1
|
Robinson EK, Covarrubias S, Carpenter S. The how and why of lncRNA function: An innate immune perspective. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194419. [PMID: 31487549 PMCID: PMC7185634 DOI: 10.1016/j.bbagrm.2019.194419] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing has provided a more complete picture of the composition of the human transcriptome indicating that much of the "blueprint" is a vastness of poorly understood non-protein-coding transcripts. This includes a newly identified class of genes called long noncoding RNAs (lncRNAs). The lack of sequence conservation for lncRNAs across species meant that their biological importance was initially met with some skepticism. LncRNAs mediate their functions through interactions with proteins, RNA, DNA, or a combination of these. Their functions can often be dictated by their localization, sequence, and/or secondary structure. Here we provide a review of the approaches typically adopted to study the complexity of these genes with an emphasis on recent discoveries within the innate immune field. Finally, we discuss the challenges, as well as the emergence of new technologies that will continue to move this field forward and provide greater insight into the biological importance of this class of genes. This article is part of a Special Issue entitled: ncRNA in control of gene expression edited by Kotb Abdelmohsen.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
203 |
2
|
Bouchareychas L, Duong P, Covarrubias S, Alsop E, Phu TA, Chung A, Gomes M, Wong D, Meechoovet B, Capili A, Yamamoto R, Nakauchi H, McManus MT, Carpenter S, Van Keuren-Jensen K, Raffai RL. Macrophage Exosomes Resolve Atherosclerosis by Regulating Hematopoiesis and Inflammation via MicroRNA Cargo. Cell Rep 2020; 32:107881. [PMID: 32668250 PMCID: PMC8143919 DOI: 10.1016/j.celrep.2020.107881] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/12/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
Developing strategies that promote the resolution of vascular inflammation and atherosclerosis remains a major therapeutic challenge. Here, we show that exosomes produced by naive bone marrow-derived macrophages (BMDM-exo) contain anti-inflammatory microRNA-99a/146b/378a that are further increased in exosomes produced by BMDM polarized with IL-4 (BMDM-IL-4-exo). These exosomal microRNAs suppress inflammation by targeting NF-κB and TNF-α signaling and foster M2 polarization in recipient macrophages. Repeated infusions of BMDM-IL-4-exo into Apoe-/- mice fed a Western diet reduce excessive hematopoiesis in the bone marrow and thereby the number of myeloid cells in the circulation and macrophages in aortic root lesions. This also leads to a reduction in necrotic lesion areas that collectively stabilize atheroma. Thus, BMDM-IL-4-exo may represent a useful therapeutic approach for atherosclerosis and other inflammatory disorders by targeting NF-κB and TNF-α via microRNA cargo delivery.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
152 |
3
|
Galván-Peña S, Carroll RG, Newman C, Hinchy EC, Palsson-McDermott E, Robinson EK, Covarrubias S, Nadin A, James AM, Haneklaus M, Carpenter S, Kelly VP, Murphy MP, Modis LK, O'Neill LA. Malonylation of GAPDH is an inflammatory signal in macrophages. Nat Commun 2019; 10:338. [PMID: 30659183 PMCID: PMC6338787 DOI: 10.1038/s41467-018-08187-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/19/2018] [Indexed: 12/21/2022] Open
Abstract
Macrophages undergo metabolic changes during activation that are coupled to functional responses. The gram negative bacterial product lipopolysaccharide (LPS) is especially potent at driving metabolic reprogramming, enhancing glycolysis and altering the Krebs cycle. Here we describe a role for the citrate-derived metabolite malonyl-CoA in the effect of LPS in macrophages. Malonylation of a wide variety of proteins occurs in response to LPS. We focused on one of these, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In resting macrophages, GAPDH binds to and suppresses translation of several inflammatory mRNAs, including that encoding TNFα. Upon LPS stimulation, GAPDH undergoes malonylation on lysine 213, leading to its dissociation from TNFα mRNA, promoting translation. We therefore identify for the first time malonylation as a signal, regulating GAPDH mRNA binding to promote inflammation.
Collapse
|
research-article |
6 |
139 |
4
|
Covarrubias S, Gaglia MM, Kumar GR, Wong W, Jackson AO, Glaunsinger BA. Coordinated destruction of cellular messages in translation complexes by the gammaherpesvirus host shutoff factor and the mammalian exonuclease Xrn1. PLoS Pathog 2011; 7:e1002339. [PMID: 22046136 PMCID: PMC3203186 DOI: 10.1371/journal.ppat.1002339] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 09/14/2011] [Indexed: 12/02/2022] Open
Abstract
Several viruses encode factors that promote host mRNA degradation to silence gene expression. It is unclear, however, whether cellular mRNA turnover pathways are engaged to assist in this process. In Kaposi's sarcoma-associated herpesvirus this phenotype is enacted by the host shutoff factor SOX. Here we show that SOX-induced mRNA turnover is a two-step process, in which mRNAs are first cleaved internally by SOX itself then degraded by the cellular exonuclease Xrn1. SOX therefore bypasses the regulatory steps of deadenylation and decapping normally required for Xrn1 activation. SOX is likely recruited to translating mRNAs, as it cosediments with translation initiation complexes and depletes polysomes. Cleaved mRNA intermediates accumulate in the 40S fraction, indicating that recognition occurs at an early stage of translation. This is the first example of a viral protein commandeering cellular mRNA turnover pathways to destroy host mRNAs, and suggests that Xrn1 is poised to deplete messages undergoing translation in mammalian cells. Viruses use a number of strategies to commandeer host machinery and create an optimal environment for their replication. One strategy employed by oncogenic gammaherpesviruses such as Kaposi's sarcoma-associated herpesvirus (KSHV) is to block cellular gene expression through extensive destruction of mRNAs. A single viral protein called SOX is sufficient to drive this phenotype, but the mechanism by which it does so has remained unclear. Here we show that host mRNA destruction is the result of the coordinated action of SOX and a cellular RNA degrading enzyme, Xrn1. By cleaving mRNAs internally, SOX recruits the activity of Xrn1 while bypassing the regulatory mechanisms that normally prevent this enzyme from prematurely degrading mRNAs. We also find that SOX co-sediments with translation complexes, and specifically targets mRNAs for cleavage at an early stage of translation. We hypothesize this allows the virus to selectively target mRNAs, thereby liberating host gene expression machinery. Collectively, these findings describe a novel interplay between the gammaherpesvirus SOX protein and cellular degradation machinery, and shed light on how a single viral component can hijack cellular machinery to efficiently destroy messages.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
75 |
5
|
Elling R, Robinson EK, Shapleigh B, Liapis SC, Covarrubias S, Katzman S, Groff AF, Jiang Z, Agarwal S, Motwani M, Chan J, Sharma S, Hennessy EJ, FitzGerald GA, McManus MT, Rinn JL, Fitzgerald KA, Carpenter S. Genetic Models Reveal cis and trans Immune-Regulatory Activities for lincRNA-Cox2. Cell Rep 2018; 25:1511-1524.e6. [PMID: 30404006 PMCID: PMC6291222 DOI: 10.1016/j.celrep.2018.10.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 09/04/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
An inducible gene expression program is a hallmark of the host inflammatory response. Recently, long intergenic non-coding RNAs (lincRNAs) have been shown to regulate the magnitude, duration, and resolution of these responses. Among these is lincRNA-Cox2, a dynamically regulated gene that broadly controls immune gene expression. To evaluate the in vivo functions of this lincRNA, we characterized multiple models of lincRNA-Cox2-deficient mice. LincRNA-Cox2-deficient macrophages and murine tissues had altered expression of inflammatory genes. Transcriptomic studies from various tissues revealed that deletion of the lincRNA-Cox2 locus also strongly impaired the basal and inducible expression of the neighboring gene prostaglandin-endoperoxide synthase (Ptgs2), encoding cyclooxygenase-2, a key enzyme in the prostaglandin biosynthesis pathway. By utilizing different genetic manipulations in vitro and in vivo, we found that lincRNA-Cox2 functions through an enhancer RNA mechanism to regulate Ptgs2. More importantly, lincRNA-Cox2 also functions in trans, independently of Ptgs2, to regulate critical innate immune genes in vivo.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
70 |
6
|
Covarrubias S, Robinson EK, Shapleigh B, Vollmers A, Katzman S, Hanley N, Fong N, McManus MT, Carpenter S. CRISPR/Cas-based screening of long non-coding RNAs (lncRNAs) in macrophages with an NF-κB reporter. J Biol Chem 2017; 292:20911-20920. [PMID: 29051223 PMCID: PMC5743067 DOI: 10.1074/jbc.m117.799155] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 10/11/2017] [Indexed: 12/12/2022] Open
Abstract
The innate immune system protects against infections by initiating an inducible inflammatory response. NF-κB is one of the critical transcription factors controlling this complex response, but some aspects of its regulation remain unclear. For example, although long non-coding RNAs (lncRNAs) have been shown to critically regulate gene expression, only a fraction of these have been functionally characterized, and the extent to which lncRNAs control NF-κB expression is unknown. Here, we describe the generation of a GFP-based NF-κB reporter system in immortalized murine bone marrow–derived macrophages (iBMDM). Activation of this reporter, using Toll-like receptor ligands, resulted in GFP expression, which could be monitored by flow cytometry. We also established a CRISPR/Cas9 gene deletion system in this NF-κB reporter line, enabling us to screen for genes that regulate NF-κB signaling. Our deletion-based approach identified two long intergenic non-coding(linc)RNAs, lincRNA-Cox2 and lincRNA-AK170409, that control NF-κB signaling. We demonstrate a potential novel role for lincRNA-Cox2 in promoting IκBα degradation in the cytoplasm. For lincRNA-AK170409, we provide evidence that this nuclearly-localized lincRNA regulates a number of inflammation-related genes. In conclusion, we have established an NF-κB–GFP iBMDM reporter cell line and a line that stably expresses Cas9. Our approach enabled the identification of lincRNA-Cox2 and lincRNA-AK170409 as NF-κB regulators, and this tool will be useful for identifying additional genes involved in regulating this transcription factor critical for immune function.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
59 |
7
|
Richner JM, Clyde K, Pezda AC, Cheng BYH, Wang T, Kumar GR, Covarrubias S, Coscoy L, Glaunsinger B. Global mRNA degradation during lytic gammaherpesvirus infection contributes to establishment of viral latency. PLoS Pathog 2011; 7:e1002150. [PMID: 21811408 PMCID: PMC3141057 DOI: 10.1371/journal.ppat.1002150] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 05/20/2011] [Indexed: 01/02/2023] Open
Abstract
During a lytic gammaherpesvirus infection, host gene expression is severely restricted by the global degradation and altered 3' end processing of mRNA. This host shutoff phenotype is orchestrated by the viral SOX protein, yet its functional significance to the viral lifecycle has not been elucidated, in part due to the multifunctional nature of SOX. Using an unbiased mutagenesis screen of the murine gammaherpesvirus 68 (MHV68) SOX homolog, we isolated a single amino acid point mutant that is selectively defective in host shutoff activity. Incorporation of this mutation into MHV68 yielded a virus with significantly reduced capacity for mRNA turnover. Unexpectedly, the MHV68 mutant showed little defect during the acute replication phase in the mouse lung. Instead, the virus exhibited attenuation at later stages of in vivo infections suggestive of defects in both trafficking and latency establishment. Specifically, mice intranasally infected with the host shutoff mutant accumulated to lower levels at 10 days post infection in the lymph nodes, failed to develop splenomegaly, and exhibited reduced viral DNA levels and a lower frequency of latently infected splenocytes. Decreased latency establishment was also observed upon infection via the intraperitoneal route. These results highlight for the first time the importance of global mRNA degradation during a gammaherpesvirus infection and link an exclusively lytic phenomenon with downstream latency establishment.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
51 |
8
|
Bulut-Karslioglu A, Macrae TA, Oses-Prieto JA, Covarrubias S, Percharde M, Ku G, Diaz A, McManus MT, Burlingame AL, Ramalho-Santos M. The Transcriptionally Permissive Chromatin State of Embryonic Stem Cells Is Acutely Tuned to Translational Output. Cell Stem Cell 2018; 22:369-383.e8. [PMID: 29499153 PMCID: PMC5836508 DOI: 10.1016/j.stem.2018.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 12/20/2017] [Accepted: 02/07/2018] [Indexed: 10/17/2022]
Abstract
A permissive chromatin environment coupled to hypertranscription drives the rapid proliferation of embryonic stem cells (ESCs) and peri-implantation embryos. We carried out a genome-wide screen to systematically dissect the regulation of the euchromatic state of ESCs. The results revealed that cellular growth pathways, most prominently translation, perpetuate the euchromatic state and hypertranscription of ESCs. Acute inhibition of translation rapidly depletes euchromatic marks in mouse ESCs and blastocysts, concurrent with delocalization of RNA polymerase II and reduction in nascent transcription. Translation inhibition promotes rewiring of chromatin accessibility, which decreases at a subset of active developmental enhancers and increases at histone genes and transposable elements. Proteome-scale analyses revealed that several euchromatin regulators are unstable proteins and continuously depend on a high translational output. We propose that this mechanistic interdependence of euchromatin, transcription, and translation sets the pace of proliferation at peri-implantation and may be employed by other stem/progenitor cells.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
34 |
9
|
Covarrubias S, Vollmers AC, Capili A, Boettcher M, Shulkin A, Correa MR, Halasz H, Robinson EK, O'Briain L, Vollmers C, Blau J, Katzman S, McManus MT, Carpenter S. High-Throughput CRISPR Screening Identifies Genes Involved in Macrophage Viability and Inflammatory Pathways. Cell Rep 2020; 33:108541. [PMID: 33378675 PMCID: PMC7901356 DOI: 10.1016/j.celrep.2020.108541] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/08/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Macrophages are critical effector cells of the immune system, and understanding genes involved in their viability and function is essential for gaining insights into immune system dysregulation during disease. We use a high-throughput, pooled-based CRISPR-Cas screening approach to identify essential genes required for macrophage viability. In addition, we target 3' UTRs to gain insights into previously unidentified cis-regulatory regions that control these essential genes. Next, using our recently generated nuclear factor κB (NF-κB) reporter line, we perform a fluorescence-activated cell sorting (FACS)-based high-throughput genetic screen and discover a number of previously unidentified positive and negative regulators of the NF-κB pathway. We unravel complexities of the TNF signaling cascade, showing that it can function in an autocrine manner in macrophages to negatively regulate the pathway. Utilizing a single complex library design, we are capable of interrogating various aspects of macrophage biology, thus generating a resource for future studies.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
25 |
10
|
Robinson EK, Jagannatha P, Covarrubias S, Cattle M, Smaliy V, Safavi R, Shapleigh B, Abu-Shumays R, Jain M, Cloonan SM, Akeson M, Brooks AN, Carpenter S. Inflammation drives alternative first exon usage to regulate immune genes including a novel iron-regulated isoform of Aim2. eLife 2021; 10:69431. [PMID: 34047695 PMCID: PMC8260223 DOI: 10.7554/elife.69431] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
Determining the layers of gene regulation within the innate immune response is critical to our understanding of the cellular responses to infection and dysregulation in disease. We identified a conserved mechanism of gene regulation in human and mouse via changes in alternative first exon (AFE) usage following inflammation, resulting in changes to the isoforms produced. Of these AFE events, we identified 95 unannotated transcription start sites in mice using a de novo transcriptome generated by long-read native RNA-sequencing, one of which is in the cytosolic receptor for dsDNA and known inflammatory inducible gene, Aim2. We show that this unannotated AFE isoform of Aim2 is the predominant isoform expressed during inflammation and contains an iron-responsive element in its 5′UTR enabling mRNA translation to be regulated by iron levels. This work highlights the importance of examining alternative isoform changes and translational regulation in the innate immune response and uncovers novel regulatory mechanisms of Aim2.
Collapse
|
Journal Article |
4 |
22 |
11
|
Ghosh S, Wallerath C, Covarrubias S, Hornung V, Carpenter S, Fitzgerald KA. The PYHIN Protein p205 Regulates the Inflammasome by Controlling Asc Expression. THE JOURNAL OF IMMUNOLOGY 2017; 199:3249-3260. [PMID: 28931603 DOI: 10.4049/jimmunol.1700823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/22/2017] [Indexed: 11/19/2022]
Abstract
Members of the IFN-inducible PYHIN protein family, such as absent in melanoma-2 and IFN-γ-inducible protein (IFI)16, bind dsDNA and form caspase-1-activating inflammasomes that are important in immunity to cytosolic bacteria, DNA viruses, or HIV. IFI16 has also been shown to regulate transcription of type I IFNs during HSV infection. The role of other members of the PYHIN protein family in the regulation of immune responses is much less clear. In this study, we identified an immune-regulatory function for a member of the murine PYHIN protein family, p205 (also called Ifi205). Examination of immune responses induced by dsDNA and other microbial ligands in bone marrow-derived macrophages lacking p205 revealed that inflammasome activation by dsDNA, as well as ligands that engage the NLRP3 inflammasome, was severely compromised in these cells. Further analysis revealed that p205-knockdown cells showed reduced expression of apoptosis-associated speck-like molecule containing CARD domain (Asc) at the protein and RNA levels. p205 knockdown resulted in reduced binding of actively transcribing RNA polymerase II to the endogenous Asc gene, resulting in decreased transcription and processing of Asc pre-mRNA. Deletion of p205 in B16 melanoma cells using CRISPR/Cas9 showed a similar loss of Asc expression. Ectopic expression of p205 induced expression of an Asc promoter-luciferase reporter gene. Together, these findings suggest that p205 controls expression of Asc mRNA to regulate inflammasome responses. These findings expand on our understanding of immune-regulatory roles for the PYHIN protein family.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
11 |
12
|
Boettcher M, Covarrubias S, Biton A, Blau J, Wang H, Zaitlen N, McManus MT. Tracing cellular heterogeneity in pooled genetic screens via multi-level barcoding. BMC Genomics 2019; 20:107. [PMID: 30727954 PMCID: PMC6364396 DOI: 10.1186/s12864-019-5480-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND While pooled loss- and gain-of-function CRISPR screening approaches have become increasingly popular to systematically investigate mammalian gene function, the large majority of them have thus far not investigated the influence of cellular heterogeneity on screen results. Instead most screens are analyzed by averaging the abundance of perturbed cells from a bulk population of cells. RESULTS Here we developed multi-level barcoded sgRNA libraries to trace multiple clonal Cas9 cell lines exposed to the same environment. The first level of barcoding allows monitoring growth kinetics and treatment responses of multiplexed clonal cell lines under identical conditions while the second level enables in-sample replication and tracing of sub-clonal lineages of cells expressing the same sgRNA. CONCLUSION Using our approach, we illustrate how heterogeneity in growth kinetics and treatment response of clonal cell lines impairs the results of pooled genetic screens.
Collapse
|
research-article |
6 |
10 |
13
|
Covarrubias S, González C, Gutiérrez‐Rodríguez C. Effects of natural and anthropogenic features on functional connectivity of anurans: a review of landscape genetics studies in temperate, subtropical and tropical species. J Zool (1987) 2020. [DOI: 10.1111/jzo.12851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
|
5 |
5 |
14
|
Robinson EK, Covarrubias S, Zhou S, Carpenter S. Generation and utilization of a HEK-293T murine GM-CSF expressing cell line. PLoS One 2021; 16:e0249117. [PMID: 33836009 PMCID: PMC8034741 DOI: 10.1371/journal.pone.0249117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages and dendritic cells (DCs) are innate immune cells that play a key role in defense against pathogens. In vitro cultures of bone marrow-derived macrophages (BMDMs) and dendritic cells (BMDCs) are well-established and valuable methods for immunological studies. Typically, commercially available recombinant GM-CSF is utilized to generate BMDCs and is also used to culture alveolar macrophages. We have generated a new HEK-293T cell line expressing murine GM-CSF that secretes high levels of GM-CSF (~180 ng/ml) into complete media as an alternative to commercial GM-CSF. Differentiation of dendritic cells and expression of various markers were kinetically assessed using the GM-CSF HEK293T cell line, termed supGM-CSF and compared directly to purified commercial GMCSF. After 7–9 days of cell culture the supGM-CSF yielded twice as many viable cells compared to the commercial purified GM-CSF. In addition to differentiating BMDCs, the supGM-CSF can be utilized to culture functionally active alveolar macrophages. Collectively, our results show that supernatant from our GM-CSF HEK293T cell line supports the differentiation of mouse BMDCs or alveolar macrophage culturing, providing an economical alternative to purified GM-CSF.
Collapse
|
Journal Article |
4 |
3 |
15
|
John K, Huntress I, Smith E, Chou H, Tollison TS, Covarrubias S, Crisci E, Carpenter S, Peng X. Human long noncoding RNA VILMIR is induced by major respiratory viral infections and modulates the host interferon response. J Virol 2025; 99:e0014125. [PMID: 40130878 PMCID: PMC11998520 DOI: 10.1128/jvi.00141-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) are a newer class of noncoding transcripts identified as key regulators of biological processes. Here, we aimed to identify novel lncRNA targets that play critical roles in major human respiratory viral infections by systematically mining large-scale transcriptomic data sets. Using bulk RNA-sequencing (RNA-seq) analysis, we identified a previously uncharacterized lncRNA, named virus-inducible lncRNA modulator of interferon response (VILMIR), that was consistently upregulated after in vitro influenza infection across multiple human epithelial cell lines and influenza A virus subtypes. VILMIR was also upregulated after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and respiratory syncytial virus (RSV) infections in vitro. We experimentally confirmed the response of VILMIR to influenza infection and interferon-beta (IFN-β) treatment in the A549 human epithelial cell line and found the expression of VILMIR was robustly induced by IFN-β treatment in a dose- and time-specific manner. Single-cell RNA-seq analysis of bronchoalveolar lavage fluid samples from coronavirus disease 2019 (COVID-19) patients uncovered that VILMIR was upregulated across various cell types, including at least five immune cells. The upregulation of VILMIR in immune cells was further confirmed in the human T cell and monocyte cell lines, SUP-T1 and THP-1, after IFN-β treatment. Finally, we found that knockdown of VILMIR expression reduced the magnitude of host transcriptional responses to both IFN-β treatment and influenza A virus infection in A549 cells. Together, our results show that VILMIR is a novel interferon-stimulated gene (ISG) that regulates the host interferon response and may be a potential therapeutic target for human respiratory viral infections upon further mechanistic investigation.IMPORTANCEIdentifying host factors that regulate the immune response to human respiratory viral infection is critical to developing new therapeutics. Human long noncoding RNAs (lncRNAs) have been found to play key regulatory roles during biological processes; however, the majority of lncRNA functions within the host antiviral response remain unknown. In this study, we identified that a previously uncharacterized lncRNA, virus-inducible lncRNA modulator of interferon response (VILMIR), is upregulated after major respiratory viral infections including influenza, severe acute respiratory syndrome coronavirus 2, and respiratory syncytial virus. We demonstrated that VILMIR is an interferon-stimulated gene that is upregulated after interferon-beta (IFN-β) in several human cell types. We also found that knockdown of VILMIR reduced the magnitude of host transcriptional responses to IFN-β treatment and influenza A infection in human epithelial cells. Our results reveal that VILMIR regulates the host interferon response and may present a new therapeutic target during human respiratory viral infections.
Collapse
|
research-article |
1 |
|
16
|
John K, Huntress I, Smith E, Chou H, Tollison TS, Covarrubias S, Crisci E, Carpenter S, Peng X. Human long noncoding RNA, VILMIR, is induced by major respiratory viral infections and modulates the host interferon response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586578. [PMID: 38585942 PMCID: PMC10996554 DOI: 10.1101/2024.03.25.586578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Long noncoding RNAs (lncRNAs) are a newer class of noncoding transcripts identified as key regulators of biological processes. Here we aimed to identify novel lncRNA targets that play critical roles in major human respiratory viral infections by systematically mining large-scale transcriptomic datasets. Using bulk RNA-sequencing (RNA-seq) analysis, we identified a previously uncharacterized lncRNA, named virus inducible lncRNA modulator of interferon response (VILMIR), that was consistently upregulated after in vitro influenza infection across multiple human epithelial cell lines and influenza A virus subtypes. VILMIR was also upregulated after SARS-CoV-2 and RSV infections in vitro. We experimentally confirmed the response of VILMIR to influenza infection and interferon-beta (IFN-β) treatment in the A549 human epithelial cell line and found the expression of VILMIR was robustly induced by IFN-β treatment in a dose and time-specific manner. Single cell RNA-seq analysis of bronchoalveolar lavage fluid (BALF) samples from COVID-19 patients uncovered that VILMIR was upregulated across various cell types including at least five immune cells. The upregulation of VILMIR in immune cells was further confirmed in the human T cell and monocyte cell lines, SUP-T1 and THP-1, after IFN-β treatment. Finally, we found that knockdown of VILMIR expression reduced the magnitude of host transcriptional responses to IFN-β treatment in A549 cells. Together, our results show that VILMIR is a novel interferon-stimulated gene (ISG) that regulates the host interferon response and may be a potential therapeutic target for human respiratory viral infections upon further mechanistic investigation.
Collapse
|
Preprint |
1 |
|
17
|
Montano C, Covarrubias S, Malekos E, Katzman S, Carpenter S. Identification and functional characterization of lncRNAs involved in human monocyte-to-macrophage differentiation. RNA Biol 2024; 21:39-51. [PMID: 39429195 PMCID: PMC11497951 DOI: 10.1080/15476286.2024.2417155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Abstract
Although long noncoding RNAs (lncRNAs) constitute the majority of the human transcriptome, the functional roles of most remain elusive. While protein-coding genes in macrophage biology have been extensively studied, the contribution of lncRNAs in this context is poorly understood. Given the vast number of lncRNAs (>20,000), identifying candidates for functional characterization poses a significant challenge. Here, we present two complementary approaches to pinpoint and investigate lncRNAs involved in monocyte-to-macrophage differentiation: RNA-seq for functional inference and a high-throughput functional screen. These strategies enabled us to identify four lncRNA regulators of monocyte differentiation: lincRNA-JADE1, lincRNA-ANXA3, GATA2-AS1, and PPP2R5C-AS1. Preliminary insights suggest these lncRNAs may act in cis through neighbouring protein-coding genes, although their precise mechanisms remain to be elucidated. We further discuss the strengths and weaknesses of these methodologies, along with validation pipelines crucial for establishing lncRNA functionality.
Collapse
|
research-article |
1 |
|
18
|
Halasz H, Malekos E, Covarrubias S, Yitiz S, Montano C, Sudek L, Katzman S, Liu SJ, Horlbeck MA, Namvar L, Weissman JS, Carpenter S. CRISPRi screens identify the lncRNA, LOUP, as a multifunctional locus regulating macrophage differentiation and inflammatory signaling. Proc Natl Acad Sci U S A 2024; 121:e2322524121. [PMID: 38781216 PMCID: PMC11145268 DOI: 10.1073/pnas.2322524121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) account for the largest portion of RNA from the transcriptome, yet most of their functions remain unknown. Here, we performed two independent high-throughput CRISPRi screens to understand the role of lncRNAs in monocyte function and differentiation. The first was a reporter-based screen to identify lncRNAs that regulate TLR4-NFkB signaling in human monocytes and the second screen identified lncRNAs involved in monocyte to macrophage differentiation. We successfully identified numerous noncoding and protein-coding genes that can positively or negatively regulate inflammation and differentiation. To understand the functional roles of lncRNAs in both processes, we chose to further study the lncRNA LOUP [lncRNA originating from upstream regulatory element of SPI1 (also known as PU.1)], as it emerged as a top hit in both screens. Not only does LOUP regulate its neighboring gene, the myeloid fate-determining factor SPI1, thereby affecting monocyte to macrophage differentiation, but knockdown of LOUP leads to a broad upregulation of NFkB-targeted genes at baseline and upon TLR4-NFkB activation. LOUP also harbors three small open reading frames capable of being translated and are responsible for LOUP's ability to negatively regulate TLR4/NFkB signaling. This work emphasizes the value of high-throughput screening to rapidly identify functional lncRNAs in the innate immune system.
Collapse
|
research-article |
1 |
|
19
|
Bouchareychas L, Duong P, Covarrubias S, Alsop E, Q Phu T, Chung A, Gomes M, Wong D, Meechoovet B, Capili A, Yamamoto R, Nakauchi H, Mcmanus M, Carpenter S, Van Keuren-Jensen K, Raffai R. M2 macrophage exosomes regulate hematopoiesis & resolve inflammation in atherosclerosis via microrna cargo. Atherosclerosis 2020. [DOI: 10.1016/j.atherosclerosis.2020.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
|
5 |
|
20
|
Montano C, Covarrubias S, Malekos E, Katzman S, Carpenter S. Identification and Functional Characterization of lncRNAs involved in Human Monocyte-to-Macrophage Differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599925. [PMID: 38979363 PMCID: PMC11230152 DOI: 10.1101/2024.06.20.599925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Long noncoding RNAs (lncRNAs) make up the largest portion of RNA produced from the human genome, but only a small fraction have any ascribed functions. Although the role of protein-coding genes in macrophage biology has been studied extensively, our understanding of the role played by lncRNAs in this context is still in its early stages. There are over 20,000 lncRNAs in the human genome therefore, attempting to select a lncRNA to characterize functionally can be a challenge. Here we describe two approaches to identify and functionally characterize lncRNAs involved in monocyte-to-macrophage differentiation. The first involves the use of RNA-seq to infer possible functions and the second involves a high throughput functional screen. We examine the advantages and disadvantages of these methodologies and the pipelines for validation that assist in determining functional lncRNAs.
Collapse
|
Preprint |
1 |
|
21
|
Flores-Arena C, Malekos E, Covarrubias S, Sudek L, Montano C, Dempsey V, Hyunh V, Katzman S, Carpenter S. CRISPRi Screen Uncovers lncRNA Regulators of Human Monocyte Growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.624758. [PMID: 39651253 PMCID: PMC11623541 DOI: 10.1101/2024.11.25.624758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Long noncoding RNAs are emerging as critical regulators of biological processes. While there are over 20,000 lncRNAs annotated in the human genome we do not know the function for the majority. Here we performed a high-throughput CRISPRi screen to identify those lncRNAs that are important in viability in human monocytes using the cell line THP1. We identified a total of 38 hits from the screen and validated and characterized two of the top intergenic hits. The first is a lncRNA neighboring the macrophage viability transcription factor IRF8 ( RP11-542M13 . 2 hereafter referred to as long noncoding RNA regulator of monocyte proliferation, LNCRMP ) and the second is a lncRNA called OLMALINC (oligodendrocyte maturation-associated long intervening non-coding RNA) that was previously found to be important in oligodendrocyte maturation. Transcriptional repression of LNCRMP and OLMALINC from monocytes severely limited their proliferation capabilities. RNA-seq analysis of knockdown lines showed that LNCRMP regulated proapoptotic pathways while knockdown of OLMALINC impacted genes associated with the cell cycle. Data supports both LNCRMP and OLMALINC functioning in cis to regulate their neighboring proteins that are also essential for THP1 cell growth. This research highlights the importance of high-throughput screening as a powerful tool for quickly discovering functional long non-coding RNAs (lncRNAs) that play a vital role in regulating monocyte viability.
Collapse
|
Preprint |
1 |
|