1
|
Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt MR. Nitric oxide regulates K+ and Cl- channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci U S A 2003; 100:11116-21. [PMID: 12949257 PMCID: PMC196936 DOI: 10.1073/pnas.1434381100] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Abscisic acid (ABA) triggers a complex sequence of signaling events that lead to concerted modulation of ion channels at the plasma membrane of guard cells and solute efflux to drive stomatal closure in plant leaves. Recent work has indicated that nitric oxide (NO) and its synthesis are a prerequisite for ABA signal transduction in Arabidopsis and Vicia guard cells. Its mechanism(s) of action is not well defined in guard cells and, generally, in higher plants. Here we show directly that NO selectively regulates Ca2+-sensitive ion channels of Vicia guard cells by promoting Ca2+ release from intracellular stores to raise cytosolic-free [Ca2+]. NO-sensitive Ca2+ release was blocked by antagonists of guanylate cyclase and cyclic ADP ribose-dependent endomembrane Ca2+ channels, implying an action mediated via a cGMP-dependent cascade. NO did not recapitulate ABA-evoked control of plasma membrane Ca2+ channels and Ca2+-insensitive K+ channels, and NO scavengers failed to block the activation of these K+ channels evoked by ABA. These results place NO action firmly within one branch of the Ca2+-signaling pathways engaged by ABA and define the boundaries of parallel signaling events in the control of guard cell movements.
Collapse
|
research-article |
22 |
248 |
2
|
Honsbein A, Sokolovski S, Grefen C, Campanoni P, Pratelli R, Paneque M, Chen Z, Johansson I, Blatt MR. A tripartite SNARE-K+ channel complex mediates in channel-dependent K+ nutrition in Arabidopsis. THE PLANT CELL 2009; 21:2859-77. [PMID: 19794113 PMCID: PMC2768940 DOI: 10.1105/tpc.109.066118] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 07/28/2009] [Accepted: 09/03/2009] [Indexed: 05/17/2023]
Abstract
A few membrane vesicle trafficking (SNARE) proteins in plants are associated with signaling and transmembrane ion transport, including control of plasma membrane ion channels. Vesicle traffic contributes to the population of ion channels at the plasma membrane. Nonetheless, it is unclear whether these SNAREs also interact directly to affect channel gating and, if so, what functional impact this might have on the plant. Here, we report that the Arabidopsis thaliana SNARE SYP121 binds to KC1, a regulatory K(+) channel subunit that assembles with different inward-rectifying K(+) channels to affect their activities. We demonstrate that SYP121 interacts preferentially with KC1 over other Kv-like K(+) channel subunits and that KC1 interacts specifically with SYP121 but not with its closest structural and functional homolog SYP122 nor with another related SNARE SYP111. SYP121 promoted gating of the inward-rectifying K(+) channel AKT1 but only when heterologously coexpressed with KC1. Mutation in any one of the three genes, SYP121, KC1, and AKT1, selectively suppressed the inward-rectifying K(+) current in Arabidopsis root epidermal protoplasts as well as K(+) acquisition and growth in seedlings when channel-mediated K(+) uptake was limiting. That SYP121 should be important for gating of a K(+) channel and its role in inorganic mineral nutrition demonstrates an unexpected role for SNARE-ion channel interactions, apparently divorced from signaling and vesicle traffic. Instead, it suggests a role in regulating K(+) uptake coordinately with membrane expansion for cell growth.
Collapse
|
research-article |
16 |
132 |
3
|
Sokolovski S, Hills A, Gay R, Garcia-Mata C, Lamattina L, Blatt MR. Protein phosphorylation is a prerequisite for intracellular Ca2+ release and ion channel control by nitric oxide and abscisic acid in guard cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:520-9. [PMID: 16098106 DOI: 10.1111/j.1365-313x.2005.02471.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Recent work has indicated that nitric oxide (NO) and its synthesis are important elements of signal cascades in plant-pathogen defence, and are a prerequisite for drought and abscisic acid (ABA) responses in Arabidopsis thaliana and Vicia faba guard cells. NO regulates inward-rectifying K+ channels and Cl- channels of Vicia guard cells via intracellular Ca2+ release. However, its integration with related signals, including the actions of serine-threonine protein kinases, is less well defined. We report here that the elevation of cytosolic-free [Ca2+] ([Ca2+]i) mediated by NO in guard cells is reversibly inhibited by the broad-range protein kinase antagonists staurosporine and K252A, but not by the tyrosine kinase antagonist genistein. The effects of kinase antagonism translate directly to a loss of NO-sensitivity of the inward-rectifying K+ channels and background (Cl- channel) current, and to a parallel loss in sensitivity of the K+ channels to ABA. These results demonstrate that NO-dependent signals can be modulated through protein phosphorylation upstream of intracellular Ca2+ release, and they implicate a target for protein kinase control in ABA signalling that feeds into NO-dependent Ca2+ release.
Collapse
|
|
20 |
86 |
4
|
Sokolovski S, Blatt MR. Nitric oxide block of outward-rectifying K+ channels indicates direct control by protein nitrosylation in guard cells. PLANT PHYSIOLOGY 2004; 136:4275-84. [PMID: 15563619 PMCID: PMC535857 DOI: 10.1104/pp.104.050344] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 09/17/2004] [Accepted: 09/17/2004] [Indexed: 05/18/2023]
Abstract
Recent work has indicated that nitric oxide (NO) and its synthesis are important elements of signal cascades in plant pathogen defense and are a prerequisite for drought and abscisic acid responses in Arabidopsis (Arabidopsis thaliana) and Vicia faba guard cells. Nonetheless, its mechanism(s) of action has not been well defined. NO regulates inward-rectifying K+ channels of Vicia guard cells through its action on Ca2+ release from intercellular Ca2+ stores, but alternative pathways are indicated for its action on the outward-rectifying K+ channels (I(K,out)), which are Ca2+ insensitive. We report here that NO affects I(K,out) when NO is elevated above approximately 10 to 20 nm. NO action on I(K,out) was consistent with oxidative stress and was suppressed by several reducing agents, the most effective being British anti-Lewisite (2,3-dimercapto-1-propanol). The effect of NO on the K+ channel was mimicked by phenylarsine oxide, an oxidizing agent that cross-links vicinal thiols. Neither intracellular pH buffering nor the phosphotyrosine kinase antagonist genistein affected NO action on I(K,out), indicating that changes in cytosolic pH and tyrosine phosphorylation are unlikely to contribute to NO or phenylarsine oxide action in this instance. Instead, our results strongly suggest that NO directly modifies the K+ channel or a closely associated regulatory protein, probably by nitrosylation of cysteine sulfhydryl groups.
Collapse
|
research-article |
21 |
82 |
5
|
Semyachkina-Glushkovskaya O, Kurths J, Borisova E, Sokolovski S, Mantareva V, Angelov I, Shirokov A, Navolokin N, Shushunova N, Khorovodov A, Ulanova M, Sagatova M, Agranivich I, Sindeeva O, Gekalyuk A, Bodrova A, Rafailov E. Photodynamic opening of blood-brain barrier. BIOMEDICAL OPTICS EXPRESS 2017; 8:5040-5048. [PMID: 29188101 PMCID: PMC5695951 DOI: 10.1364/boe.8.005040] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/05/2017] [Accepted: 10/05/2017] [Indexed: 05/03/2023]
Abstract
Photodynamic treatment (PDT) causes a significant increase in the permeability of the blood-brain barrier (BBB) in healthy mice. Using different doses of laser radiation (635 nm, 10-40 J/cm2) and photosensitizer (5-aminolevulinic acid - 5-ALA, 20 and 80 mg/kg, i.v.), we found that the optimal PDT for the reversible opening of the BBB is 15 J/cm2 and 5-ALA, 20 mg/kg, exhibiting brain tissues recovery 3 days after PDT. Further increases in the laser radiation or 5-ALA doses have no amplifying effect on the BBB permeability, but are associated with severe damage of brain tissues. These results can be an informative platform for further studies of new strategies in brain drug delivery and for better understanding of mechanisms underlying cerebrovascular effects of PDT-related fluorescence guided resection of brain tumor.
Collapse
|
research-article |
8 |
44 |
6
|
Sokolovski S, Hills A, Gay RA, Blatt MR. Functional interaction of the SNARE protein NtSyp121 in Ca2+ channel gating, Ca2+ transients and ABA signalling of stomatal guard cells. MOLECULAR PLANT 2008; 1:347-58. [PMID: 19825544 DOI: 10.1093/mp/ssm029] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
There is now growing evidence that membrane vesicle trafficking proteins, especially of the superfamily of SNAREs, are critical for cellular signalling in plants. Work from this laboratory first demonstrated that a soluble, inhibitory (dominant-negative) fragment of the SNARE NtSyp121 blocked K+ and Cl- channel responses to the stress-related hormone abscisic acid (ABA), but left open a question about functional impacts on signal intermediates, especially on Ca2+-mediated signalling events. Here, we report one mode of action for the SNARE mediated directly through alterations in Ca2+ channel gating and its consequent effects on cytosolic-free [Ca2+] ([Ca2+]i) elevation. We find that expressing the same inhibitory fragment of NtSyp121 blocks ABA-evoked stomatal closure, but only partially suppresses stomatal closure in the presence of the NO donor, SNAP, which promotes [Ca2+]i elevation independently of the plasma membrane Ca2+ channels. Consistent with these observations, Ca2+ channel gating at the plasma membrane is altered by the SNARE fragment in a manner effective in reducing the potential for triggering a rise in [Ca2+]i, and we show directly that its expression in vivo leads to a pronounced suppression of evoked [Ca2+]i transients. These observations offer primary evidence for the functional coupling of the SNARE with Ca2+ channels at the plant cell plasma membrane and, because [Ca2+]i plays a key role in the control of K+ and Cl- channel currents in guard cells, they underscore an important mechanism for SNARE integration with ion channel regulation during stomatal closure.
Collapse
|
|
17 |
39 |
7
|
Tyrrell M, Campanoni P, Sutter JU, Pratelli R, Paneque M, Sokolovski S, Blatt MR. Selective targeting of plasma membrane and tonoplast traffic by inhibitory (dominant-negative) SNARE fragments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:1099-115. [PMID: 17662029 DOI: 10.1111/j.1365-313x.2007.03206.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Vesicle traffic underpins cell homeostasis, growth and development in plants, and is facilitated by a superfamily of proteins known as SNAREs [soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptors] that interact to draw vesicle and target membrane surfaces together for fusion. Structural homologies, biochemical and genetic analyses have yielded information about the localization and possible roles of these proteins. However, remarkably little evidence is yet available that speaks directly to the functional specificities of these proteins in selected trafficking pathways in vivo. Previously, we found that expressing a cytosolic (so-called Sp2) fragment of one plasma membrane SNARE from tobacco and Arabidopsis had severe effects on growth, tissue development and secretory traffic to the plasma membrane. We have explored this dominant-negative approach further to examine the specificity and overlaps in Sp2 activity by generating a toolbox of truncated SNARE constructs and antibodies for transient expression and analysis. Using a quantitative ratiometric approach with secreted green fluorescent protein (secGFP), we report here that traffic to the plasma membrane is suppressed selectively by Sp2 fragments of plasma membrane SNAREs AtSYP121 and AtSYP122, but not of the closely related SNARE AtSYP111 nor of the SNARE AtSYP21 that resides at the pre-vacuolar compartment (PVC). By contrast, traffic of the YFP-tagged aquaporin fusion protein TIP1;1-YFP to the tonoplast was blocked (leading to its accumulation in the PVC) when co-expressed with the Sp2 fragment of AtSYP21, but not when co-expressed with that of AtSYP121. Export of secGFP was also sensitive to the Sp2 fragment of the novel, plant-specific SNARE AtSYP71 that was recently found to be present in detergent-resistant, plasma membrane fractions. Co-incubation analyses of the plasma membrane SNAREs with the regulatory subdomain included within the Sp2 fragments showed activity in destabilizing protein complexes, but only with the complementary SNAREs. We conclude that the Sp2 fragment action accurately reflects the known specificity and targeting of these SNAREs, implies functional overlaps that are of potential physiological interest, and underscores the use of a dominant-negative strategy in functional studies of a major subfamily of SNAREs in plants.
Collapse
|
|
18 |
23 |
8
|
Zherebtsov E, Zajnulina M, Kandurova K, Potapova E, Dremin V, Mamoshin A, Sokolovski S, Dunaev A, Rafailov EU. Machine Learning Aided Photonic Diagnostic System for Minimally Invasive Optically Guided Surgery in the Hepatoduodenal Area. Diagnostics (Basel) 2020; 10:E873. [PMID: 33121013 PMCID: PMC7693603 DOI: 10.3390/diagnostics10110873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/29/2022] Open
Abstract
Abdominal cancer is a widely prevalent group of tumours with a high level of mortality if diagnosed at a late stage. Although the cancer death rates have in general declined over the past few decades, the mortality from tumours in the hepatoduodenal area has significantly increased in recent years. The broader use of minimal access surgery (MAS) for diagnostics and treatment can significantly improve the survival rate and quality of life of patients after surgery. This work aims to develop and characterise an appropriate technical implementation for tissue endogenous fluorescence (TEF) and assess the efficiency of machine learning methods for the real-time diagnosis of tumours in the hepatoduodenal area. In this paper, we present the results of the machine learning approach applied to the optically guided MAS. We have elaborated tissue fluorescence approach with a fibre-optic probe to record the TEF and blood perfusion parameters during MAS in patients with cancers in the hepatoduodenal area. The measurements from the laser Doppler flowmetry (LDF) channel were used as a sensor of the tissue vitality to reduce variability in TEF data. Also, we evaluated how the blood perfusion oscillations are changed in the tumour tissue. The evaluated amplitudes of the cardiac (0.6-1.6 Hz) and respiratory (0.2-0.6 Hz) oscillations was significantly higher in intact tissues (p < 0.001) compared to the cancerous ones, while the myogenic (0.2-0.06 Hz) oscillation did not demonstrate any statistically significant difference. Our results demonstrate that a fibre-optic TEF probe accompanied with ML algorithms such as k-Nearest Neighbours or AdaBoost is highly promising for the real-time in situ differentiation between cancerous and healthy tissues by detecting the information about the tissue type that is encoded in the fluorescence spectrum. Also, we show that the detection can be supplemented and enhanced by parallel collection and classification of blood perfusion oscillations.
Collapse
|
research-article |
5 |
6 |
9
|
Saha M, Dremin V, Rafailov I, Dunaev A, Sokolovski S, Rafailov E. Wearable Laser Doppler Flowmetry Sensor: A Feasibility Study with Smoker and Non-Smoker Volunteers. BIOSENSORS-BASEL 2020; 10:bios10120201. [PMID: 33297337 PMCID: PMC7762214 DOI: 10.3390/bios10120201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
Novel, non-invasive wearable laser Doppler flowmetry (LDF) devices measure real-time blood circulation of the left middle fingertip and the topside of the wrist of the left hand. The LDF signals are simultaneously recorded for fingertip and wrist. The amplitude of blood flow signals and wavelet analysis of the signal are used for the analysis of blood perfusion parameters. The aim of this pilot study is to validate the accuracy of blood circulation measurements recorded by one such non-invasive wearable LDF device for healthy young non-smokers and smokers. This study reveals a higher level of blood perfusion in the non-smoker group compared to the smoker group and vice-versa for the variation of pulse frequency. This result can be useful to assess the sensitivity of the wearable LDF sensor in determining the effect of nicotine for smokers as compared to non-smokers and also the blood microcirculation in smokers with different pathologies.
Collapse
|
|
5 |
6 |
10
|
Dolgova D, Abakumova T, Gening T, Poludnyakova L, Zolotovskii I, Stoliarov D, Fotiadi A, Khokhlova A, Rafailov E, Sokolovski S. Anti-inflammatory and cell proliferative effect of the 1270 nm laser irradiation on the BALB/c nude mouse model involves activation of the cell antioxidant system. BIOMEDICAL OPTICS EXPRESS 2019; 10:4261-4275. [PMID: 31453009 PMCID: PMC6701526 DOI: 10.1364/boe.10.004261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/11/2019] [Accepted: 05/11/2019] [Indexed: 05/03/2023]
Abstract
Recently, many interdisciplinary community researchers have focused their efforts on study of the low-level light irradiation effects (photobiomodulation, PBM) as a promising therapeutic technology. Among the priorities, a search of new wavelength ranges of laser radiation to enhance the laser prospects in treatment of autoimmune and cancer diseases commonly accompanied by disorders in the antioxidant system of the body. The laser wavelengths within 1265-1270 nm corresponds to the maximum oxygen absorption band. Therefore, PBM effects on a model organism within this spectrum range are of particular interest for preclinical research. Here, we report comprehensive biomolecular studies of the changes in the BALB/c nude mice skin after an exposure to the continuous laser radiation at the 1270 nm wavelength and energy densities of 0.12 and 1.2 J/cm2. Such regime induces both local and systemic PBM effects, presumably due to the short-term increase in ROS levels, which in turn activate the cell antioxidative system.
Collapse
|
research-article |
6 |
5 |
11
|
Honsbein A, Sokolovski S, Campanoni P, Pratelli R, Paneque M, Johansson I, Blatt M. A tripartite SNARE-K+ channel complex involved in Arabidopsis potassium nutrition. Comp Biochem Physiol A Mol Integr Physiol 2009. [DOI: 10.1016/j.cbpa.2009.04.422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
|
16 |
1 |
12
|
Khokhlova A, Zolotovskii I, Sokolovski S, Saenko Y, Rafailov E, Stoliarov D, Pogodina E, Svetukhin V, Sibirny V, Fotiadi A. Author Correction: The light-oxygen effect in biological cells enhanced by highly localized surface plasmon-polaritons. Sci Rep 2020; 10:1269. [PMID: 31965027 PMCID: PMC6974601 DOI: 10.1038/s41598-020-58159-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
Published Erratum |
5 |
1 |
13
|
Khalid A, Dremin V, El-Tamer A, Surnina M, Lancelot C, Rafailov E, Sokolovski S. Dual-mode OCT/fluorescence system for monitoring the morphology and metabolism of laser-printed 3D full-thickness skin equivalents. BIOMEDICAL OPTICS EXPRESS 2024; 15:6299-6312. [PMID: 39553855 PMCID: PMC11563319 DOI: 10.1364/boe.510610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 11/19/2024]
Abstract
The 3D structure of native human skin is fundamental for studying skin health, diseases, wound healing, and for testing the safety of skin care products, as well as personalized treatments for skin conditions. Tissue regeneration, driven by tissue engineering, often involves creating full-thickness skin equivalents (FSE), which are widely used for developing both healthy and diseased skin models. In this study, we utilized human skin cell lines to create FSE. We designed high-resolution 3D scaffolds to support the growth and maturation of these skin models. Additionally, we developed and validated a cost-effective, custom-built system combining fluorescence spectroscopy (FS) and optical coherence tomography (OCT) for non-destructive analysis of the metabolism and morphology of 3D FSEs. This system proved highly sensitive in detecting fluorescence from key metabolic co-enzymes (NADH and FAD) in solutions and cell suspensions, while OCT provided adequate resolution to observe the morphology of FSEs. As a result, both the 3D FSE model and the dual-mode optical system hold significant potential for use in 3D bioprinting of biological tissues, as well as in the development of cosmetics, drugs, and in monitoring their maturation over time.
Collapse
|
research-article |
1 |
|
14
|
Blatt M, Johansson I, Paneque M, Pratelli R, Campanoni P, Sokolovski S, Honsbein A. SNAREs at the traffic junction with signalling, transport and nutrition. Comp Biochem Physiol A Mol Integr Physiol 2008. [DOI: 10.1016/j.cbpa.2008.04.348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
|
17 |
|