Lazarev VN, Borisenko GG, Shkarupeta MM, Demina IA, Serebryakova MV, Galyamina MA, Levitskiy SA, Govorun VM. The role of intracellular glutathione in the progression of Chlamydia trachomatis infection.
Free Radic Biol Med 2010;
49:1947-55. [PMID:
20888409 DOI:
10.1016/j.freeradbiomed.2010.09.024]
[Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/17/2010] [Accepted: 09/23/2010] [Indexed: 12/17/2022]
Abstract
The productive internalization in the host cell of Chlamydia trachomatis elementary bodies and their infectivity depends on the degree of reduction of disulfide bonds in the outer envelope of the elementary body. We have hypothesized that the reducing agent may be intracellular glutathione (GSH). Three approaches were used to modulate the intracellular GSH concentration: (1) treatment of cells with buthionine sulfoximine, which causes irreversible inhibition of GSH biosynthesis; (2) hydrogen peroxide-induced oxidation of GSH by intracellular glutathione peroxidases; and (3) treatment of cells with N-acetyl-l-cysteine (NAC), a precursor of glutathione. In the first two cases, we observed a four- to sixfold inhibition of C. trachomatis infection, whereas in NAC-treated cells we detected an increase in the size of chlamydial inclusions. Using a proteomics approach, we showed that the inhibition of chlamydial infection does not combine with alterations in protein expression patterns after cell treatment. These results suggest that GSH plays a key role in the reduction of disulfide bonds in the C. trachomatis outer envelope at an initial stage of the infection.
Collapse