1
|
Muñoz-Fontela C, Dowling WE, Funnell SGP, Gsell PS, Riveros-Balta AX, Albrecht RA, Andersen H, Baric RS, Carroll MW, Cavaleri M, Qin C, Crozier I, Dallmeier K, de Waal L, de Wit E, Delang L, Dohm E, Duprex WP, Falzarano D, Finch CL, Frieman MB, Graham BS, Gralinski LE, Guilfoyle K, Haagmans BL, Hamilton GA, Hartman AL, Herfst S, Kaptein SJF, Klimstra WB, Knezevic I, Krause PR, Kuhn JH, Le Grand R, Lewis MG, Liu WC, Maisonnasse P, McElroy AK, Munster V, Oreshkova N, Rasmussen AL, Rocha-Pereira J, Rockx B, Rodríguez E, Rogers TF, Salguero FJ, Schotsaert M, Stittelaar KJ, Thibaut HJ, Tseng CT, Vergara-Alert J, Beer M, Brasel T, Chan JFW, García-Sastre A, Neyts J, Perlman S, Reed DS, Richt JA, Roy CJ, Segalés J, Vasan SS, Henao-Restrepo AM, Barouch DH. Animal models for COVID-19. Nature 2020; 586:509-515. [PMID: 32967005 PMCID: PMC8136862 DOI: 10.1038/s41586-020-2787-6] [Citation(s) in RCA: 628] [Impact Index Per Article: 125.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (first detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the findings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.
Collapse
|
Review |
5 |
628 |
2
|
Ahmed W, Bertsch PM, Bibby K, Haramoto E, Hewitt J, Huygens F, Gyawali P, Korajkic A, Riddell S, Sherchan SP, Simpson SL, Sirikanchana K, Symonds EM, Verhagen R, Vasan SS, Kitajima M, Bivins A. Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewater-based epidemiology. ENVIRONMENTAL RESEARCH 2020; 191:110092. [PMID: 32861728 PMCID: PMC7451058 DOI: 10.1016/j.envres.2020.110092] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 05/17/2023]
Abstract
Wastewater-based epidemiology (WBE) demonstrates potential for COVID-19 community transmission monitoring; however, data on the stability of SARS-CoV-2 RNA in wastewater are needed to interpret WBE results. The decay rates of RNA from SARS-CoV-2 and a potential surrogate, murine hepatitis virus (MHV), were investigated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in untreated wastewater, autoclaved wastewater, and dechlorinated tap water stored at 4, 15, 25, and 37 °C. Temperature, followed by matrix type, most greatly influenced SARS-CoV-2 RNA first-order decay rates (k). The average T90 (time required for 1-log10 reduction) of SARS-CoV-2 RNA ranged from 8.04 to 27.8 days in untreated wastewater, 5.71 to 43.2 days in autoclaved wastewater, and 9.40 to 58.6 days in tap water. The average T90 for RNA of MHV at 4 to 37 °C ranged from 7.44 to 56.6 days in untreated wastewater, 5.58-43.1 days in autoclaved wastewater, and 10.9 to 43.9 days in tap water. There was no statistically significant difference between RNA decay of SARS-CoV-2 and MHV; thus, MHV is suggested as a suitable persistence surrogate. Decay rate constants for all temperatures were comparable across all matrices for both viral RNAs, except in untreated wastewater for SARS-CoV-2, which showed less sensitivity to elevated temperatures. Therefore, SARS-CoV-2 RNA is likely to persist long enough in untreated wastewater to permit reliable detection for WBE application.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
254 |
3
|
Farr RJ, Rootes CL, Rowntree LC, Nguyen THO, Hensen L, Kedzierski L, Cheng AC, Kedzierska K, Au GG, Marsh GA, Vasan SS, Foo CH, Cowled C, Stewart CR. Altered microRNA expression in COVID-19 patients enables identification of SARS-CoV-2 infection. PLoS Pathog 2021; 17:e1009759. [PMID: 34320031 PMCID: PMC8318295 DOI: 10.1371/journal.ppat.1009759] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/25/2021] [Indexed: 12/29/2022] Open
Abstract
The host response to SARS-CoV-2 infection provide insights into both viral pathogenesis and patient management. The host-encoded microRNA (miRNA) response to SARS-CoV-2 infection, however, remains poorly defined. Here we profiled circulating miRNAs from ten COVID-19 patients sampled longitudinally and ten age and gender matched healthy donors. We observed 55 miRNAs that were altered in COVID-19 patients during early-stage disease, with the inflammatory miR-31-5p the most strongly upregulated. Supervised machine learning analysis revealed that a three-miRNA signature (miR-423-5p, miR-23a-3p and miR-195-5p) independently classified COVID-19 cases with an accuracy of 99.9%. In a ferret COVID-19 model, the three-miRNA signature again detected SARS-CoV-2 infection with 99.7% accuracy, and distinguished SARS-CoV-2 infection from influenza A (H1N1) infection and healthy controls with 95% accuracy. Distinct miRNA profiles were also observed in COVID-19 patients requiring oxygenation. This study demonstrates that SARS-CoV-2 infection induces a robust host miRNA response that could improve COVID-19 detection and patient management. While it is recognized that the host response to infection plays a critical role in determining the severity and outcome of COVID-19, the host microRNA (miRNA) response to SARS-CoV-2 infection is poorly defined. Here we have used next-generation sequencing and bioinformatics to profile circulating miRNAs in 10 COVID-19 patients that were sampled longitudinally over time. COVID-19 was associated with altered expression of 55 plasma miRNAs, with miR-776-3p and miR-1275 among the most strongly down-regulated, and miR-4742-3p, miR-31-5p and miR-3215-3p the most up-regulated. An artificial intelligence methodology was used to identify a miRNA signature, consisting of miR423-5p, miR-23a-3p, miR-195-5p, which could independently classify COVID-19 patients from healthy controls with 99.9% accuracy. When applied to the ferret model of COVID-19, the same signature classified COVID-19 cases with 99.8% accuracy and could distinguish between COVID-19 and influenza A(H1N1) infection with >95% accuracy. In summary this study profiles the host miRNA response to COVID-19 and suggests that the measurement of select host molecules may have potential to independently detect disease cases.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
97 |
4
|
Abstract
Semen analysis as an integral part of infertility investigations is taken as a surrogate measure for male fecundity in clinical andrology, male fertility, and pregnancy risk assessments. Clearly, laboratory seminology is still very much in its infancy. In as much as the creation of a conventional semen profile will always represent the foundations of male fertility evaluation, the 5th edition of the World Health Organization (WHO) manual is a definitive statement on how such assessments should be carried out and how the quality should be controlled. A major advance in this new edition of the WHO manual, resolving the most salient critique of previous editions, is the development of the first well-defined reference ranges for semen analysis based on the analysis of over 1900 recent fathers. The methodology used in the assessment of the usual variables in semen analysis is described, as are many of the less common, but very valuable, sperm function tests. Sperm function testing is used to determine if the sperm have the biologic capacity to perform the tasks necessary to reach and fertilize ova and ultimately result in live births. A variety of tests are available to evaluate different aspects of these functions. To accurately use these functional assays, the clinician must understand what the tests measure, what the indications are for the assays, and how to interpret the results to direct further testing or patient management.
Collapse
|
Journal Article |
14 |
63 |
5
|
Muñoz-Fontela C, Widerspick L, Albrecht RA, Beer M, Carroll MW, de Wit E, Diamond MS, Dowling WE, Funnell SGP, García-Sastre A, Gerhards NM, de Jong R, Munster VJ, Neyts J, Perlman S, Reed DS, Richt JA, Riveros-Balta X, Roy CJ, Salguero FJ, Schotsaert M, Schwartz LM, Seder RA, Segalés J, Vasan SS, Henao-Restrepo AM, Barouch DH. Advances and gaps in SARS-CoV-2 infection models. PLoS Pathog 2022; 18:e1010161. [PMID: 35025969 PMCID: PMC8757994 DOI: 10.1371/journal.ppat.1010161] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The global response to Coronavirus Disease 2019 (COVID-19) is now facing new challenges such as vaccine inequity and the emergence of SARS-CoV-2 variants of concern (VOCs). Preclinical models of disease, in particular animal models, are essential to investigate VOC pathogenesis, vaccine correlates of protection and postexposure therapies. Here, we provide an update from the World Health Organization (WHO) COVID-19 modeling expert group (WHO-COM) assembled by WHO, regarding advances in preclinical models. In particular, we discuss how animal model research is playing a key role to evaluate VOC virulence, transmission and immune escape, and how animal models are being refined to recapitulate COVID-19 demographic variables such as comorbidities and age.
Collapse
|
Review |
3 |
51 |
6
|
McAuley AJ, Kuiper MJ, Durr PA, Bruce MP, Barr J, Todd S, Au GG, Blasdell K, Tachedjian M, Lowther S, Marsh GA, Edwards S, Poole T, Layton R, Riddell SJ, Drew TW, Druce JD, Smith TRF, Broderick KE, Vasan SS. Experimental and in silico evidence suggests vaccines are unlikely to be affected by D614G mutation in SARS-CoV-2 spike protein. NPJ Vaccines 2020; 5:96. [PMID: 33083031 PMCID: PMC7546614 DOI: 10.1038/s41541-020-00246-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
The 'D614G' mutation (Aspartate-to-Glycine change at position 614) of the SARS-CoV-2 spike protein has been speculated to adversely affect the efficacy of most vaccines and countermeasures that target this glycoprotein, necessitating frequent vaccine matching. Virus neutralisation assays were performed using sera from ferrets which received two doses of the INO-4800 COVID-19 vaccine, and Australian virus isolates (VIC01, SA01 and VIC31) which either possess or lack this mutation but are otherwise comparable. Through this approach, supported by biomolecular modelling of this mutation and the commonly-associated P314L mutation in the RNA-dependent RNA polymerase, we have shown that there is no experimental evidence to support this speculation. We additionally demonstrate that the putative elastase cleavage site introduced by the D614G mutation is unlikely to be accessible to proteases.
Collapse
|
Journal Article |
5 |
40 |
7
|
Bauer DC, Tay AP, Wilson LOW, Reti D, Hosking C, McAuley AJ, Pharo E, Todd S, Stevens V, Neave MJ, Tachedjian M, Drew TW, Vasan SS. Supporting pandemic response using genomics and bioinformatics: A case study on the emergent SARS-CoV-2 outbreak. Transbound Emerg Dis 2020; 67:1453-1462. [PMID: 32306500 PMCID: PMC7264654 DOI: 10.1111/tbed.13588] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
Pre‐clinical responses to fast‐moving infectious disease outbreaks heavily depend on choosing the best isolates for animal models that inform diagnostics, vaccines and treatments. Current approaches are driven by practical considerations (e.g. first available virus isolate) rather than a detailed analysis of the characteristics of the virus strain chosen, which can lead to animal models that are not representative of the circulating or emerging clusters. Here, we suggest a combination of epidemiological, experimental and bioinformatic considerations when choosing virus strains for animal model generation. We discuss the currently chosen SARS‐CoV‐2 strains for international coronavirus disease (COVID‐19) models in the context of their phylogeny as well as in a novel alignment‐free bioinformatic approach. Unlike phylogenetic trees, which focus on individual shared mutations, this new approach assesses genome‐wide co‐developing functionalities and hence offers a more fluid view of the ‘cloud of variances’ that RNA viruses are prone to accumulate. This joint approach concludes that while the current animal models cover the existing viral strains adequately, there is substantial evolutionary activity that is likely not considered by the current models. Based on insights from the non‐discrete alignment‐free approach and experimental observations, we suggest isolates for future animal models.
Collapse
|
Journal Article |
5 |
34 |
8
|
Marsh GA, McAuley AJ, Au GG, Riddell S, Layton D, Singanallur NB, Layton R, Payne J, Durr PA, Bender H, Barr JA, Bingham J, Boyd V, Brown S, Bruce MP, Burkett K, Eastwood T, Edwards S, Gough T, Halpin K, Harper J, Holmes C, Horman WSJ, van Vuren PJ, Lowther S, Maynard K, McAuley KD, Neave MJ, Poole T, Rootes C, Rowe B, Soldani E, Stevens V, Stewart CR, Suen WW, Tachedjian M, Todd S, Trinidad L, Walter D, Watson N, Drew TW, Gilbert SC, Lambe T, Vasan SS. ChAdOx1 nCoV-19 (AZD1222) vaccine candidate significantly reduces SARS-CoV-2 shedding in ferrets. NPJ Vaccines 2021; 6:67. [PMID: 33972565 PMCID: PMC8110954 DOI: 10.1038/s41541-021-00315-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/12/2021] [Indexed: 01/05/2023] Open
Abstract
Vaccines against SARS-CoV-2 are likely to be critical in the management of the ongoing pandemic. A number of candidates are in Phase III human clinical trials, including ChAdOx1 nCoV-19 (AZD1222), a replication-deficient chimpanzee adenovirus-vectored vaccine candidate. In preclinical trials, the efficacy of ChAdOx1 nCoV-19 against SARS-CoV-2 challenge was evaluated in a ferret model of infection. Groups of ferrets received either prime-only or prime-boost administration of ChAdOx1 nCoV-19 via the intramuscular or intranasal route. All ChAdOx1 nCoV-19 administration combinations resulted in significant reductions in viral loads in nasal-wash and oral swab samples. No vaccine-associated adverse events were observed associated with the ChAdOx1 nCoV-19 candidate, with the data from this study suggesting it could be an effective and safe vaccine against COVID-19. Our study also indicates the potential for intranasal administration as a way to further improve the efficacy of this leading vaccine candidate.
Collapse
|
research-article |
4 |
32 |
9
|
Malladi S, Patel UR, Rajmani RS, Singh R, Pandey S, Kumar S, Khaleeq S, van Vuren PJ, Riddell S, Goldie S, Gayathri S, Chakraborty D, Kalita P, Pramanick I, Agarwal N, Reddy P, Girish N, Upadhyaya A, Khan MS, Kanjo K, Bhat M, Mani S, Bhattacharyya S, Siddiqui S, Tyagi A, Jha S, Pandey R, Tripathi S, Dutta S, McAuley AJ, Singanallur N, Vasan SS, Ringe RP, Varadarajan R. Immunogenicity and Protective Efficacy of a Highly Thermotolerant, Trimeric SARS-CoV-2 Receptor Binding Domain Derivative. ACS Infect Dis 2021; 7:2546-2564. [PMID: 34260218 PMCID: PMC8996237 DOI: 10.1021/acsinfecdis.1c00276] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 02/07/2023]
Abstract
The receptor binding domain (RBD) of SARS-CoV-2 is the primary target of neutralizing antibodies. We designed a trimeric, highly thermotolerant glycan engineered RBD by fusion to a heterologous, poorly immunogenic disulfide linked trimerization domain derived from cartilage matrix protein. The protein expressed at a yield of ∼80-100 mg/L in transiently transfected Expi293 cells, as well as CHO and HEK293 stable cell lines and formed homogeneous disulfide-linked trimers. When lyophilized, these possessed remarkable functional stability to transient thermal stress of up to 100 °C and were stable to long-term storage of over 4 weeks at 37 °C unlike an alternative RBD-trimer with a different trimerization domain. Two intramuscular immunizations with a human-compatible SWE adjuvanted formulation elicited antibodies with pseudoviral neutralizing titers in guinea pigs and mice that were 25-250 fold higher than corresponding values in human convalescent sera. Against the beta (B.1.351) variant of concern (VOC), pseudoviral neutralization titers for RBD trimer were ∼3-fold lower than against wildtype B.1 virus. RBD was also displayed on a designed ferritin-like Msdps2 nanoparticle. This showed decreased yield and immunogenicity relative to trimeric RBD. Replicative virus neutralization assays using mouse sera demonstrated that antibodies induced by the trimers neutralized all four VOC to date, namely B.1.1.7, B.1.351, P.1, and B.1.617.2 without significant differences. Trimeric RBD immunized hamsters were protected from viral challenge. The excellent immunogenicity, thermotolerance, and high yield of these immunogens suggest that they are a promising modality to combat COVID-19, including all SARS-CoV-2 VOC to date.
Collapse
|
research-article |
4 |
25 |
10
|
Perumal P, Abdullatif MB, Garlant HN, Honeyborne I, Lipman M, McHugh TD, Southern J, Breen R, Santis G, Ellappan K, Kumar SV, Belgode H, Abubakar I, Sinha S, Vasan SS, Joseph N, Kempsell KE. Validation of Differentially Expressed Immune Biomarkers in Latent and Active Tuberculosis by Real-Time PCR. Front Immunol 2021; 11:612564. [PMID: 33841389 PMCID: PMC8029985 DOI: 10.3389/fimmu.2020.612564] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) remains a major global threat and diagnosis of active TB ((ATB) both extra-pulmonary (EPTB), pulmonary (PTB)) and latent TB (LTBI) infection remains challenging, particularly in high-burden countries which still rely heavily on conventional methods. Although molecular diagnostic methods are available, e.g., Cepheid GeneXpert, they are not universally available in all high TB burden countries. There is intense focus on immune biomarkers for use in TB diagnosis, which could provide alternative low-cost, rapid diagnostic solutions. In our previous gene expression studies, we identified peripheral blood leukocyte (PBL) mRNA biomarkers in a non-human primate TB aerosol-challenge model. Here, we describe a study to further validate select mRNA biomarkers from this prior study in new cohorts of patients and controls, as a prerequisite for further development. Whole blood mRNA was purified from ATB patients recruited in the UK and India, LTBI and two groups of controls from the UK (i) a low TB incidence region (CNTRLA) and (ii) individuals variably-domiciled in the UK and Asia ((CNTRLB), the latter TB high incidence regions). Seventy-two mRNA biomarker gene targets were analyzed by qPCR using the Roche Lightcycler 480 qPCR platform and data analyzed using GeneSpring™ 14.9 bioinformatics software. Differential expression of fifty-three biomarkers was confirmed between MTB infected, LTBI groups and controls, seventeen of which were significant using analysis of variance (ANOVA): CALCOCO2, CD52, GBP1, GBP2, GBP5, HLA-B, IFIT3, IFITM3, IRF1, LOC400759 (GBP1P1), NCF1C, PF4V1, SAMD9L, S100A11, TAF10, TAPBP, and TRIM25. These were analyzed using receiver operating characteristic (ROC) curve analysis. Single biomarkers and biomarker combinations were further assessed using simple arithmetic algorithms. Minimal combination biomarker panels were delineated for primary diagnosis of ATB (both PTB and EPTB), LTBI and identifying LTBI individuals at high risk of progression which showed good performance characteristics. These were assessed for suitability for progression against the standards for new TB diagnostic tests delineated in the published World Health Organization (WHO) technology product profiles (TPPs).
Collapse
|
research-article |
4 |
19 |
11
|
Beale DJ, Shah R, Karpe AV, Hillyer KE, McAuley AJ, Au GG, Marsh GA, Vasan SS. Metabolic Profiling from an Asymptomatic Ferret Model of SARS-CoV-2 Infection. Metabolites 2021; 11:327. [PMID: 34069591 PMCID: PMC8160988 DOI: 10.3390/metabo11050327] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/15/2021] [Indexed: 12/16/2022] Open
Abstract
Coronavirus disease (COVID-19) is a contagious respiratory disease that is causing significant global morbidity and mortality. Understanding the impact of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection on the host metabolism is still in its infancy but of great importance. Herein, we investigated the metabolic response during viral shedding and post-shedding in an asymptomatic SARS-CoV-2 ferret model (n = 6) challenged with two SARS-CoV-2 isolates. Virological and metabolic analyses were performed on (minimally invasive) collected oral swabs, rectal swabs, and nasal washes. Fragments of SARS-CoV-2 RNA were only found in the nasal wash samples in four of the six ferrets, and in the samples collected 3 to 9 days post-infection (referred to as viral shedding). Central carbon metabolism metabolites were analyzed during viral shedding and post-shedding periods using a dynamic Multiple Reaction Monitoring (dMRM) database and method. Subsequent untargeted metabolomics and lipidomics of the same samples were performed using a Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (LC-QToF-MS) methodology, building upon the identified differentiated central carbon metabolism metabolites. Multivariate analysis of the acquired data identified 29 significant metabolites and three lipids that were subjected to pathway enrichment and impact analysis. The presence of viral shedding coincided with the challenge dose administered and significant changes in the citric acid cycle, purine metabolism, and pentose phosphate pathways, amongst others, in the host nasal wash samples. An elevated immune response in the host was also observed between the two isolates studied. These results support other metabolomic-based findings in clinical observational studies and indicate the utility of metabolomics applied to ferrets for further COVID-19 research that advances early diagnosis of asymptomatic and mild clinical COVID-19 infections, in addition to assessing the effectiveness of new or repurposed drug therapies.
Collapse
|
research-article |
4 |
17 |
12
|
Au GG, Marsh GA, McAuley AJ, Lowther S, Trinidad L, Edwards S, Todd S, Barr J, Bruce MP, Poole TB, Brown S, Layton R, Riddell S, Rowe B, Soldani E, Suen WW, Bergfeld J, Bingham J, Payne J, Durr PA, Drew TW, Vasan SS. Characterisation and natural progression of SARS-CoV-2 infection in ferrets. Sci Rep 2022; 12:5680. [PMID: 35383204 PMCID: PMC8981194 DOI: 10.1038/s41598-022-08431-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 03/07/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the infectious disease COVID-19, which has rapidly become an international pandemic with significant impact on healthcare systems and the global economy. To assist antiviral therapy and vaccine development efforts, we performed a natural history/time course study of SARS-CoV-2 infection in ferrets to characterise and assess the suitability of this animal model. Ten ferrets of each sex were challenged intranasally with 4.64 × 104 TCID50 of SARS-CoV-2 isolate Australia/VIC01/2020 and monitored for clinical disease signs, viral shedding, and tissues collected post-mortem for histopathological and virological assessment at set intervals. We found that SARS-CoV-2 replicated in the upper respiratory tract of ferrets with consistent viral shedding in nasal wash samples and oral swab samples up until day 9. Infectious SARS-CoV-2 was recovered from nasal washes, oral swabs, nasal turbinates, pharynx, and olfactory bulb samples within 3-7 days post-challenge; however, only viral RNA was detected by qRT-PCR in samples collected from the trachea, lung, and parts of the gastrointestinal tract. Viral antigen was seen exclusively in nasal epithelium and associated sloughed cells and draining lymph nodes upon immunohistochemical staining. Due to the absence of clinical signs after viral challenge, our ferret model is appropriate for studying asymptomatic SARS-CoV-2 infections and most suitable for use in vaccine efficacy studies.
Collapse
|
research-article |
3 |
13 |
13
|
Bauer DC, Metke-Jimenez A, Maurer-Stroh S, Tiruvayipati S, Wilson LOW, Jain Y, Perrin A, Ebrill K, Hansen DP, Vasan SS. Interoperable medical data: The missing link for understanding COVID-19. Transbound Emerg Dis 2021; 68:1753-1760. [PMID: 33095970 PMCID: PMC8359419 DOI: 10.1111/tbed.13892] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Being able to link clinical outcomes to SARS‐CoV‐2 virus strains is a critical component of understanding COVID‐19. Here, we discuss how current processes hamper sustainable data collection to enable meaningful analysis and insights. Following the ‘Fast Healthcare Interoperable Resource’ (FHIR) implementation guide, we introduce an ontology‐based standard questionnaire to overcome these shortcomings and describe patient 'journeys' in coordination with the World Health Organization's recommendations. We identify steps in the clinical health data acquisition cycle and workflows that likely have the biggest impact in the data‐driven understanding of this virus. Specifically, we recommend detailed symptoms and medical history using the FHIR standards. We have taken the first steps towards this by making patient status mandatory in GISAID (‘Global Initiative on Sharing All Influenza Data’), immediately resulting in a measurable increase in the fraction of cases with useful patient information. The main remaining limitation is the lack of controlled vocabulary or a medical ontology.
Collapse
|
Journal Article |
4 |
12 |
14
|
Srinivas BV, Vasan SS, Mohammed S. Penile lengthening procedure with V-Y advancement flap and an interposing silicone sheath: A novel methodology. Indian J Urol 2012. [PMID: 23204668 PMCID: PMC3507409 DOI: 10.4103/0970-1591.102722] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Surgery to augment penile length has become increasingly common. Lack of standardization of this controversial procedure has led to a wide variety of poorly documented surgical techniques, with unconvincing results. The most commonly used technique involves release of the suspensory ligament, with an advancement of an infrapubic skin flap onto the penis via a V-Y plasty. This technique has a major drawback of the possibility of reattachment of the penis to the pubis. We describe a new technique of interposing a silicone sheath along with V-Y advancement flap that overrides this drawback and minimizes the loss of the gained length.
Collapse
|
Case Reports |
13 |
12 |
15
|
Ahmed S, Khan MS, Gayathri S, Singh R, Kumar S, Patel UR, Malladi SK, Rajmani RS, van Vuren PJ, Riddell S, Goldie S, Girish N, Reddy P, Upadhyaya A, Pandey S, Siddiqui S, Tyagi A, Jha S, Pandey R, Khatun O, Narayan R, Tripathi S, McAuley AJ, Singanallur NB, Vasan SS, Ringe RP, Varadarajan R. A Stabilized, Monomeric, Receptor Binding Domain Elicits High-Titer Neutralizing Antibodies Against All SARS-CoV-2 Variants of Concern. Front Immunol 2021; 12:765211. [PMID: 34956193 PMCID: PMC8695907 DOI: 10.3389/fimmu.2021.765211] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022] Open
Abstract
Saturation suppressor mutagenesis was used to generate thermostable mutants of the SARS-CoV-2 spike receptor-binding domain (RBD). A triple mutant with an increase in thermal melting temperature of ~7°C with respect to the wild-type B.1 RBD and was expressed in high yield in both mammalian cells and the microbial host, Pichia pastoris, was downselected for immunogenicity studies. An additional derivative with three additional mutations from the B.1.351 (beta) isolate was also introduced into this background. Lyophilized proteins were resistant to high-temperature exposure and could be stored for over a month at 37°C. In mice and hamsters, squalene-in-water emulsion (SWE) adjuvanted formulations of the B.1-stabilized RBD were considerably more immunogenic than RBD lacking the stabilizing mutations and elicited antibodies that neutralized all four current variants of concern with similar neutralization titers. However, sera from mice immunized with the stabilized B.1.351 derivative showed significantly decreased neutralization titers exclusively against the B.1.617.2 (delta) VOC. A cocktail comprising stabilized B.1 and B.1.351 RBDs elicited antibodies with qualitatively improved neutralization titers and breadth relative to those immunized solely with either immunogen. Immunized hamsters were protected from high-dose viral challenge. Such vaccine formulations can be rapidly and cheaply produced, lack extraneous tags or additional components, and can be stored at room temperature. They are a useful modality to combat COVID-19, especially in remote and low-resource settings.
Collapse
|
research-article |
4 |
12 |
16
|
Marsh GA, McAuley AJ, Brown S, Pharo EA, Crameri S, Au GG, Baker ML, Barr JA, Bergfeld J, Bruce MP, Burkett K, Durr PA, Holmes C, Izzard L, Layton R, Lowther S, Neave MJ, Poole T, Riddell SJ, Rowe B, Soldani E, Stevens V, Suen WW, Sundaramoorthy V, Tachedjian M, Todd S, Trinidad L, Williams SM, Druce JD, Drew TW, Vasan SS. In vitro characterisation of SARS-CoV-2 and susceptibility of domestic ferrets (Mustela putorius furo). Transbound Emerg Dis 2021; 69:297-307. [PMID: 33400387 DOI: 10.1111/tbed.13978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 01/03/2021] [Indexed: 12/21/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an emerging virus that has caused significant human morbidity and mortality since its detection in late 2019. With the rapid emergence has come an unprecedented programme of vaccine development with at least 300 candidates under development. Ferrets have proven to be an appropriate animal model for testing safety and efficacy of SARS-CoV-2 vaccines due to quantifiable virus shedding in nasal washes and oral swabs. Here, we outline our efforts early in the SARS-CoV-2 outbreak to propagate and characterize an Australian isolate of the virus in vitro and in an ex vivo model of human airway epithelium, as well as to demonstrate the susceptibility of domestic ferrets (Mustela putorius furo) to SARS-CoV-2 infection following intranasal challenge.
Collapse
|
Journal Article |
4 |
10 |
17
|
Vasan SS, Veerachari SB. Mobile Phone Electromagnetic Waves and Its Effect on Human Ejaculated Semen: An in vitro Study. ACTA ACUST UNITED AC 2012. [DOI: 10.5005/jp-journals-10016-1034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ABSTRACT
Mobile phones usage has seen an exponential growth recently. With this increasing demand, the amount of electromagnetic radiation (EMR) exposed is also increasing. Hence, we studied the effect of these radiations on ejaculated human semen and speculate the contribution of these harmful radiations in male infertility. Samples exposed to EMR showed a significant decrease in sperm motility and viability, increase in reactive oxygen species (ROS) and DNA fragmentation index (DFI) compared to unexposed group. We concluded that mobile phones emit electromagnetic waves which lead to oxidative stress in human semen and also cause changes in DNA fragmentation. We extrapolate these findings to speculate that these radiations may negatively affect spermatozoa and impair male fertility.
How to cite this article
Veerachari SB, Vasan SS. Mobile Phone Electromagnetic Waves and Its Effect on Human Ejaculated Semen: An in vitro Study. Int J Infertility Fetal Med 2012;3(1):15-21.
Collapse
|
|
13 |
9 |
18
|
Singanallur NB, van Vuren PJ, McAuley AJ, Bruce MP, Kuiper MJ, Gwini SM, Riddell S, Goldie S, Drew TW, Blasdell KR, Tachedjian M, Mangalaganesh S, Chahal S, Caly L, Druce JD, Juno JA, Kent SJ, Wheatley AK, Vasan SS. At Least Three Doses of Leading Vaccines Essential for Neutralisation of SARS-CoV-2 Omicron Variant. Front Immunol 2022; 13:883612. [PMID: 35655773 PMCID: PMC9152325 DOI: 10.3389/fimmu.2022.883612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Plasma samples taken at different time points from donors who received either AstraZeneca (Vaxzevria) or Pfizer (Comirnaty) or Moderna (Spikevax) coronavirus disease-19 (COVID-19) vaccine were assessed in virus neutralization assays against Delta and Omicron variants of concern and a reference isolate (VIC31). With the Pfizer vaccine there was 6-8-fold reduction in 50% neutralizing antibody titres (NT50) against Delta and VIC31 at 6 months compared to 2 weeks after the second dose; followed by 25-fold increase at 2 weeks after the third dose. Neutralisation of Omicron was only consistently observed 2 weeks after the third dose, with most samples having titres below the limit of detection at earlier timepoints. Moderna results were similar to Pfizer at 2 weeks after the second dose, while the titres for AstraZeneca samples derived from older donors were 7-fold lower against VIC31 and below the limit of detection against Delta and Omicron. Age and gender were not found to significantly impact our results. These findings indicate that vaccine matching may be needed, and that at least a third dose of these vaccines is necessary to generate sufficient neutralising antibodies against emerging variants of concern, especially Omicron, amidst the challenges of ensuring vaccine equity worldwide.
Collapse
|
research-article |
3 |
8 |
19
|
Lim PHC, Ng FC, Cheng CWS, Wong MYC, Chee CTY, Moorthy P, Vasan SS. Clinical safety profile of sildenafil in Singaporean men with erectile dysfunction: pre-marketing experience (ASSESS-I evaluation). J Int Med Res 2002; 30:137-43. [PMID: 12025521 DOI: 10.1177/147323000203000206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Safety and tolerability of sildenafil citrate was assessed in a population subset of 60 Singaporean men with erectile dysfunction taken from the Asian Sildenafil Efficacy and Safety Study (ASSESS-I), a double-blind, placebo-controlled, flexible-dose study. The men, from two centres, with > or = 6 months' history of erectile dysfunction, were randomized to two treatment arms for 12 weeks. One group (30 patients) received sildenafil (initial dose 50 mg taken 1 h before sexual activity for the first 2 weeks, increased to 100 mg or decreased to 25 mg, according to efficacy and/or tolerability). The remaining 30 patients received a matching placebo. Incidence and type of adverse effects were evaluated at 2, 4, 8 and 12 weeks. Nine patients (30.0%) on sildenafil (33.1% in the full ASSESS-I study) and one patient (3.3%) on placebo (22.8% in the full ASSESS-I study) experienced treatment-related adverse events, the most frequent being headache in the sildenafil group (reported by five patients [16.7%]; 11.0% in the full ASSESS-I study). Flushing, visual disturbance, dizziness, insomnia, myalgia and back pain each occurred in one patient in the sildenafil group (3.3%); in the placebo group, one patient (3.3%) had headache. Importantly, the incidence of cardiovascular and respiratory system adverse events were relatively less than in the full ASSESS-I population (cardiovascular 3.3% in the present study versus 10.2% in the full ASSESS-I population; respiratory 3.3% versus 5.5%). All adverse events were transient and mild, and did not lead to treatment withdrawal. There was no effect on sitting blood pressure, heart rate or standard laboratory parameters; more importantly, there was no incidence of myocardial infarction, stroke or priapism. These results should reassure Singaporean patients and their physicians of the safety of sildenafil for erectile dysfunction.
Collapse
|
Clinical Trial |
23 |
7 |
20
|
Riddell S, Goldie S, McAuley AJ, Kuiper MJ, Durr PA, Blasdell KR, Tachedjian M, Druce JD, Smith TRF, Broderick KE, Vasan SS. Live Virus Neutralisation of the 501Y.V1 and 501Y.V2 SARS-CoV-2 Variants following INO-4800 Vaccination of Ferrets. Front Immunol 2021; 12:694857. [PMID: 34248993 PMCID: PMC8269317 DOI: 10.3389/fimmu.2021.694857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
The ongoing COVID-19 pandemic has resulted in significant global morbidity and mortality on a scale similar to the influenza pandemic of 1918. Over the course of the last few months, a number of SARS-CoV-2 variants have been identified against which vaccine-induced immune responses may be less effective. These "variants-of-concern" have garnered significant attention in the media, with discussion around their impact on the future of the pandemic and the ability of leading COVID-19 vaccines to protect against them effectively. To address concerns about emerging SARS-CoV-2 variants affecting vaccine-induced immunity, we investigated the neutralisation of representative 'G614', '501Y.V1' and '501Y.V2' virus isolates using sera from ferrets that had received prime-boost doses of the DNA vaccine, INO-4800. Neutralisation titres against G614 and 501Y.V1 were comparable, but titres against the 501Y.V2 variant were approximately 4-fold lower, similar to results reported with other nucleic acid vaccines and supported by in silico biomolecular modelling. The results confirm that the vaccine-induced neutralising antibodies generated by INO-4800 remain effective against current variants-of-concern, albeit with lower neutralisation titres against 501Y.V2 similar to other leading nucleic acid-based vaccines.
Collapse
|
research-article |
4 |
6 |
21
|
Jansen van Vuren P, McAuley AJ, Kuiper MJ, Singanallur NB, Bruce MP, Riddell S, Goldie S, Mangalaganesh S, Chahal S, Drew TW, Blasdell KR, Tachedjian M, Caly L, Druce JD, Ahmed S, Khan MS, Malladi SK, Singh R, Pandey S, Varadarajan R, Vasan SS. Highly Thermotolerant SARS-CoV-2 Vaccine Elicits Neutralising Antibodies against Delta and Omicron in Mice. Viruses 2022; 14:800. [PMID: 35458530 PMCID: PMC9031315 DOI: 10.3390/v14040800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
As existing vaccines fail to completely prevent COVID-19 infections or community transmission, there is an unmet need for vaccines that can better combat SARS-CoV-2 variants of concern (VOC). We previously developed highly thermo-tolerant monomeric and trimeric receptor-binding domain derivatives that can withstand 100 °C for 90 min and 37 °C for four weeks and help eliminate cold-chain requirements. We show that mice immunised with these vaccine formulations elicit high titres of antibodies that neutralise SARS-CoV-2 variants VIC31 (with Spike: D614G mutation), Delta and Omicron (BA.1.1) VOC. Compared to VIC31, there was an average 14.4-fold reduction in neutralisation against BA.1.1 for the three monomeric antigen-adjuvant combinations and a 16.5-fold reduction for the three trimeric antigen-adjuvant combinations; the corresponding values against Delta were 2.5 and 3.0. Our findings suggest that monomeric formulations are suitable for upcoming Phase I human clinical trials and that there is potential for increasing the efficacy with vaccine matching to improve the responses against emerging variants. These findings are consistent with in silico modelling and AlphaFold predictions, which show that, while oligomeric presentation can be generally beneficial, it can make important epitopes inaccessible and also carries the risk of eliciting unwanted antibodies against the oligomerisation domain.
Collapse
|
research-article |
3 |
4 |
22
|
Srinivas BV, Vasan SS, Mohammed S. A case of penile fracture at the crura of the penis without urethral involvement: Rare entity. Indian J Urol 2012. [PMID: 23204666 PMCID: PMC3507407 DOI: 10.4103/0970-1591.102718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Penile fracture is a rare injury, most commonly sustained during sexual intercourse. We report the case of a 29-year-old man who presented with bilateral rupture of the crura of the cavernosa without urethral injury. This is the first case in the literature to present with this unique finding. Urgent surgical exploration was performed and the injuries repaired primarily. At follow-up, the patient reported satisfactory erectile function. This case highlights the importance of early diagnosis with unusual presentation and early surgical repair for better outcome.
Collapse
|
Case Reports |
13 |
4 |
23
|
Kuiper MJ, Wilson LOW, Mangalaganesh S, Lee C, Reti D, Vasan SS. "But Mouse, You Are Not Alone": On Some Severe Acute Respiratory Syndrome Coronavirus 2 Variants Infecting Mice. ILAR J 2021; 62:48-59. [PMID: 35022734 PMCID: PMC9236659 DOI: 10.1093/ilar/ilab031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/31/2021] [Accepted: 11/21/2021] [Indexed: 12/20/2022] Open
Abstract
In silico predictions combined with in vitro, in vivo, and in situ observations collectively suggest that mouse adaptation of the severe acute respiratory syndrome 2 virus requires an aromatic substitution in position 501 or position 498 (but not both) of the spike protein's receptor binding domain. This effect could be enhanced by mutations in positions 417, 484, and 493 (especially K417N, E484K, Q493K, and Q493R), and to a lesser extent by mutations in positions 486 and 499 (such as F486L and P499T). Such enhancements, due to more favorable binding interactions with residues on the complementary angiotensin-converting enzyme 2 interface, are, however, unlikely to sustain mouse infectivity on their own based on theoretical and experimental evidence to date. Our current understanding thus points to the Alpha, Beta, Gamma, and Omicron variants of concern infecting mice, whereas Delta and "Delta Plus" lack a similar biomolecular basis to do so. This paper identifies 11 countries (Brazil, Chile, Djibouti, Haiti, Malawi, Mozambique, Reunion, Suriname, Trinidad and Tobago, Uruguay, and Venezuela) where targeted local field surveillance of mice is encouraged because they may have come in contact with humans who had the virus with adaptive mutation(s). It also provides a systematic methodology to analyze the potential for other animal reservoirs and their likely locations.
Collapse
|
review-article |
4 |
4 |
24
|
MacRaild CA, Mohammed MUR, Faheem, Murugesan S, Styles IK, Peterson AL, Kirkpatrick CMJ, Cooper MA, Palombo EA, Simpson MM, Jain HA, Agarwal V, McAuley AJ, Kumar A, Creek DJ, Trevaskis NL, Vasan SS. Systematic Down-Selection of Repurposed Drug Candidates for COVID-19. Int J Mol Sci 2022; 23:11851. [PMID: 36233149 PMCID: PMC9569752 DOI: 10.3390/ijms231911851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 01/09/2023] Open
Abstract
SARS-CoV-2 is the cause of the COVID-19 pandemic which has claimed more than 6.5 million lives worldwide, devastating the economy and overwhelming healthcare systems globally. The development of new drug molecules and vaccines has played a critical role in managing the pandemic; however, new variants of concern still pose a significant threat as the current vaccines cannot prevent all infections. This situation calls for the collaboration of biomedical scientists and healthcare workers across the world. Repurposing approved drugs is an effective way of fast-tracking new treatments for recently emerged diseases. To this end, we have assembled and curated a database consisting of 7817 compounds from the Compounds Australia Open Drug collection. We developed a set of eight filters based on indicators of efficacy and safety that were applied sequentially to down-select drugs that showed promise for drug repurposing efforts against SARS-CoV-2. Considerable effort was made to evaluate approximately 14,000 assay data points for SARS-CoV-2 FDA/TGA-approved drugs and provide an average activity score for 3539 compounds. The filtering process identified 12 FDA-approved molecules with established safety profiles that have plausible mechanisms for treating COVID-19 disease. The methodology developed in our study provides a template for prioritising drug candidates that can be repurposed for the safe, efficacious, and cost-effective treatment of COVID-19, long COVID, or any other future disease. We present our database in an easy-to-use interactive interface (CoviRx that was also developed to enable the scientific community to access to the data of over 7000 potential drugs and to implement alternative prioritisation and down-selection strategies.
Collapse
|
research-article |
3 |
2 |
25
|
Layton D, Burkett K, Marsh GA, Singanallur NB, Barr J, Layton R, Riddell SJ, Brown S, Trinidad L, Au GG, McAuley AJ, Lowther S, Watson J, Vasan SS. Type I Hypersensitivity in Ferrets Following Exposure to SARS-CoV-2 Inoculum: Lessons Learned. ILAR J 2021; 62:232-237. [PMID: 34157067 PMCID: PMC8344777 DOI: 10.1093/ilar/ilab019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/16/2021] [Indexed: 01/15/2023] Open
Abstract
This case report discusses Type I hypersensitivity in ferrets following exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inoculum, observed during a study investigating the efficacy of candidate COVID-19 vaccines. Following a comprehensive internal root-cause investigation, it was hypothesized that prior prime-boost immunization of ferrets with a commercial canine C3 vaccine to protect against the canine distemper virus had resulted in primary immune response to fetal bovine serum (FBS) in the C3 preparation. Upon intranasal exposure to SARS-CoV-2 virus cultured in medium containing FBS, an allergic airway response occurred in 6 out of 56 of the ferrets. The 6 impacted ferrets were randomly dispersed across study groups, including different COVID-19 vaccine candidates, routes of vaccine candidate administration, and controls (placebo). The root-cause investigation and subsequent analysis determined that the allergic reaction was unrelated to the COVID-19 vaccine candidates under evaluation. Histological assessment suggested that the allergic response was characterized by eosinophilic airway disease; increased serum immunoglobulin levels reactive to FBS further suggested this response was caused by immune priming to FBS present in the C3 vaccine. This was further supported by in vivo studies demonstrating ferrets administered diluted FBS also presented clinical signs consistent with a hyperallergic response, while clinical signs were absent in ferrets that received a serum-free SARS-CoV-2 inoculum. It is therefore recommended that vaccine studies in higher order animals should consider the impact of welfare vaccination and use serum-free inoculum whenever possible.
Collapse
|
Journal Article |
4 |
2 |