1
|
Zhu L, Kalimuthu S, Gangadaran P, Oh JM, Lee HW, Baek SH, Jeong SY, Lee SW, Lee J, Ahn BC. Exosomes Derived From Natural Killer Cells Exert Therapeutic Effect in Melanoma. Theranostics 2017; 7:2732-2745. [PMID: 28819459 PMCID: PMC5558565 DOI: 10.7150/thno.18752] [Citation(s) in RCA: 347] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/08/2017] [Indexed: 12/13/2022] Open
Abstract
Objective: Exosomes are nanovesicles that are released from normal and tumor cells and are detectable in cell culture supernatant and human biological fluids. Although previous studies have explored exosomes released from cancer cells, little is understood regarding the functions of exosomes released by normal cells. Natural killer (NK) cells display rapid immunity to metastatic or hematological malignancies, and efforts have been undertaken to clinically exploit the antitumor properties of NK cells. However, the characteristics and functions of exosomes derived from NK cells remain unknown. In this study, we explored NK cell-derived exosome-mediated antitumor effects against aggressive melanoma in vitro and in vivo. Methods: B16F10 cells were transfected with enhanced firefly luciferase (effluc) and thy1.1 genes, and thy1.1-positive cells were immunoselected using microbeads. The resulting B16F10/effluc cells were characterized using reverse transcriptase polymerase chain reaction (RT-PCR), western blotting, and luciferase activity assays. Exosomes derived from NK-92MI cells (NK-92 Exo) were isolated by ultracentrifugation and density gradient ultracentrifugation. NK-92 Exo were characterized by transmission electron microscopy and western blotting. We also performed an enzyme-linked immunosorbent assay to measure cytokines retained in NK-92 Exo cells. The in vitro cytotoxicity of NK-92 Exo against the cancer cells was determined using a bioluminescence imaging system (BLI) and CCK-8 assays. To investigate the possible side effects of NK-92 Exo on healthy cells, we also performed the BLI and CCK-8 assays using the human kidney Phoenix™-Ampho cell line. Flow cytometry and western blotting confirmed that NK-92 Exo induced apoptosis in the B16F10/effluc cells. In vivo, we used a B16F10/effluc cell xenograft model to detect the immunotherapeutic effect of NK-92 Exo. We injected NK-92 Exo into tumors, and tumor growth progression was monitored using the IVIS Lumina imaging system and ultrasound imaging. Tumor mass was monitored after in vivo experiments. Results: RT-PCR and western blotting confirmed effluc gene expression and protein levels in B16F10/effluc cells. B16F10/effluc activity was found to increase with increasing cell numbers, using BLI assay. For NK-92 Exo characterization, western blotting was performed on both ultracentrifuged and density gradient-isolated exosomes. The results confirmed that NK cell-derived exosomes express two typical exosome proteins, namely CD63 and ALIX. We demonstrated by western blot analysis that NK-92 Exo presented two functional NK proteins, namely perforin and FasL. Moreover, we confirmed the membrane expression of FasL. The enzyme-linked immunosorbent assay results indicated that NK-92 Exo can secrete tumor necrosis factor (TNF)-α, which affected the cell proliferation signaling pathway. The antitumor effect of NK-92 Exo against B16F10/effluc cells in vitro was confirmed by BLI (p < 0.001) and CCK-8 assays (p < 0.001). Furthermore, in normal healthy cells, even after 24 h of co-culture, NK-92 Exo did not exhibit significant side effects. In the in vivo experiments, tumors in the vehicle control group were significantly increased, compared with those in the NK-92 Exo-treated group (p < 0.05). Conclusion: The results of the current study suggest that exosomes derived from NK cells exert cytotoxic effects on melanoma cells and thus warrant further development as a potential immunotherapeutic strategy for cancer.
Collapse
|
research-article |
8 |
347 |
2
|
Zhao T, Scholl A, Zavaliche F, Lee K, Barry M, Doran A, Cruz MP, Chu YH, Ederer C, Spaldin NA, Das RR, Kim DM, Baek SH, Eom CB, Ramesh R. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. NATURE MATERIALS 2006; 5:823-9. [PMID: 16951676 DOI: 10.1038/nmat1731] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 07/27/2006] [Indexed: 05/11/2023]
Abstract
Multiferroic materials, which offer the possibility of manipulating the magnetic state by an electric field or vice versa, are of great current interest. In this work, we demonstrate the first observation of electrical control of antiferromagnetic domain structure in a single-phase multiferroic material at room temperature. High-resolution images of both antiferromagnetic and ferroelectric domain structures of (001)-oriented multiferroic BiFeO3 films revealed a clear domain correlation, indicating a strong coupling between the two types of order. The ferroelectric structure was measured using piezo force microscopy, whereas X-ray photoemission electron microscopy as well as its temperature dependence was used to detect the antiferromagnetic configuration. Antiferromagnetic domain switching induced by ferroelectric polarization switching was observed, in agreement with theoretical predictions.
Collapse
|
|
19 |
282 |
3
|
Kalimuthu S, Gangadaran P, Rajendran RL, Zhu L, Oh JM, Lee HW, Gopal A, Baek SH, Jeong SY, Lee SW, Lee J, Ahn BC. A New Approach for Loading Anticancer Drugs Into Mesenchymal Stem Cell-Derived Exosome Mimetics for Cancer Therapy. Front Pharmacol 2018; 9:1116. [PMID: 30319428 PMCID: PMC6168623 DOI: 10.3389/fphar.2018.01116] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
Exosomes derived from mesenchymal stem cells (MSCs) have been evaluated for their potential to be used as drug delivery vehicles. Synthetically personalized exosome mimetics (EMs) could be the alternative vesicles for drug delivery. In this study, we aimed to isolate EMs from human MSCs. Cells were mixed with paclitaxel (PTX) and PTX-loaded EMs (PTX-MSC-EMs) were isolated and evaluated for their anticancer effects against breast cancer. EMs were isolated from human bone marrow-derived MSCs. MSCs (4 × 106 cells/mL) were mixed with or without PTX at different concentrations in phosphate-buffered saline (PBS) and serially extruded through 10-, 5-, and 1-μm polycarbonate membrane filters using a mini-extruder. MSCs were centrifuged to remove debris and the supernatant was filtered through a 0.22-μm filter, followed by ultracentrifugation to isolate EMs and drug-loaded EMs. EMs without encapsulated drug (MSC-EMs) and those with encapsulated PTX (PTX-MSC-EMs) were characterized by western blotting, nanoparticle tracking analysis (NTA), and transmission electron microscopy (TEM). The anticancer effects of MSC-EMs and PTX-MSC-EMs were assessed with breast cancer (MDA-MB-231) cells both in vitro and in vivo using optical imaging. EMs were isolated by the extrusion method and ultracentrifugation. The isolated vesicles were positive for membrane markers (ALIX and CD63) and negative for golgi (GM130) and endoplasmic (calnexin) marker proteins. NTA revealed the size of MSC-EM to be around 149 nm, while TEM confirmed its morphology. PTX-MSC-EMs significantly (p < 0.05) decreased the viability of MDA-MB-231 cells in vitro at increasing concentrations of EM. The in vivo tumor growth was significantly inhibited by PTX-MSC-EMs as compared to control and/or MSC-EMs. Thus, MSC-EMs were successfully isolated using simple procedures and drug-loaded MSC-EMs were shown to be therapeutically efficient for the treatment of breast cancer both in vitro and in vivo. MSC-EMs may be used as drug delivery vehicles for breast cancers.
Collapse
|
research-article |
7 |
197 |
4
|
Bae W, Baek S, Chung J, Lee Y. Optimal operational factors for nitrite accumulation in batch reactors. Biodegradation 2002; 12:359-66. [PMID: 11995828 DOI: 10.1023/a:1014308229656] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The environmental factors that affected the accumulation of nitrite in nitrifying reactors were investigated using a mixed culture. A batch reactor with 50 mg-N/l of ammonia was used. The pH, temperature and dissolved oxygen concentration were varied. The concentration of unionized free ammonia also changed with the oxidation of ammonia and the variation of pH and temperature. The accumulation of nitrite was affected sensitively by pH and temperature. A higher nitrite concentration was observed at pH 8-9 or temperature around 30 degrees C. The dissolved oxygen also affected, giving the highest nitrite accumulation at around 1.5 mg/l. These were the favored conditions for nitrite production. The free ammonia concentration influenced the nitrite accumulation also, by inhibiting nitrite oxidation. The inhibition became apparent at a concentration of approximately 4 mg/l or above, but insignificant at below 1 mg/l. Thus, simultaneously high free ammonia concentration and maximum specific ammonia-oxidation rate (above 15 x 10(-3) mg-N/mg-VSS x h) were needed for a significant nitrite accumulation. When the two conditions were met, then the highest accumulation was observed when the ratio of the maximum specific oxidation rate of ammonia to the maximum specific oxidation rate of nitrite (ka/kn) was highest. Under the optimal operating conditions of pH 8, 30 degrees C and 1.5 mg/l of dissolved oxygen, as much as 77% of the removed ammonia accumulated in nitrite.
Collapse
|
|
23 |
169 |
5
|
Baek SH, Jang HW, Folkman CM, Li YL, Winchester B, Zhang JX, He Q, Chu YH, Nelson CT, Rzchowski MS, Pan XQ, Ramesh R, Chen LQ, Eom CB. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. NATURE MATERIALS 2010; 9:309-314. [PMID: 20190772 DOI: 10.1038/nmat2703] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 01/25/2010] [Indexed: 05/28/2023]
Abstract
Multiferroics, where (anti-) ferromagnetic, ferroelectric and ferroelastic order parameters coexist, enable manipulation of magnetic ordering by an electric field through switching of the electric polarization. It has been shown that realization of magnetoelectric coupling in a single-phase multiferroic such as BiFeO(3) requires ferroelastic (71 degrees, 109 degrees) rather than ferroelectric (180 degrees) domain switching. However, the control of such ferroelastic switching in a single-phase system has been a significant challenge as elastic interactions tend to destabilize small switched volumes, resulting in subsequent ferroelastic back-switching at zero electric field, and thus the disappearance of non-volatile information storage. Guided by our phase-field simulations, here we report an approach to stabilize ferroelastic switching by eliminating the stress-induced instability responsible for back-switching using isolated monodomain BiFeO(3) islands. This work demonstrates a critical step to control and use non-volatile magnetoelectric coupling at the nanoscale. Beyond magnetoelectric coupling, it provides a framework for exploring a route to control multiple order parameters coupled to ferroelastic order in other low-symmetry materials.
Collapse
|
Letter |
15 |
166 |
6
|
Baek S, Rajagopal KR, Humphrey JD. A theoretical model of enlarging intracranial fusiform aneurysms. J Biomech Eng 2006; 128:142-9. [PMID: 16532628 DOI: 10.1115/1.2132374] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mechanisms by which intracranial aneurysms develop, enlarge, and rupture are unknown, and it remains difficult to collect the longitudinal patient-based information needed to improve our understanding. We submit, therefore, that mathematical models hold promise by allowing us to propose and test competing hypotheses on potential mechanisms of aneurysmal enlargement and to compare predicted outcomes with limited clinical information--in this way, we may begin to narrow the possible mechanisms and thereby focus experimental studies. In this paper, we present a constrained mixture model of evolving thin-walled, fusiform aneurysms and compare multiple competing hypotheses with regard to the production, removal, and alignment of the collagen that provides the structural integrity of the wall. The results show that this type of approach has the capability to infer potential means by which lesions enlarge and whether such changes are likely to produce a stable or unstable process. Such information can better direct the requisite histopathological examinations, particularly on the need to quantify collagen orientations as a function of lesion geometry.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
150 |
7
|
Abstract
A growing number of important regulatory proteins within cells are modified by conjugation of ubiquitin, a well-conserved 76-amino-acid polypeptide. The ubiquitinated proteins are targeted to proteasome for degradation or alternative metabolic fates, such as triggering of plasma membrane endocytosis and trafficking to vacuoles or lysosomes. Deubiquitination, reversal of this modification, is being recognized as an important regulatory step. Deubiquitinating enzymes are cysteine proteases that specifically cleave off ubiquitin from ubiquitin-conjugated protein substrates as well as from its precursor proteins. Genome sequencing projects have identified more than 90 deubiquitinating enzymes, making them the largest family of enzymes in the ubiquitin system. This review will concentrate on recent important findings as well as new insights into the diversity and emerging roles of deubiquitinating enzymes in the ubiquitin-dependent pathway.
Collapse
|
Review |
26 |
145 |
8
|
Dasen JS, Martinez Barbera JP, Herman TS, Connell SO, Olson L, Ju B, Tollkuhn J, Baek SH, Rose DW, Rosenfeld MG. Temporal regulation of a paired-like homeodomain repressor/TLE corepressor complex and a related activator is required for pituitary organogenesis. Genes Dev 2001; 15:3193-207. [PMID: 11731482 PMCID: PMC312840 DOI: 10.1101/gad.932601] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Understanding the functional significance of the coordinate expression of specific corepressors and DNA-binding transcription factors remains a critical question in mammalian development. During the development of the pituitary gland, two highly related paired-like homeodomain factors, a repressor, Hesx1/Rpx and an activator, Prop-1, are expressed in sequential, overlapping temporal patterns. Here we show that while the repressive actions of Hesx1/Rpx may be required for initial pituitary organ commitment, progression beyond the appearance of the first pituitary (POMC) lineage requires both loss of Hesx1 expression and the actions of Prop-1. Although Hesx1 recruits both the Groucho-related corepressor TLE1 and the N-CoR/Sin3/HDAC complex on distinct domains, the repressor functions of Hesx1 in vivo prove to require the specific recruitment of TLE1, which exhibits a spatial and temporal pattern of coexpression during pituitary organogenesis. Furthermore, Hesx1-mediated repression coordinates a negative feedback loop with FGF8/FGF10 signaling in the ventral diencephalon, required to prevent induction of multiple pituitary glands from oral ectoderm. Our data suggest that the opposing actions of two structurally-related DNA-binding paired-like homeodomain transcription factors, binding to similar cognate elements, coordinate pituitary organogenesis by reciprocally repressing and activating target genes in a temporally specific fashion, on the basis of the actions of a critical, coexpressed TLE corepressor.
Collapse
|
research-article |
24 |
129 |
9
|
Baek SH, Park J, Kim DM, Aksyuk VA, Das RR, Bu SD, Felker DA, Lettieri J, Vaithyanathan V, Bharadwaja SSN, Bassiri-Gharb N, Chen YB, Sun HP, Folkman CM, Jang HW, Kreft DJ, Streiffer SK, Ramesh R, Pan XQ, Trolier-McKinstry S, Schlom DG, Rzchowski MS, Blick RH, Eom CB. Giant piezoelectricity on Si for hyperactive MEMS. Science 2011; 334:958-61. [PMID: 22096193 DOI: 10.1126/science.1207186] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Microelectromechanical systems (MEMS) incorporating active piezoelectric layers offer integrated actuation, sensing, and transduction. The broad implementation of such active MEMS has long been constrained by the inability to integrate materials with giant piezoelectric response, such as Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PMN-PT). We synthesized high-quality PMN-PT epitaxial thin films on vicinal (001) Si wafers with the use of an epitaxial (001) SrTiO(3) template layer with superior piezoelectric coefficients (e(31,f) = -27 ± 3 coulombs per square meter) and figures of merit for piezoelectric energy-harvesting systems. We have incorporated these heterostructures into microcantilevers that are actuated with extremely low drive voltage due to thin-film piezoelectric properties that rival bulk PMN-PT single crystals. These epitaxial heterostructures exhibit very large electromechanical coupling for ultrasound medical imaging, microfluidic control, mechanical sensing, and energy harvesting.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
14 |
127 |
10
|
Kim KI, Baek SH, Jeon YJ, Nishimori S, Suzuki T, Uchida S, Shimbara N, Saitoh H, Tanaka K, Chung CH. A new SUMO-1-specific protease, SUSP1, that is highly expressed in reproductive organs. J Biol Chem 2000; 275:14102-6. [PMID: 10799485 DOI: 10.1074/jbc.275.19.14102] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A full-length cDNA encoding a SUMO-1-specific protease, named SUSP1, was identified and cloned for the first time from the human brain. Nucleotide sequence analysis of the cDNA containing an open reading frame of 3336 base pairs revealed that the protease consists of 1112 amino acids with a calculated molecular mass of 126,116 Da. Like yeast Ulp1, SUSP1 is a cysteine protease containing the well conserved His/Asp/Cys catalytic triad. SUSP1 expressed in Escherichia coli cells efficiently released SUMO-1 from SUMO-1. beta-galactosidase fusion but not from other ubiquitin-like protein fusions, including Smt3.beta-galactosidase, suggesting its role in the generation of matured SUMO-1 specifically from its precursors. Interestingly, reproductive organs, such as testis, ovary, and prostate, contained much higher amounts of SUSP1 mRNA than colon and peripheral blood leukocyte, whereas other tissues, such as heart and spleen, had little or none. In addition, confocal microscopy using green fluorescent protein.SUSP1 fusion showed that SUSP1 is exclusively localized to the cytoplasm of NIH3T3 and HeLa cells. These results suggest that SUSP1 may play a role in the regulation of SUMO-1-mediated cellular processes particularly related to reproduction.
Collapse
|
|
25 |
117 |
11
|
Valentín A, Cardamone L, Baek S, Humphrey JD. Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. J R Soc Interface 2009; 6:293-306. [PMID: 18647735 PMCID: PMC2659584 DOI: 10.1098/rsif.2008.0254] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Arteries exhibit a remarkable ability to adapt to sustained alterations in biomechanical loading, probably via mechanisms that are similarly involved in many arterial pathologies and responses to treatment. Of particular note, diverse data suggest that cell and matrix turnover within vasoaltered states enables arteries to adapt to sustained changes in blood flow and pressure. The goal herein is to show explicitly how altered smooth muscle contractility and matrix growth and remodelling work together to adapt the geometry, structure, stiffness and function of a representative basilar artery. Towards this end, we employ a continuum theory of constrained mixtures to model evolving changes in the wall, which depend on both wall shear stress-induced changes in vasoactive molecules (which alter smooth muscle proliferation and synthesis of matrix) and intramural stress-induced changes in growth factors (which alter cell and matrix turnover). Simulations show, for example, that such considerations help explain the different rates of experimentally observed adaptations to increased versus decreased flows as well as differences in rates of change in response to increased flows or pressures.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
115 |
12
|
Rajendran RL, Gangadaran P, Bak SS, Oh JM, Kalimuthu S, Lee HW, Baek SH, Zhu L, Sung YK, Jeong SY, Lee SW, Lee J, Ahn BC. Extracellular vesicles derived from MSCs activates dermal papilla cell in vitro and promotes hair follicle conversion from telogen to anagen in mice. Sci Rep 2017; 7:15560. [PMID: 29138430 PMCID: PMC5686117 DOI: 10.1038/s41598-017-15505-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/27/2017] [Indexed: 02/06/2023] Open
Abstract
Hair loss is a common medical problem. In this study, we investigated the proliferation, migration, and growth factor expression of human dermal papilla (DP) cells in the presence or absence of treatment with mesenchymal stem cell extracellular vesicles (MSC-EVs). In addition, we tested the efficacy of MSC-EV treatment on hair growth in an animal model. MSC-EV treatment increased DP cell proliferation and migration, and elevated the levels of Bcl-2, phosphorylated Akt and ERK. In addition; DP cells treated with MSC-EVs displayed increased expression and secretion of VEGF and IGF-1. Intradermal injection of MSC-EVs into C57BL/6 mice promoted the conversion from telogen to anagen and increased expression of wnt3a, wnt5a and versican was demonstrated. The first time our results suggest that MSC-EVs have a potential to activate DP cells, prolonged survival, induce growth factor activation in vitro, and promotes hair growth in vivo.
Collapse
|
research-article |
8 |
113 |
13
|
Zhu L, Kalimuthu S, Oh JM, Gangadaran P, Baek SH, Jeong SY, Lee SW, Lee J, Ahn BC. Enhancement of antitumor potency of extracellular vesicles derived from natural killer cells by IL-15 priming. Biomaterials 2019; 190-191:38-50. [PMID: 30391801 DOI: 10.1016/j.biomaterials.2018.10.034] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Natural killer (NK) cells are the key subset of innate-immunity lymphocytes; they possess antitumor activities and are used for cancer immunotherapy. In a previous study, extracellular vehicles (EVs) from NK-92MI cells were isolated and exploited for their ability to kill human cancer cells in vitro and in vivo (multiple injection methods). Here, the potential of NK-cell-derived EVs (NK-EVs) for immunotherapy was improved by priming with interleukin (IL)-15. METHODS NK-EVs were isolated from the culture medium without or with IL-15 (NK-EVsIL-15) by ultracentrifugation and were purified via density gradient ultracentrifugation. In addition, NK-EVs and NK-EVsIL-15 were characterized by transmission electron microscopy, nanoparticle-tracking analysis, and western blotting. Flow cytometry, bioluminescence imaging, and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay were performed for apoptosis, protein expression, cell proliferation, and cytotoxicity analyses. Furthermore, xenograft tumor-bearing mice were injected with PBS, NK-EVs, or NK-EVsIL-15 intravenously five times. Tumor growth was monitored using calipers and bioluminescence imaging. Toxicity of the nanoparticles was evaluated by measuring the body weight of the mice. RESULTS NK-EVsIL-15 showed significantly higher cytolytic activity toward human cancer cell lines (glioblastoma, breast cancer, and thyroid cancer) and simultaneously increased the expression of molecules associated with NK-cell cytotoxicity. When compared with NK-EVs, NK-EVsIL-15 significantly inhibited the growth of glioblastoma xenograft cells in mice. In addition, both NK-EVs and NK-EVsIL-15 were not significantly toxic to either normal cells or mice. CONCLUSION IL-15 may improve the immunotherapeutic effects of NK-EVs, thus improving the applications of NK-EVs in the future.
Collapse
|
|
6 |
99 |
14
|
Gittes F, Meyhöfer E, Baek S, Howard J. Directional loading of the kinesin motor molecule as it buckles a microtubule. Biophys J 1996; 70:418-29. [PMID: 8770218 PMCID: PMC1224940 DOI: 10.1016/s0006-3495(96)79585-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Single kinesin motor molecules were observed to buckle the microtubules along which they moved in a modified in vitro gliding assay. In this assay a central portion of the microtubule was clamped to the glass substrate via biotin-streptavidin bonds, while the plus end of the microtubule was free to interact with motors adsorbed at low density to the substrate. A statistical analysis of the length of microtubules buckled by single motors showed a decreasing probability of buckling for loads greater than 4-6 pN parallel to the filament. This is consistent with kinesin stalling forces found in other experiments. A detailed analysis of some buckling events allowed us to estimate both the magnitude and direction of the loading force as it developed a perpendicular component tending to pull the motor away from the microtubule. We also estimated the motor speed as a function of this changing vector force. The kinesin motors consistently reached unexpectedly high speeds as the force became nonparallel to the direction of motor movement. Our results suggest that a perpendicular component of load does not hinder the kinesin motor, but on the contrary causes the motor to move faster against a given parallel load. Because the perpendicular force component speeds up the motor but does no net work, perpendicular force acts as a mechanical catalyst for the reaction. A simple explanation is that there is a spatial motion of the kinesin molecule during its cycle that is rate-limiting under load; mechanical catalysis results if this motion is oriented away from the surface of the microtubule.
Collapse
|
research-article |
29 |
98 |
15
|
|
Review |
32 |
88 |
16
|
Gangadaran P, Li XJ, Lee HW, Oh JM, Kalimuthu S, Rajendran RL, Son SH, Baek SH, Singh TD, Zhu L, Jeong SY, Lee SW, Lee J, Ahn BC. A new bioluminescent reporter system to study the biodistribution of systematically injected tumor-derived bioluminescent extracellular vesicles in mice. Oncotarget 2017; 8:109894-109914. [PMID: 29299117 PMCID: PMC5746352 DOI: 10.18632/oncotarget.22493] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 10/28/2017] [Indexed: 12/21/2022] Open
Abstract
In vivo biodistribution and fate of extracellular vesicles (EVs) are still largely unknown and require reliable in vivo tracking techniques. In this study, in vivo bioluminescence imaging (BLI) using Renilla luciferase (Rluc) was developed and applied to monitoring of EVs derived from thyroid cancer (CAL-62 cells) and breast cancer (MDA-MB-231) in nude mice after intravenous administration and was compared with a dye-based labeling method for EV derived from CAL-62 cells. The EVs were successfully labeled with Rluc and visualized by BLI in mice. In vivo distribution of the EVs, as measured by BLI, was consistent with the results of ex vivo organ analysis. EV-CAL-62/Rluc showed strong signals at lung followed by liver, spleen & kidney (P < 0.05). EV-MDA-MB-231/Rluc showed strong signals at liver followed by lung, spleen & kidney (P < 0.05). EV-CAL-62/Rluc and EV-MDA-MB-231/Rluc stayed in animal till day 9 and 3, respectively; showed a differential distribution. Spontaneous EV-CAL-62/Rluc shown distributed mostly to lung followed by liver, spleen & kidney. The new BLI system used to show spontaneous distribution of EV-CAL-62/Rluc in subcutaneous CAL-62/Rluc bearing mice. Dye (DiR)-labeled EV-CAL-62/Rluc showed a different distribution in vivo & ex vivo compared to EV-CAL-62/Rluc. Fluorescent signals were predominately detected in the liver (P < 0.05) and spleen (P < 0.05) regions. The bioluminescent EVs developed in this study may be used for monitoring of EVs in vivo. This novel reporter-imaging approach to visualization of EVs in real time is expected to pave the way for monitoring of EVs in EV-based treatments.
Collapse
|
research-article |
8 |
88 |
17
|
Zhu L, Gangadaran P, Kalimuthu S, Oh JM, Baek SH, Jeong SY, Lee SW, Lee J, Ahn BC. Novel alternatives to extracellular vesicle-based immunotherapy - exosome mimetics derived from natural killer cells. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2018; 46:S166-S179. [PMID: 30092165 DOI: 10.1080/21691401.2018.1489824] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022]
Abstract
Exosomes are endogenous nanocarriers that can deliver biological information between cells. They are secreted by all cell types, including immune cells such as natural killer (NK) cells. However, mammalian cells release low quantities of exosomes, and the purification of exosomes is difficult. Here, nanovesicles were developed by extrusion of NK cells through filters with progressively smaller pore sizes to obtain exosome mimetics (NK-EM). The anti-tumour effect of the NK-EM was confirmed in vitro and in vivo. The morphological features of the NK-EM were revealed by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and Western blot. In vitro, the cytotoxicity of the NK-EM to cancer cells (glioblastoma, breast carcinoma, anaplastic thyroid cancer and hepatic carcinoma) was assessed using bioluminescence imaging (BLI) and CCK-8 assay. For in vivo study, a xenograft glioblastoma mouse model was established. The anti-tumour activity of NK-EM was confirmed in vivo by the significant decreases of BLI, size and weight (all p < .001) of the tumour compared with the control group. Moreover, NK-EM cytotoxicity for glioblastoma cells that related with decreased levels of the cell survival markers p-ERK and p-AKT, and increased levels of apoptosis protein markers cleaved-caspase 3, cytochrome-c and cleaved-PARP was confirmed. All those results suggest that NK-EM exert stronger killing effects to cancer cells compared with the traditional NK-Exo, at the same time, the tumour targeting ability of the NK-EM was obtained in vivo. Therefore, NK-EM might be a promising immunotherapeutic agent for treatment of cancer.
Collapse
|
|
7 |
81 |
18
|
Baek SH, Seo JK, Chae CB, Suh PG, Ryu SH. Identification of the peptides that stimulate the phosphoinositide hydrolysis in lymphocyte cell lines from peptide libraries. J Biol Chem 1996; 271:8170-5. [PMID: 8626507 DOI: 10.1074/jbc.271.14.8170] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Peptides which stimulate the formation of inositol phosphates (InoPs) in lymphocyte cell lines were identified by screening synthetic peptide libraries composed of random sequences of hexapeptides. The peptides containing the consensus sequence XKYX(P/V)M were found to be most active in the phospholipase C (PLC)-mediated formation of InoPs in a human B myeloma cell line, U266. The peptides also stimulated the phosphoinositide hydrolysis and the release of [Ca2+]i in HL60 and U937 cell lines. On the other hand, these peptides showed no effect in the following cell lines: NIH3T3, PC12, Daudi, Sp2, Jurkat, H9, Molt-4, SupT-1, K562, and RBL-2H3. The result suggests the possibility that the peptides may have cell type specificity. Experiments with one of the active peptides, WKYMVM-NH2 showed that its action mimics the effect of AlF4- which is a G-protein activator in the InoPs generation, and pertussis toxin partially blocked the InoPs accumulation and [Ca2+]i release induced by the peptide in the U266 cells. Binding assays with the peptide labeled with 125I showed that U266 cells have a saturable number of binding sites for the peptide. Taken together, these results suggest that the peptides could activate PLC-mediated signal transduction via a pertussis toxin-sensitive G-protein coupled receptor in certain cell types.
Collapse
|
|
29 |
80 |
19
|
Park JW, Choi YJ, Jang MA, Baek SH, Lim JH, Passaniti T, Kwon TK. Arsenic trioxide induces G2/M growth arrest and apoptosis after caspase-3 activation and bcl-2 phosphorylation in promonocytic U937 cells. Biochem Biophys Res Commun 2001; 286:726-34. [PMID: 11520058 DOI: 10.1006/bbrc.2001.5416] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arsenic trioxide has recently been shown to inhibit growth and induce apoptosis in acute promyelocytic leukemia (APL), but little is known about the molecular mechanisms mediating these effects. Here we demonstrate that treatment of promonocytic U937 cells with arsenic trioxide leads to G2/M arrest which was associated with a dramatic increase in the levels of cyclin B and cyclin B-dependent kinase and apoptosis. We further show that apoptosis occurs after bcl-2 phosphorylation and caspase-3 activation followed by cleavage of PARP and PLC-gamma1 degradation and DNA fragmentation. The arsenic trioxide-induced apoptosis could be blocked by the protein synthesis inhibitor cycloheximide. In addition, pretreatment of U937 cells with the DNA polymerase inhibitor aphidicolin also blocked apoptosis, but did not cause the arrest of cells in the G2/M phase. The findings suggest that arsenic trioxide exerts its growth-inhibitory effects by modulating expression and/or activity of several key G2/M regulatory proteins. Furthermore, arsenic trioxide-mediated G2/M arrest correlates with the onset of apoptosis.
Collapse
|
|
24 |
76 |
20
|
Jang HW, Kumar A, Denev S, Biegalski MD, Maksymovych P, Bark CW, Nelson CT, Folkman CM, Baek SH, Balke N, Brooks CM, Tenne DA, Schlom DG, Chen LQ, Pan XQ, Kalinin SV, Gopalan V, Eom CB. Ferroelectricity in strain-free SrTiO3 thin films. PHYSICAL REVIEW LETTERS 2010; 104:197601. [PMID: 20866998 DOI: 10.1103/physrevlett.104.197601] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Indexed: 05/29/2023]
Abstract
Biaxial strain is known to induce ferroelectricity in thin films of nominally nonferroelectric materials such as SrTiO3. By a direct comparison of the strained and strain-free SrTiO3 films using dielectric, ferroelectric, Raman, nonlinear optical and nanoscale piezoelectric property measurements, we conclude that all SrTiO3 films and bulk crystals are relaxor ferroelectrics, and the role of strain is to stabilize longer-range correlation of preexisting nanopolar regions, likely originating from minute amounts of unintentional Sr deficiency in nominally stoichiometric samples. These findings highlight the sensitive role of stoichiometry when exploring strain and epitaxy-induced electronic phenomena in oxide films, heterostructures, and interfaces.
Collapse
|
|
15 |
75 |
21
|
Oh EJ, Lee HW, Kalimuthu S, Kim TJ, Kim HM, Baek SH, Zhu L, Oh JM, Son SH, Chung HY, Ahn BC. In vivo migration of mesenchymal stem cells to burn injury sites and their therapeutic effects in a living mouse model. J Control Release 2018; 279:79-88. [PMID: 29655989 DOI: 10.1016/j.jconrel.2018.04.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cell (MSC)-based therapy has emerged as a promising therapeutic strategy for tissue regeneration and repair. In this study, we non-invasively monitored the tracking of MSCs toward burn injury sites using MSCs expressing firefly luciferase (Fluc) gene in living mice, and evaluated the effects of the MSCs at the injury site. Murine MSCs co-expressing Fluc and green fluorescent protein (GFP) were established using a retroviral system (referred to as MSC/Fluc). To evaluate the ability of MSC migration toward burn injury sites, cutaneous burn injury was induced in the dorsal skin of mice. MSC/Fluc was intravenously administrated into the mice model and bioluminescence imaging (BLI) was performed to monitor MSC tracking at designated time points. BLI signals of MSC/Fluc appeared in burn injury lesions at 4 days after the cell injection and then gradually decreased. Immunoblotting analysis was conducted to determine the expression of neovascularization-related genes such as TGF-β1 and VEGF in burnt skin. The levels of TGF-β1 and VEGF were higher in the MSC/Fluc-treated group than in the burn injury group. Our observations suggested that MSCs might assist burn wound healing and that MSCs expressing Fluc could be a useful tool for optimizing MSC-based therapeutic strategies for burn wound healing.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
75 |
22
|
Wilson JS, Baek S, Humphrey JD. Importance of initial aortic properties on the evolving regional anisotropy, stiffness and wall thickness of human abdominal aortic aneurysms. J R Soc Interface 2012; 9:2047-58. [PMID: 22491975 DOI: 10.1098/rsif.2012.0097] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Complementary advances in medical imaging, vascular biology and biomechanics promise to enable computational modelling of abdominal aortic aneurysms to play increasingly important roles in clinical decision processes. Using a finite-element-based growth and remodelling model of evolving aneurysm geometry and material properties, we show that regional variations in material anisotropy, stiffness and wall thickness should be expected to arise naturally and thus should be included in analyses of aneurysmal enlargement or wall stress. In addition, by initiating the model from best-fit material parameters estimated for non-aneurysmal aortas from different subjects, we show that the initial state of the aorta may influence strongly the subsequent rate of enlargement, wall thickness, mechanical behaviour and thus stress in the lesion. We submit, therefore, that clinically reliable modelling of the enlargement and overall rupture-potential of aneurysms may require both a better understanding of the mechanobiological processes that govern the evolution of these lesions and new methods of determining the patient-specific state of the pre-aneurysmal aorta (or correlation to currently unaffected portions thereof) through knowledge of demographics, comorbidities, lifestyle, genetics and future non-invasive or minimally invasive tests.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
13 |
74 |
23
|
Majidi C, Groff RE, Maeno Y, Schubert B, Baek S, Bush B, Maboudian R, Gravish N, Wilkinson M, Autumn K, Fearing RS. High friction from a stiff polymer using microfiber arrays. PHYSICAL REVIEW LETTERS 2006; 97:076103. [PMID: 17026251 DOI: 10.1103/physrevlett.97.076103] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Indexed: 05/12/2023]
Abstract
High dry friction requires intimate contact between two surfaces and is generally obtained using soft materials with an elastic modulus less than 10 MPa. We demonstrate that high-friction properties similar to rubberlike materials can also be obtained using microfiber arrays constructed from a stiff thermoplastic (polypropylene, 1 GPa). The fiber arrays have a smaller true area of contact than a rubberlike material, but polypropylene's higher interfacial shear strength provides an effective friction coefficient of greater than 5 at normal loads of 8 kPa. At the pressures tested, the fiber arrays showed more than an order of magnitude increase in shear resistance compared to the bulk material. Unlike softer materials, vertical fiber arrays of stiff polymer demonstrate no measurable adhesion on smooth surfaces due to high tensile stiffness.
Collapse
|
|
19 |
72 |
24
|
Gangadaran P, Hong CM, Oh JM, Rajendran RL, Kalimuthu S, Son SH, Gopal A, Zhu L, Baek SH, Jeong SY, Lee SW, Lee J, Ahn BC. In vivo Non-invasive Imaging of Radio-Labeled Exosome-Mimetics Derived From Red Blood Cells in Mice. Front Pharmacol 2018; 9:817. [PMID: 30104975 PMCID: PMC6078013 DOI: 10.3389/fphar.2018.00817] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/09/2018] [Indexed: 01/09/2023] Open
Abstract
Exosomes are natural nano-sized membrane vesicles that have garnered recent interest owing to their potential as drug delivery vehicles. Though exosomes are effective drug carriers, their production and in vivo biodistribution are still not completely elucidated. We analyzed the production of exosome mimetics (EMs) from red blood cells (RBCs) and the radio-labeling of the RBC-EMs for in vivo imaging. Engineered EMs from RBCs were produced in large-scale by a one-step extrusion method, and further purified by density-gradient centrifugation. RBC-EMs were labeled with technetium-99m (99mTc). For non-invasive imaging, 99mTc (free) or 99mTc-RBC-EMs were injected in mice, and their biodistribution was analyzed by gamma camera imaging. Animals were sacrificed, and organs were collected for further biodistribution analysis. RBC-EMs have similar characteristics as the RBC exosomes but have a 130-fold higher production yield in terms of particle numbers. Radiochemical purity of 99mTc-RBC-EMs was almost 100% till 2 h reduced to 97% at 3 h. Radio-labeling did not affect the size and morphology of RBC-EMs. In contrast to free 99mTc, in vivo imaging of 99mTc-RBC-EMs in mice showed higher uptake in the liver and spleen, and no uptake in the thyroid. Ex vivo imaging confirmed the in vivo findings. Furthermore, fluorescent imaging confirmed the nuclear imaging findings. Immunofluorescent imaging revealed that the hepatic uptake of RBC-EMs was significantly mediated by kupffer cells (resident hepatic macrophages). Our results demonstrate a simple yet large-scale production method for a novel type of RBC-EMs, which can be effectively labeled with 99mTc, and feasibly monitored in vivo by nuclear imaging. The RBC-EMs may be used as in vivo drug delivery vehicles.
Collapse
|
research-article |
7 |
70 |
25
|
Baek SH, Min JN, Park EM, Han MY, Lee YS, Lee YJ, Park YM. Role of small heat shock protein HSP25 in radioresistance and glutathione-redox cycle. J Cell Physiol 2000; 183:100-7. [PMID: 10699971 DOI: 10.1002/(sici)1097-4652(200004)183:1<100::aid-jcp12>3.0.co;2-f] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Expression of heat shock proteins (HSPs) has been shown to protect mammalian cells exposed to a variety of stress stimuli. Among various HSPs, small HSPs from diverse species were shown to protect cells against oxidative stress. Here, we show that the overexpression of the mouse small hsp gene, hsp25, provides protection against ionizing radiation. Our results demonstrate that the radiation survival of the L929 cells stably transfected with hsp25 was enhanced compared with that of the parental or vector transfected control, L25#1 cells. Our results also demonstrate that the radiation-induced apoptosis was reduced in HSP25 overexpressors. A detailed analysis of glutathione composition of those clones that overexpressed HSP25 revealed the increases of the glutathione pool, which primarily resulted from the increase of reduced glutathione. Our data suggest that higher content of GSH in HSP25 overexpressors was because of a faster reduction of oxidized glutathione (GSSG) to GSH rather than an increased de novo synthesis of GSH. The activities of glutathione reductase (GRd) and glutathione peroxidase (GPx) were greater in HSP25 overexpressors but the activity of gamma-glutamylcysteine synthetase was similar between the transfectants and the control cells. Consistent with our view, a steady state ratio of the GSH/GSSG was greater in the transfectants in comparison with the control L25#1 cells. A difference in the relative ratio became more significant after exposure to the ionizing radiation. To our knowledge, this study provides the first experimental evidence in support of the hypothesis that small HSP plays a key role in radioresistance by modulating the metabolism of glutathione. Based on the results obtained from the current investigation, we propose that HSP25 helps facilitate the glutathione-redox cycle and therefore, enhances glutathione utilization and maintains the cellular glutathione pool in favor of the reduced states.
Collapse
|
|
25 |
70 |