CNS, degradation of axonal and myelin proteins, and neuronal apoptosis. Thus, the hypothesis that inhibiting calpain in MBP-specific T cells would diminish their encephalitogenicity in RR-EAE mice was tested. Incubating MBP-specific T cells with the calpain inhibitor SJA6017 before AT markedly suppressed the ability of these T cells to induce clinical symptoms of RR-EAE. These reductions correlated with decreases in demyelination, inflammation, axonal damage, and loss of oligodendrocytes and neurons. Also, calpain : calpastatin ratio, production of truncated Bid, and Bax : Bcl-2 ratio, and activities of calpain and caspases, and internucleosomal DNA fragmentation were attenuated. Thus, these data suggest calpain as a promising target for treating EAE and MS.
Collapse
MESH Headings
- Animals
- Axons/drug effects
- Axons/metabolism
- Axons/pathology
- Boron Compounds/metabolism
- Calcium-Binding Proteins/metabolism
- Calpain/antagonists & inhibitors
- Calpain/metabolism
- Cell Survival/drug effects
- Cell Survival/physiology
- DNA Fragmentation/drug effects
- Demyelinating Diseases/diagnosis
- Demyelinating Diseases/etiology
- Demyelinating Diseases/pathology
- Dipeptides/pharmacology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- In Situ Nick-End Labeling/methods
- L-Lactate Dehydrogenase/metabolism
- Mice
- Myelin Basic Protein/biosynthesis
- Statistics, Nonparametric
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Time Factors
Collapse
|
Research Support, N.I.H., Extramural |
16 |
19 |
24
|
Karuppagounder SS, Wang H, Kelly T, Rush R, Nguyen R, Bisen S, Yamashita Y, Sloan N, Dang B, Sigmon A, Lee HW, Marino Lee S, Watkins L, Kim E, Brahmachari S, Kumar M, Werner MH, Dawson TM, Dawson VL. The c-Abl inhibitor IkT-148009 suppresses neurodegeneration in mouse models of heritable and sporadic Parkinson's disease. Sci Transl Med 2023; 15:eabp9352. [PMID: 36652533 DOI: 10.1126/scitranslmed.abp9352] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease of the central nervous system, with an estimated 5,000,000 cases worldwide. PD pathology is characterized by the accumulation of misfolded α-synuclein, which is thought to play a critical role in the pathogenesis of the disease. Animal models of PD suggest that activation of Abelson tyrosine kinase (c-Abl) plays an essential role in the initiation and progression of α-synuclein pathology and initiates processes leading to degeneration of dopaminergic and nondopaminergic neurons. Given the potential role of c-Abl in PD, a c-Abl inhibitor library was developed to identify orally bioavailable c-Abl inhibitors capable of crossing the blood-brain barrier based on predefined characteristics, leading to the discovery of IkT-148009. IkT-148009, a brain-penetrant c-Abl inhibitor with a favorable toxicology profile, was analyzed for therapeutic potential in animal models of slowly progressive, α-synuclein-dependent PD. In mouse models of both inherited and sporadic PD, IkT-148009 suppressed c-Abl activation to baseline and substantially protected dopaminergic neurons from degeneration when administered therapeutically by once daily oral gavage beginning 4 weeks after disease initiation. Recovery of motor function in PD mice occurred within 8 weeks of initiating treatment concomitantly with a reduction in α-synuclein pathology in the mouse brain. These findings suggest that IkT-148009 may have potential as a disease-modifying therapy in PD.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
9 |
25
|
Nema S, Brahmachari S, Vishnu TN, Biswas D. Clinico-microbiological spectrum of anaerobic pyogenic infections in an Indian tertiary care teaching hospital: A two-year study. J Family Med Prim Care 2021; 10:2512-2517. [PMID: 34568128 PMCID: PMC8415683 DOI: 10.4103/jfmpc.jfmpc_2368_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/20/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Abstract
Introduction: Anaerobes are important however the most neglected pathogens. Timely isolation of anaerobes can guide the clinician about the correct course of clinical treatment and thus reduce the mortality and also the problem of antimicrobial resistance. Materials and Methods: Tissue and/or pus aspirates were collected aseptically from infectious sites in the Robertson's cooked meat medium (RCM) and sent to anaerobic bacteriology laboratory for culture. Subcultures from RCM for each sample were done on neomycin blood agar and 5% sheep blood agar along with metronidazole disc (5μg). The plates were incubated in an anaerobic jar using GasPak for 72 hrs. The preliminary identification was performed by standard biochemical tests for both obligate and facultative anaerobic isolates. Speciations of obligate anaerobes were performed by Vitek 2 automated system. Results: Obligate anaerobes either single or polymicrobial were obtained in 38/216 (14.5 %) samples processed during the study period. Polymicrobial infections were reported in 21/216 (55.26%) samples and most commonly with obligate anaerobic gramnegative bacilli i.e. Prevotella-Porphyromonas and Bacteroides fragilis group. Most common monomicrobial anaerobic infections were observed with Veillonella spp. (n=4) and Porphyromonas spp. (n=4) followed by Bacteroides fragilis (n=3). Obligate anaerobes were predominantly isolated from skin and soft tissue infections (n=14) followed by surgical site infections (n=8). Conclusion: Although most of the infections are polymicrobial, a rise in the incidence of monomicrobial anaerobic infections has been noticed. Therefore, the performance of anaerobic cultures along with aerobic cultures is much needed for complete bacterial work-up of specimens from infectious sites and better patient management.
Collapse
|
|
4 |
1 |