1
|
Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, Yates KB, Lako A, Felt K, Naik GS, Manos M, Gjini E, Kuchroo JR, Ishizuka JJ, Collier JL, Griffin GK, Maleri S, Comstock DE, Weiss SA, Brown FD, Panda A, Zimmer MD, Manguso RT, Hodi FS, Rodig SJ, Sharpe AH, Haining WN. Subsets of exhausted CD8 + T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol 2019; 20:326-336. [PMID: 30778252 DOI: 10.1038/s41590-019-0312-6] [Citation(s) in RCA: 1329] [Impact Index Per Article: 221.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/03/2019] [Indexed: 12/15/2022]
Abstract
T cell dysfunction is a hallmark of many cancers, but the basis for T cell dysfunction and the mechanisms by which antibody blockade of the inhibitory receptor PD-1 (anti-PD-1) reinvigorates T cells are not fully understood. Here we show that such therapy acts on a specific subpopulation of exhausted CD8+ tumor-infiltrating lymphocytes (TILs). Dysfunctional CD8+ TILs possess canonical epigenetic and transcriptional features of exhaustion that mirror those seen in chronic viral infection. Exhausted CD8+ TILs include a subpopulation of 'progenitor exhausted' cells that retain polyfunctionality, persist long term and differentiate into 'terminally exhausted' TILs. Consequently, progenitor exhausted CD8+ TILs are better able to control tumor growth than are terminally exhausted T cells. Progenitor exhausted TILs can respond to anti-PD-1 therapy, but terminally exhausted TILs cannot. Patients with melanoma who have a higher percentage of progenitor exhausted cells experience a longer duration of response to checkpoint-blockade therapy. Thus, approaches to expand the population of progenitor exhausted CD8+ T cells might be an important component of improving the response to checkpoint blockade.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
1329 |
2
|
Pauken KE, Godec J, Odorizzi PM, Brown KE, Yates KB, Ngiow SF, Burke KP, Maleri S, Grande SM, Francisco LM, Ali MA, Imam S, Freeman GJ, Haining WN, Wherry EJ, Sharpe AH. The PD-1 Pathway Regulates Development and Function of Memory CD8 + T Cells following Respiratory Viral Infection. Cell Rep 2021; 31:107827. [PMID: 32610128 DOI: 10.1016/j.celrep.2020.107827] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 07/05/2019] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
The PD-1 pathway regulates dysfunctional T cells in chronic infection and cancer, but the role of this pathway during acute infection remains less clear. Here, we demonstrate that PD-1 signals are needed for optimal memory. Mice deficient in the PD-1 pathway exhibit impaired CD8+ T cell memory following acute influenza infection, including reduced virus-specific CD8+ T cell numbers and compromised recall responses. PD-1 blockade during priming leads to similar differences early post-infection but without the defect in memory formation, suggesting that timing and/or duration of PD-1 blockade could be tailored to modulate host responses. Our studies reveal a role for PD-1 as an integrator of CD8+ T cell signals that promotes CD8+ T cell memory formation and suggest PD-1 continues to fine-tune CD8+ T cells after they migrate into non-lymphoid tissues. These findings have important implications for PD-1-based immunotherapy, in which PD-1 inhibition may influence memory responses in patients.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
82 |
3
|
Maleri S, Ge Q, Hackett EA, Wang Y, Dohlman HG, Errede B. Persistent activation by constitutive Ste7 promotes Kss1-mediated invasive growth but fails to support Fus3-dependent mating in yeast. Mol Cell Biol 2004; 24:9221-38. [PMID: 15456892 PMCID: PMC517903 DOI: 10.1128/mcb.24.20.9221-9238.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitogen-activated protein kinase kinase kinase-Ste11 (MAPKKK-Ste11), MAPKK-Ste7, and MAPK-Kss1 mediate pheromone-induced mating differentiation and nutrient-responsive invasive growth in Saccharomyces cerevisiae. The mating pathway also requires the scaffold-Ste5 and the additional MAPK-Fus3. One contribution to specificity in this system is thought to come from stimulus-dependent recruitment of the MAPK cascade to upstream activators that are unique to one or the other pathway. To test this premise, we asked if stimulus-independent signaling by constitutive Ste7 would lead to a loss of biological specificity. Instead, we found that constitutive Ste7 promotes invasion without supporting mating responses. This specificity occurs because constitutive Ste7 activates Kss1, but not Fus3, in vivo and promotes filamentation gene expression while suppressing mating gene expression. Differences in the ability of constitutive Ste7 variants to bind the MAPKs and Ste5 account for the selective activation of Kss1. These findings support the model that Fus3 activation in vivo requires binding to both Ste7 and the scaffold-Ste5 but that Kss1 activation is independent of Ste5. This scaffold-independent activation of Kss1 by constitutive Ste7 and the existence of mechanisms for pathway-specific promoter discrimination impose a unique developmental fate independently of any distinguishing external stimuli.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
49 |
4
|
Houser JR, Ford E, Chatterjea SM, Maleri S, Elston TC, Errede B. An improved short-lived fluorescent protein transcriptional reporter for Saccharomyces cerevisiae. Yeast 2012; 29:519-30. [PMID: 23172645 DOI: 10.1002/yea.2932] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 10/02/2012] [Indexed: 11/09/2022] Open
Abstract
Ideal reporter genes for temporal transcription programmes have short half-lives that restrict their detection to the window in which their transcripts are present and translated. In an effort to meet this criterion for reporters of transcription in individual living cells, we adapted the ubiquitin fusion strategy for programmable N-end rule degradation to generate an N-degron version of green fluorescent protein (GFP) with a half-life of ~7 min. The GFP variant we used here (designated GFP*) has excellent fluorescence brightness and maturation properties, which make the destabilized reporter well suited for tracking the induction and attenuation kinetics of gene expression in living cells. These attributes are illustrated by its ability to track galactose- and pheromone-induced transcription in S. cerevisiae. We further show that the fluorescence measurements using the short-lived N-degron GFP* reporter gene accurately predict the transient mRNA profile of the prototypical pheromone-induced FUS1 gene.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
42 |
5
|
Hackett EA, Esch RK, Maleri S, Errede B. A family of destabilized cyan fluorescent proteins as transcriptional reporters in S. cerevisiae. Yeast 2006; 23:333-49. [PMID: 16598699 DOI: 10.1002/yea.1358] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 'programmable' features of the N-end rule degradation pathway and a ubiquitin fusion strategy were exploited to create a family of destabilized cyan fluorescent proteins (CFP) to be used as transcriptional reporters. The N-degron CFP reporters characterized in this report have half-lives of approximately 75, 50 and 5 min, but further modification of the N-degron signal sequences could readily generate additional variants within this range. These destabilized CFP reporters have been engineered into convenient plasmid constructs with features to enable their expression from upstream activating sequences of choice and to facilitate their targeted integration to the URA3-TIM9 intergenic region of chromosome V. The advantages and limitations of these reporters as temporal indicators of gene expression in living cells are illustrated by their application as reporters of galactose- and pheromone-induced transcription. The plasmid design we describe and the range of different stabilities that are theoretically feasible with this strategy make the N-degron CFP reporters easily adapted to a variety of applications.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Blotting, Northern
- Blotting, Western
- Chromosomes, Fungal/genetics
- DNA, Fungal/genetics
- Fluorescent Dyes/chemistry
- Fluorescent Dyes/metabolism
- Galactokinase/genetics
- Gene Expression Regulation, Fungal
- Genes, Reporter/genetics
- Genes, Reporter/physiology
- Green Fluorescent Proteins/biosynthesis
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Microscopy, Fluorescence
- Molecular Sequence Data
- Mutagenesis, Insertional
- Promoter Regions, Genetic
- Recombinant Proteins/genetics
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Transcription, Genetic/genetics
- Transcription, Genetic/physiology
Collapse
|
Research Support, N.I.H., Extramural |
19 |
32 |
6
|
Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, Yates KB, Lako A, Felt K, Naik GS, Manos M, Gjini E, Kuchroo JR, Ishizuka JJ, Collier JL, Griffin GK, Maleri S, Comstock DE, Weiss SA, Brown FD, Panda A, Zimmer MD, Manguso RT, Hodi FS, Rodig SJ, Sharpe AH, Haining WN. Author Correction: Subsets of exhausted CD8 + T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol 2019; 20:1556. [PMID: 31582823 DOI: 10.1038/s41590-019-0528-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Collapse
|
Published Erratum |
6 |
16 |
7
|
Bu X, Juneja VR, Reynolds CG, Mahoney KM, Bu MT, McGuire KA, Maleri S, Hua P, Zhu B, Klein SR, Greenfield EA, Armand P, Ritz J, Sharpe AH, Freeman GJ. Monitoring PD-1 Phosphorylation to Evaluate PD-1 Signaling during Antitumor Immune Responses. Cancer Immunol Res 2021; 9:1465-1475. [PMID: 34635486 DOI: 10.1158/2326-6066.cir-21-0493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/30/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022]
Abstract
PD-1 expression marks activated T cells susceptible to PD-1-mediated inhibition but not whether a PD-1-mediated signal is being delivered. Molecular predictors of response to PD-1 immune checkpoint blockade (ICB) are needed. We describe a monoclonal antibody (mAb) that detects PD-1 signaling through the detection of phosphorylation of the immunotyrosine switch motif (ITSM) in the intracellular tail of mouse and human PD-1 (phospho-PD-1). We showed PD-1+ tumor-infiltrating lymphocytes (TILs) in MC38 murine tumors had high phosphorylated PD-1, particularly in PD-1+TIM-3+ TILs. Upon PD-1 blockade, PD-1 phosphorylation was decreased in CD8+ TILs. Phospho-PD-1 increased in T cells from healthy human donors after PD-1 engagement and decreased in patients with Hodgkin lymphoma following ICB. These data demonstrate that phosphorylation of the ITSM motif of PD-1 marks dysfunctional T cells that may be rescued with PD-1 blockade. Detection of phospho-PD-1 in TILs is a potential biomarker for PD-1 immunotherapy responses.
Collapse
|
|
4 |
7 |
8
|
Bu X, Juneja VR, Mahoney KM, Renolds CG, Mcguire KA, Maleri S, Hua P, Zhu B, Klein SR, Greenfield E, Armand P, Ritz J, Sharpe A, Freeman GJ. Monitoring PD-1 Signaling in Tumor Infiltrating Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2019. [DOI: 10.4049/jimmunol.202.supp.195.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Programmed death (PD)-1 pathway blockade is a successful strategy for cancer immunotherapy. However, only a limited number of patients respond. There is great need to identify predictors of therapeutic response to PD-1 immunotherapy. One challenge is that PD-1 expression can mark activated T cells, which are susceptible to PD-1-mediated inhibition, but does not indicate whether a PD-1-mediated immunoinhibitory signal is being delivered. Currently there are no methods to detect active PD-1 signaling and, in turn, successful PD-1 inhibition. Here, we describe a novel antibody that detects PD-1 signaling. This antibody detects phosphorylation of the immunotyrosine switch motif (ITSM) in the intracellular tail of both human and mouse PD-1 (phospho-PD-1). Using this anti-phospho-PD-1 mAb, we show that PD-1+ tumor infiltrating lymphocytes (TILs) in MC38 murine colorectal tumors have high levels of phosphorylated PD-1, particularly in PD-1+TIM-3+TILs. Upon PD-1 blockade, PD-1 phosphorylation is markedly decreased in TIM-3+CD8+ TILs prior to tumor clearance. We also observed decreased phospho PD-1 levels in T cells from peripheral blood of human lymphoma patients following treatment with PD-1 and LAG-3 mAb. These data demonstrate that phosphorylation of the ITSM of PD-1 marks dysfunctional T cells that may be rescued with PD-1 blockade. Analysis of phospho-PD-1 may serve as a potential biomarker for effective PD-1 immunotherapy.
Collapse
|
|
6 |
|
9
|
Mayer A, Iulio J, Maleri S, Eser U, Reynolds A, Vierstra J, Sandstrom R, Stamatoyannopoulos J, Churchman LS. High Resolution Architecture of Human Transcriptional Activity Revealed by Native Elongating Transcript Sequencing. FASEB J 2015. [DOI: 10.1096/fasebj.29.1_supplement.562.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
10 |
|