1
|
Kim SJ, Kim JJ, Park MR, Park B, Ryu KJ, Yoon SE, Kim WS, Shin S, Lee ST. Feasibility of Circulating Tumor DNA Detection in the Cerebrospinal Fluid of Patients With Central Nervous System Involvement in Large B-Cell Lymphoma. Ann Lab Med 2025; 45:90-95. [PMID: 39344147 DOI: 10.3343/alm.2024.0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/30/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
We explored the utility of cerebrospinal fluid (CSF) circulating tumor DNA (ctDNA) sequencing as a noninvasive diagnostic tool for detecting central nervous system (CNS) involvement in patients with diffuse large B-cell lymphoma (DLBCL). Secondary CNS involvement in DLBCL, although rare (~5% of cases), presents diagnostic and prognostic challenges during systemic disease progression or relapse. Effective treatment is impeded by the blood-brain barrier. This was a prospective cohort study (Samsung Lymphoma Cohort Study III) involving 17 patients with confirmed CNS involvement. High-throughput sequencing was conducted using targeted gene panels designed to detect low-frequency variants and copy number alterations pertinent to lymphomas in ctDNA extracted from archived CSF samples. Despite challenges such as low DNA concentrations affecting library construction, the overall variant detection rate was 76%. Detected variants included those in genes commonly implicated in CNS lymphoma, such as MYD88. The study highlights the potential of CSF ctDNA sequencing to identify CNS involvement in DLBCL, providing a promising alternative to more invasive diagnostic methods such as brain biopsy, which are not always feasible. Further validation is necessary to establish the clinical utility of this method, which could significantly enhance the management and outcomes of DLBCL patients with suspected CNS involvement.
Collapse
|
2
|
Kim N, Choi YJ, Cho H, Jang JE, Lee ST, Song J, Choi JR, Cheong JW, Chung H, Shin S. NUP98 is rearranged in 5.0% of adult East Asian patients with AML. Blood Adv 2024; 8:5122-5125. [PMID: 39158088 PMCID: PMC11460442 DOI: 10.1182/bloodadvances.2024012960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024] Open
|
3
|
Lee ST. Application of Optical Genome Mapping to the Genetic Diagnosis of Facioscapulohumeral Muscular Dystrophy 1. Ann Lab Med 2024; 44:383-384. [PMID: 38845487 PMCID: PMC11169772 DOI: 10.3343/alm.2024.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
|
4
|
Shim Y, Seo J, Lee ST, Choi JR, Choi YC, Shin S, Park HJ. Clinical Application of Optical Genome Mapping for Molecular Diagnosis of Facioscapulohumeral Muscular Dystrophy. Ann Lab Med 2024; 44:437-445. [PMID: 38724225 PMCID: PMC11169776 DOI: 10.3343/alm.2023.0437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/19/2024] [Accepted: 04/23/2024] [Indexed: 06/14/2024] Open
Abstract
Background Facioscapulohumeral muscular dystrophy (FSHD) is a common form of muscular dystrophy that mainly affects skeletal muscle. FSHD1 accounts for 95% of all FSHD cases and can be diagnosed based on the pathogenic contraction of the D4Z4-repeat array on chromosome 4q35. Genetic diagnosis of FSHD1 is challenging because of the large size and repetitive nature of the D4Z4 region. We evaluated the clinical applicability of optical genome mapping (OGM) for the genetic diagnosis of FSHD1. Methods We included 25 individuals with clinically confirmed or suspected/probable FSHD and their families. Ultra-high-molecular-weight DNA from peripheral blood was labeled, stained, and imaged using a single-molecule OGM platform (Bionano Genomics Saphyr system). D4Z4 repeat size and haplotype information were analyzed using the manufacturer's dedicated pipeline. We also compared the workflow and test time between Southern blot analysis and OGM. Results We obtained concordant OGM and Southern blot results with 10 samples from patients with clinically confirmed FSHD. The D4Z4 repeat size differed within 1 unit between the Southern blot analysis and OGM. Among nine patients with clinically suspected or probable FSHD, six patients were confirmed to have pathogenic contractions by OGM. In our cohort, one de novo mosaic FSHD1 patient was successfully diagnosed with OGM. Moreover, OGM has a more straightforward and less time-consuming workflow than Southern blot analysis. Conclusions OGM enables accurate and reliable detection of pathogenic contraction of the D4Z4-repeat array and is a valuable tool for the genetic diagnosis of FSHD1.
Collapse
|
5
|
Kim JJ, Kim SJ, Lim S, Lee ST, Choi JR, Shin S, Hwang DY. Enhancing mutation detection in multiple myeloma with an error-corrected ultra-sensitive NGS assay without plasma cell enrichment. Cancer Cell Int 2024; 24:282. [PMID: 39135074 PMCID: PMC11318258 DOI: 10.1186/s12935-024-03470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Risk stratification in multiple myeloma (MM) patients is crucial, and molecular genetic studies play a significant role in achieving this objective. Enrichment of plasma cells for next-generation sequencing (NGS) analysis has been employed to enhance detection sensitivity. However, these methods often come with limitations, such as high costs and low throughput. In this study, we explore the use of an error-corrected ultrasensitive NGS assay called positional indexing sequencing (PiSeq-MM). This assay can detect somatic mutations in MM patients without relying on plasma cell enrichment. METHOD Diagnostic bone marrow aspirates (BMAs) and blood samples from 14 MM patients were used for exploratory and validation sets. RESULTS PiSeq-MM successfully detected somatic mutations in all BMAs, outperforming conventional NGS using plasma cells. It also identified 38 low-frequency mutations that were missed by conventional NGS, enhancing detection sensitivity below the 5% analytical threshold. When tested in an actual clinical environment, plasma cell enrichment failed in most BMAs (14/16), but the PiSeq-MM enabled mutation detection in all BMAs. There was concordance between PiSeq-MM using BMAs and ctDNA analysis in paired blood samples. CONCLUSION This research provides valuable insights into the genetic landscape of MM and highlights the advantages of error-corrected NGS for detecting low-frequency mutations. Although the current standard method for mutation analysis is plasma cell-enriched BMAs, total BMA or ctDNA testing with error correction is a viable alternative when plasma cell enrichment is not feasible.
Collapse
|
6
|
Choi YJ, Kook HW, Lee ST, Song J, Choi JR, Cheong JW, Shin S. The utility of next generation sequencing-based minimal residual disease monitoring in a post-myeloproliferative neoplasm acute myeloid leukemia patient: a case report. Leuk Lymphoma 2024:1-4. [PMID: 39072445 DOI: 10.1080/10428194.2024.2385498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
|
7
|
Kim SW, Kim N, Choi YJ, Lee ST, Choi JR, Shin S. Real-World Clinical Utility of Targeted RNA Sequencing in Leukemia Diagnosis and Management. Cancers (Basel) 2024; 16:2467. [PMID: 39001529 PMCID: PMC11240350 DOI: 10.3390/cancers16132467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Gene fusions are key drivers in acute leukemia, impacting diagnosis and treatment decisions. We analyzed 264 leukemia patients using targeted RNA sequencing with conventional karyotyping and reverse transcription polymerase chain reaction (RT-PCR). Leukemic fusions were detected in 127 patients (48.1%). The new guidelines introduced additional diagnostic criteria, expanding the spectrum of gene fusions. We discovered three novel fusions (RUNX1::DOPEY2, RUNX1::MACROD2, and ZCCHC7::LRP1B). We analyzed recurrent breakpoints for the KMT2A and NUP98 rearrangements. Targeted RNA sequencing showed consistent results with RT-PCR in all tested samples. However, when compared to conventional karyotyping, we observed an 83.3% concordance rate, with 29 cases found only in targeted RNA sequencing, 7 cases with discordant results, and 5 cases found only in conventional karyotyping. For the five cases where known leukemic gene rearrangements were suspected only in conventional karyotyping, we conducted additional messenger RNA sequencing in four cases and proved no pathogenic gene rearrangements. Targeted RNA sequencing proved advantageous for the rapid and accurate interpretation of gene rearrangements. The concurrent use of multiple methods was essential for a comprehensive evaluation. Comprehensive molecular analysis enhances our understanding of leukemia's genetic basis, aiding diagnosis and classification. Advanced molecular techniques improve clinical decision-making, offering potential benefits.
Collapse
|
8
|
Shim Y, Koo YK, Shin S, Lee ST, Lee KA, Choi JR. Comparison of Optical Genome Mapping With Conventional Diagnostic Methods for Structural Variant Detection in Hematologic Malignancies. Ann Lab Med 2024; 44:324-334. [PMID: 38433573 PMCID: PMC10961627 DOI: 10.3343/alm.2023.0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/21/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Background Structural variants (SVs) are currently analyzed using a combination of conventional methods; however, this approach has limitations. Optical genome mapping (OGM), an emerging technology for detecting SVs using a single-molecule strategy, has the potential to replace conventional methods. We compared OGM with conventional diagnostic methods for detecting SVs in various hematologic malignancies. Methods Residual bone marrow aspirates from 27 patients with hematologic malignancies in whom SVs were observed using conventional methods (chromosomal banding analysis, FISH, an RNA fusion panel, and reverse transcription PCR) were analyzed using OGM. The concordance between the OGM and conventional method results was evaluated. Results OGM showed concordance in 63% (17/27) and partial concordance in 37% (10/27) of samples. OGM detected 76% (52/68) of the total SVs correctly (concordance rate for each type of SVs: aneuploidies, 83% [15/18]; balanced translocation, 80% [12/15] unbalanced translocation, 54% [7/13] deletions, 81% [13/16]; duplications, 100% [2/2] inversion 100% [1/1]; insertion, 100% [1/1]; marker chromosome, 0% [0/1]; isochromosome, 100% [1/1]). Sixteen discordant results were attributed to the involvement of centromeric/telomeric regions, detection sensitivity, and a low mapping rate and coverage. OGM identified additional SVs, including submicroscopic SVs and novel fusions, in five cases. Conclusions OGM shows a high level of concordance with conventional diagnostic methods for the detection of SVs and can identify novel variants, suggesting its potential utility in enabling more comprehensive SV analysis in routine diagnostics of hematologic malignancies, although further studies and improvements are required.
Collapse
|
9
|
Choi YJ, Min YK, Lee ST, Choi JR, Shin S. NUP214 Rearrangements in Leukemia Patients: A Case Series From a Single Institution. Ann Lab Med 2024; 44:335-342. [PMID: 38145892 PMCID: PMC10961622 DOI: 10.3343/alm.2023.0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/16/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023] Open
Abstract
Background The three best-known NUP214 rearrangements found in leukemia (SET:: NUP214, NUP214::ABL1, and DEK::NUP214) are associated with treatment resistance and poor prognosis. Mouse experiments have shown that NUP214 rearrangements alone are insufficient for leukemogenesis; therefore, the identification of concurrent mutations is important for accurate assessment and tailored patient management. Here, we characterized the demographic characteristics and concurrent mutations in patients harboring NUP214 rearrangements. Methods To identify patients with NUP214 rearrangements, RNA-sequencing results of diagnostic bone marrow aspirates were retrospectively studied. Concurrent targeted next-generation sequencing results, patient demographics, karyotypes, and flow cytometry information were also reviewed. Results In total, 11 patients harboring NUP214 rearrangements were identified, among whom four had SET::NUP214, three had DEK::NUP214, and four had NUP214::ABL1. All DEK::NUP214-positive patients were diagnosed as having AML. In patients carrying SET::NUP214 and NUP214::ABL1, T-lymphoblastic leukemia was the most common diagnosis (50%, 4/8). Concurrent gene mutations were found in all cases. PFH6 mutations were the most common (45.5%, 5/11), followed by WT1 (27.3%, 3/11), NOTCH1 (27.3%, 3/11), FLT3-internal tandem duplication (27.3%, 3/11), NRAS (18.2%, 2/11), and EZH2 (18.2%, 2/11) mutations. Two patients represented the second and third reported cases of NUP214::ABL1-positive AML. Conclusions We examined the characteristics and concurrent test results, including gene mutations, of 11 leukemia patients with NUP214 rearrangement. We hope that the elucidation of the context in which they occurred will aid future research on tailored monitoring and treatment.
Collapse
|
10
|
Ahn WK, Yu K, Kim H, Lee ST, Choi JR, Han JW, Lyu CJ, Hahn S, Shin S. Monitoring measurable residual disease in paediatric acute lymphoblastic leukaemia using immunoglobulin gene clonality based on next-generation sequencing. Cancer Cell Int 2024; 24:218. [PMID: 38918782 PMCID: PMC11201849 DOI: 10.1186/s12935-024-03404-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Assessment of measurable residual disease (MRD) is an essential prognostic tool for B-lymphoblastic leukaemia (B-ALL). In this study, we evaluated the utility of next-generation sequencing (NGS)-based MRD assessment in real-world clinical practice. METHOD The study included 93 paediatric patients with B-ALL treated at our institution between January 2017 and June 2022. Clonality for IGH or IGK rearrangements was identified in most bone marrow samples (91/93, 97.8%) obtained at diagnosis. RESULTS In 421 monitoring samples, concordance was 74.8% between NGS and multiparameter flow cytometry and 70.7% between NGS and reverse transcription-PCR. Elevated quantities of clones of IGH alone (P < 0.001; hazard ratio [HR], 22.2; 95% confidence interval [CI], 7.1-69.1), IGK alone (P = 0.011; HR, 5.8; 95% CI, 1.5-22.5), and IGH or IGK (P < 0.001; HR, 7.2; 95% CI, 2.6-20.0) were associated with an increased risk of relapse. Detection of new clone(s) in NGS was also associated with inferior relapse-free survival (P < 0.001; HR, 18.1; 95% CI, 3.0-108.6). Multivariable analysis confirmed age at diagnosis, BCR::ABL1-like mutation, TCF3::PBX1 mutation, and increased quantity of IGH or IGK clones during monitoring as unfavourable factors. CONCLUSION In conclusion, this study highlights the usefulness of NGS-based MRD as a routine assessment tool for prognostication of paediatric patients with B-ALL.
Collapse
|
11
|
Won D, Yeom E, Shin S, Lee ST, Rak Choi J. Comparison of exon-level copy number variants in CytoScan XON assay and next-generation sequencing in clinical samples. Clin Chim Acta 2024; 560:119703. [PMID: 38763467 DOI: 10.1016/j.cca.2024.119703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/12/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND AND AIMS Next-generation sequencing (NGS)-based copy number variants (CNVs) have high false-positive rates. The fewer the exons involved, the higher the false-positive rate. A CytoScan XON assay was developed to assess exon-level CNVs. MATERIALS AND METHODS Twenty-three clinically relevant exon-level CNVs in 20 patient blood samples found in previous NGS studies were compared with the results from the CytoScan XON and multiplex ligation-dependent probe amplification (MLPA). RESULTS Fifteen of the 23 exon-level CNVs were consistent with the NGS results. Among these, eight were confirmed using MLPA. In six out of eight discrepancies between the CytoScan Xon and NGS, MLPA was performed, and three were negative, indicating that the CNVs in NGS were false positives. The CytoScan XON exhibits a sensitivity of 72.7% for small exon-level CNVs, along with a specificity of 100%. The assay could not detect the three exon-level CNVs in PKD1 and TSC2 that were detected using both NGS and MLPA. This could be due to the distribution of the probes in some areas, and the CNV-calling regions containing multiple exons. CONCLUSION The CytoScan XON assay is a promising complementary tool for the detection of exon-level CNVs, provided that the users carefully examine the distribution of probes and calling regions.
Collapse
|
12
|
Kim N, Hahn S, Choi YJ, Cho H, Chung H, Jang JE, Lyu CJ, Lee ST, Choi JR, Cheong JW, Shin S. Comprehensive insights into AML relapse: genetic mutations, clonal evolution, and clinical outcomes. Cancer Cell Int 2024; 24:174. [PMID: 38764048 PMCID: PMC11103850 DOI: 10.1186/s12935-024-03368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a complex hematologic malignancy characterized by uncontrolled proliferation of myeloid precursor cells within bone marrow. Despite advances in understanding of its molecular underpinnings, AML remains a therapeutic challenge due to its high relapse rate and clonal evolution. METHODS In this retrospective study, we analyzed data from 24 AML patients diagnosed at a single institution between January 2017 and August 2023. Comprehensive genetic analyses, including chromosomal karyotyping, next-generation sequencing, and gene fusion assays, were performed on bone marrow samples obtained at initial diagnosis and relapse. Clinical data, treatment regimens, and patient outcomes were also documented. RESULTS Mutations in core genes of FLT3, NPM1, DNMT3A, and IDH2 were frequently discovered in diagnostic sample and remained in relapse sample. FLT3-ITD, TP53, KIT, RUNX1, and WT1 mutation were acquired at relapse in one patient each. Gene fusion assays revealed stable patterns, while chromosomal karyotype analyses indicated a greater diversity of mutations in relapsed patients. Clonal evolution patterns varied, with some cases showing linear or branching evolution and others exhibiting no substantial change in core mutations between diagnosis and relapse. CONCLUSIONS Our study integrates karyotype, gene rearrangements, and gene mutation results to provide a further understanding of AML heterogeneity and evolution. We demonstrate the clinical relevance of specific mutations and clonal evolution patterns, emphasizing the need for personalized therapies and measurable residual disease monitoring in AML management. By bridging the gap between genetics and clinical outcome, we move closer to tailored AML therapies and improved patient prognoses.
Collapse
|
13
|
Park JS, Kim H, Jang WS, Kim J, Ham WS, Lee ST. ctDNA predicts clinical T1a to pathological T3a upstaging after partial nephrectomy. Cancer Sci 2024; 115:1680-1687. [PMID: 38475661 DOI: 10.1111/cas.16146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/15/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Most patients diagnosed with clear cell renal cell carcinoma (ccRCC) are also detected with small and organ-confined tumors, and the majority of these are classified as clinical tumor stage 1a (cT1a). A considerable proportion of patients with cT1 RCC shows tumor upstaging to pathological stage 3a (pT3a), and these patients have worse oncological outcomes. The role of circulating tumor DNA (ctDNA) in RCC has been limited to monitoring treatment response and resistance. Therefore, the present study aimed to evaluate the potential of ctDNA in predicting pT3a upstaging in cT1a ccRCC. We sequenced plasma samples preoperatively collected from 48 patients who had undergone partial nephrectomy for cT1a ccRCC using data from a prospective cohort RCC. The ctDNA were profiled and compared with clinicopathological ccRCC features to predict pT3a upstaging. Associations between ctDNA, tumor complexity, and pT3a upstaging were evaluated. Tumor complexity was assessed using the anatomical classification system. Univariate analysis used chi-squared and Student's t-tests; multivariate analysis considered significant factors from univariate analyses. Of the 48 patients with cT1a ccRCC, 12 (25%) were upstaged to pT3a, with ctDNA detected in 10 (20.8%), predominantly in patients with renal sinus fat invasion (SFI; n = 8). Among the pT3a group, ctDNA was detected in 75%, contrasting with only 2.8% in patients with pT1a (1/36). Detection of ctDNA was the only significant preoperative predictor of pT3a upstaging, especially in SFI. This study is the first to suggest ctDNA as a preoperative predictor of pT3a RCC upstaging from cT1a based on preoperative radiological images.
Collapse
|
14
|
Surl D, Won D, Lee ST, Lee CS, Lee J, Lim HT, Chung SA, Song WK, Kim M, Kim SS, Shin S, Choi JR, Sangermano R, Byeon SH, Bujakowska KM, Han J. Clinician-Driven Reanalysis of Exome Sequencing Data From Patients With Inherited Retinal Diseases. JAMA Netw Open 2024; 7:e2414198. [PMID: 38819824 PMCID: PMC11143468 DOI: 10.1001/jamanetworkopen.2024.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/18/2024] [Indexed: 06/01/2024] Open
Abstract
Importance Despite advances in next-generation sequencing (NGS), a significant proportion of patients with inherited retinal disease (IRD) remain undiagnosed after initial genetic testing. Exome sequencing (ES) reanalysis in the clinical setting has been suggested as one method for improving diagnosis of IRD. Objective To investigate the association of clinician-led reanalysis of ES data, which incorporates updated clinical information and comprehensive bioinformatic analysis, with the diagnostic yield in a cohort of patients with IRDs in Korea. Design, Setting, and Participants This was a multicenter prospective cohort study involving 264 unrelated patients with IRDs, conducted in Korea between March 2018 and February 2020. Comprehensive ophthalmologic examinations and ES analyses were performed, and ES data were reanalyzed by an IRD specialist for single nucleotide variants, copy number variants, mobile element insertions, and mitochondrial variants. Data were analyzed from March to July 2023. Main Outcomes and Measures Diagnostic rate of conventional bioinformatic analysis and clinician-driven ES reanalysis. Results A total of 264 participants (151 [57.2%] male; mean [SD] age at genetic testing, 33.6 [18.9] years) were enrolled, including 129 patients (48.9%) with retinitis pigmentosa and 26 patients (9.8%) with Stargardt disease or macular dystrophy. Initial bioinformatic analysis diagnosed 166 patients (62.9%). Clinician-driven reanalysis identified the molecular cause of diseases in an additional 22 patients, corresponding to an 8.3-percentage point increase in diagnostic rate. Key factors associated with new molecular diagnoses included clinical phenotype updates (4 patients) and detection of previously overlooked variation, such as structural variants (9 patients), mitochondrial variants (3 patients), filtered or not captured variants (4 patients), and noncanonical splicing variants (2 patients). Among the 22 patients, variants in 7 patients (31.8%) were observed in the initial analysis but not reported to patients, while those in the remaining 15 patients (68.2%) were newly detected by the ES reanalysis. Conclusions and Relevance In this cohort study, clinician-centered reanalysis of ES data was associated with improved molecular diagnostic yields in patients with IRD. This approach is important for uncovering missed genetic causes of retinal disease.
Collapse
|
15
|
Kim M, Kim JJ, Lee ST, Shim Y, Lee H, Bae S, Son NH, Shin S, Jung IH. Association Between Aortic Valve Sclerosis and Clonal Hematopoiesis of Indeterminate Potential. Ann Lab Med 2024; 44:279-288. [PMID: 38205526 PMCID: PMC10813825 DOI: 10.3343/alm.2023.0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/06/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Background The mechanism and medical treatment target for degenerative aortic valve disease, including aortic stenosis, is not well studied. In this study, we investigated the effect of clonal hematopoiesis of indeterminate potential (CHIP) on the development of aortic valve sclerosis (AVS), a calcified aortic valve without significant stenosis. Methods Participants with AVS (valves ≥2 mm thick, high echogenicity, and a peak transaortic velocity of <2.5 m/sec) and an age- and sex-matched control group were enrolled. Twenty-four CHIP genes with common variants in cardiovascular disease were used to generate a next-generation sequencing panel. The primary endpoint was the CHIP detection rate between the AVS and control groups. Inverse-probability treatment weighting (IPTW) analysis was performed to adjust for differences in baseline characteristics. Results From April 2020 to April 2022, 187 participants (125 with AVS and 62 controls) were enrolled; the mean age was 72.6±8.5 yrs, and 54.5% were male. An average of 1.3 CHIP variants was observed. CHIP detection, defined by a variant allele frequency (VAF) of ≥0.5%, was similar between the groups. However, the AVS group had larger CHIP clones: 49 (39.2%) participants had a VAF of ≥1% (vs. 13 [21.0%] in the control group; P=0.020), and 25 (20.0%) had a VAF of ≥2% (vs. 4 [6.5%]; P=0.028). AVS is independently associated with a VAF of ≥1% (adjusted odds ratio: 2.44, 95% confidence interval: 1.11-5.36; P=0.027). This trend was concordant and clearer in the IPTW cohort. Conclusions Participants with AVS more commonly had larger CHIP clones than age- and sex-matched controls. Further studies are warranted to identify causality between AVS and CHIP.
Collapse
|
16
|
Lee JS, Cho EH, Kim B, Hong J, Kim YG, Kim Y, Jang JH, Lee ST, Kong SY, Lee W, Shin S, Song EY. Clinical Practice Guideline for Blood-based Circulating Tumor DNA Assays. Ann Lab Med 2024; 44:195-209. [PMID: 38221747 PMCID: PMC10813828 DOI: 10.3343/alm.2023.0389] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/06/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024] Open
Abstract
Circulating tumor DNA (ctDNA) has emerged as a promising tool for various clinical applications, including early diagnosis, therapeutic target identification, treatment response monitoring, prognosis evaluation, and minimal residual disease detection. Consequently, ctDNA assays have been incorporated into clinical practice. In this review, we offer an in-depth exploration of the clinical implementation of ctDNA assays. Notably, we examined existing evidence related to pre-analytical procedures, analytical components in current technologies, and result interpretation and reporting processes. The primary objective of this guidelines is to provide recommendations for the clinical utilization of ctDNA assays.
Collapse
|
17
|
Choi SJ, Kim HK, Suh EJ, Kwon SS, Shin S, Lee ST, Kim S. CEBPA double mutations associated with ABO antigen weakness in hematologic diseases. Blood Adv 2024; 8:1487-1493. [PMID: 38359363 PMCID: PMC10951908 DOI: 10.1182/bloodadvances.2023011572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
ABSTRACT ABO antigen weakness is rarely observed in ABO typing for transfusion. Hematologic diseases and associated gene mutations have been suggested as potential causes of this phenomenon, yet the precise etiology has not been elucidated. Through ABO typing and genetic analysis data conducted over 7 years, we have reconfirmed the association between ABO antigen weakness and hematologic diseases, especially acute myeloid leukemia (odds ratio [OR], 2.55; 95% confidence interval [CI], 1.12-5.83) and myelodysplastic syndrome (OR, 6.94; 95% CI, 2.86-16.83), and discovered previously unidentified candidate genes, CEBPA (OR, 43.70; 95% CI, 18.12-105.40), NRAS (OR, 3.37; 95% CI, 1.46-7.79), U2AF1 (OR, 8.12; 95% CI, 2.86-23.03), and PTPN11 (OR, 4.52; 95% CI, 1.51-13.50), seemingly associated with this phenomenon. Among these, CEBPA double mutations displayed a significant association, with ABO antigen weakness being observed in 20 of the 25 individuals (80.0%) possessing these mutations. From this study, new factors associated with ABO antigen weakness have been identified.
Collapse
|
18
|
Lee ST, Cho YK, Jung J, Chae S. Surface and subsurface dispersal of radioactive materials from Fukushima by subpolar gyre and intermediate waters in the North Pacific. Sci Rep 2024; 14:5055. [PMID: 38424134 PMCID: PMC10904853 DOI: 10.1038/s41598-024-55328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Radioactive materials were released into the ocean following the Fukushima Daiichi Nuclear Power Plant accident in 2011. Six years after the accident, the radioactive material concentration was markedly increased in the Okhotsk Intermediate Water (OIW) of the Sea of Okhotsk. This material may have been subjected to southward subsurface dispersal by the North Pacific Intermediate Water (NPIW), which originates from the OIW. The spatiotemporal limitations of available methods have made it challenging to track the dispersal paths of radioactive materials in the North Pacific Subpolar region. Here, we performed a tracer experiment using a three-dimensional numerical model to determine the path of 137Cs from Fukushima to the Sea of Okhotsk via surface subpolar gyre currents and subsurface dispersion by OIW and NPIW. The results showed that the 137Cs concentration in the Sea of Okhotsk increased via the surface current and moved progressively southward via OIW six years after the accident and eastward via OIW and NPIW nine years after the accident, indicating that 137Cs transported by NPIW entered the subtropical region. Based on experiments, this temporal change was mainly caused by ocean currents. Thus, subsurface recirculation of radioactive material via the OIW and NPIW should be considered based on the predicted path and travel time of additional materials released from the power plant.
Collapse
|
19
|
Kim SH, Seo J, Kwon SS, Teng LY, Won D, Shin S, Lee JS, Lee ST, Choi JR, Kang HC. Common genes and recurrent causative variants in 957 Asian patients with pediatric epilepsy. Epilepsia 2024; 65:766-778. [PMID: 38073125 DOI: 10.1111/epi.17857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE We aimed to identify common genes and recurrent causative variants in a large group of Asian patients with different epilepsy syndromes and subgroups. METHODS Patients with unexplained pediatric-onset epilepsy were identified from the in-house Severance Neurodevelopmental Disorders and Epilepsy Database. All patients underwent either exome sequencing or multigene panels from January 2017 to December 2019, at Severance Children's Hospital in Korea. Clinical data were extracted from the medical records. RESULTS Of the 957 patients studied, 947 (99.0%) were Korean and 570 were male (59.6%). The median age at testing was 4.91 years (interquartile range, 1.53-9.39). The overall diagnostic yield was 32.4% (310/957). Clinical exome sequencing yielded a diagnostic rate of 36.9% (134/363), whereas the epilepsy panel yielded a diagnostic rate of 29.9% (170/569). Diagnostic yield differed across epilepsy syndromes. It was high in Dravet syndrome (87.2%, 41/47) and early infantile developmental epileptic encephalopathy (60.7%, 17/28), but low in West syndrome (21.8%, 34/156) and myoclonic-atonic epilepsy (4.8%, 1/21). The most frequently implicated genes were SCN1A (n = 49), STXBP1 (n = 15), SCN2A (n = 14), KCNQ2 (n = 13), CDKL5 (n = 11), CHD2 (n = 9), SLC2A1 (n = 9), PCDH19 (n = 8), MECP2 (n = 6), SCN8A (n = 6), and PRRT2 (n = 5). The recurrent genetic abnormalities included 15q11.2 deletion/duplication (n = 9), Xq28 duplication (n = 5), PRRT2 deletion (n = 4), MECP2 duplication (n = 3), SCN1A, c.2556+3A>T (n = 3), and 2q24.3 deletion (n = 3). SIGNIFICANCE Here we present the results of a large-scale study conducted in East Asia, where we identified several common genes and recurrent variants that varied depending on specific epilepsy syndromes. The overall genetic landscape of the Asian population aligns with findings from other populations of varying ethnicities.
Collapse
|
20
|
Heo J, Kim YN, Shin S, Lee K, Lee JH, Lee YJ, Choi Z, Park J, Min S, Kim SW, Choi JR, Kim S, Lee ST, Lee JY. Serial Circulating Tumor DNA Analysis with a Tumor-Naïve Next-Generation Sequencing Panel Detects Minimal Residual Disease and Predicts Outcome in Ovarian Cancer. Cancer Res 2024; 84:468-478. [PMID: 38038965 DOI: 10.1158/0008-5472.can-23-1429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/12/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Circulating tumor DNA (ctDNA) may aid in personalizing ovarian cancer therapeutic options. Here, we aimed to assess the clinical utility of serial ctDNA testing using tumor-naïve, small-sized next-generation sequencing (NGS) panels. A total of 296 patients, including 201 with ovarian cancer and 95 with benign or borderline disease, were enrolled. Samples were collected at baseline (initial diagnosis or surgery) and every 3 months after that, resulting in a total of 811 blood samples. Patients received adjuvant therapy based on the current standard of care. Cell-free DNA was extracted and sequenced using an NGS panel of 9 genes: TP53, BRCA1, BRCA2, ARID1A, CCNE1, KRAS, MYC, PIK3CA, and PTEN. Pathogenic somatic mutations were identified in 69.2% (139/201) of patients with ovarian cancer at baseline but not in those with benign or borderline disease. Detection of ctDNA at baseline and/or at 6 months follow-up was predictive of progression-free survival (PFS). PFS was significantly poorer in patients with detectable pathogenic mutations at baseline that persisted at follow-up than in patients that converted from having detectable ctDNA at baseline to being undetectable at follow-up; survival did not differ between patients without pathogenic ctDNA mutations in baseline or follow-up samples and those that converted from ctDNA positive to negative. Disease recurrence was also detected earlier with ctDNA than with conventional radiologic assessment or CA125 monitoring. These findings demonstrate that serial ctDNA testing could effectively monitor patients and detect minimal residual disease, facilitating early detection of disease progression and tailoring of adjuvant therapies for ovarian cancer treatment. SIGNIFICANCE In ovarian cancer, serial circulating tumor DNA testing is a highly predictive marker of patient survival, with a significantly improved recurrence detection lead time compared with conventional monitoring tools.
Collapse
|
21
|
Lee KS, Lee CK, Kwon SS, Kwon WS, Park S, Lee ST, Choi JR, Rha SY, Shin S. Clinical relevance of clonal hematopoiesis and its interference in cell-free DNA profiling of patients with gastric cancer. Clin Chem Lab Med 2024; 62:178-186. [PMID: 37435889 DOI: 10.1515/cclm-2023-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/02/2023] [Indexed: 07/13/2023]
Abstract
OBJECTIVES Clonal hematopoiesis (CH) is a condition in which healthy individuals have somatic mutations in hematopoietic stem cells. It has been reported with increased risk of hematologic malignancy and cardiovascular disease in the general population, but studies of Korean populations with comorbid disease entities are scarce. METHODS White blood cells (WBCs) from patients with gastric cancer (GC) (n=121) were analyzed using a DNA-based targeted (531 genes) panel with customized pipeline designed to detect single nucleotide variants and small indels with low-allele-frequency of ≥0.2 %. We defined significant CH variants as having variant allele frequency (VAF) ≥2 % among variants found in WBCs. Matched cell-free DNA (cfDNA) samples were also analyzed with the same pipeline to investigate the false-positive results caused by WBC variants in cfDNA profiling. RESULTS Significant CH variants were detected in 29.8 % of patients and were associated with age and male sex. The number of CH variants was associated with a history of anti-cancer therapy and age. DNMT3A and TET2 were recurrently mutated. Overall survival rate of treatment-naïve patients with stage IV GC was higher in those with CH, but Cox regression showed no significant association after adjustment for age, sex, anti-cancer therapy, and smoking history. In addition, we analyzed the potential interference of WBC variants in plasma cell-free DNA testing, which has attracted interest as a complementary method for tissue biopsy. Results showed that 37.0 % (47/127) of plasma specimens harbored at least one WBC variant. VAFs of interfering WBC variants in the plasma and WBC were correlated, and WBC variants with VAF ≥4 % in WBC were frequently detected in plasma with the same VAF. CONCLUSIONS This study revealed the clinical impact of CH in Korean patients and suggests the potential for its interference in cfDNA tests.
Collapse
|
22
|
Kim JJ, Kim HM, Kim H, Kim SJ, Lee ST, Choi JR, Shin S, Hwang DY. Circulating Tumor DNA Reflects Histologic and Clinical Characteristics of Various Lymphoma Subtypes. Cancer Res Treat 2024; 56:314-323. [PMID: 37475138 PMCID: PMC10789961 DOI: 10.4143/crt.2023.667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023] Open
Abstract
PURPOSE We designed and evaluated the clinical performance of a plasma circulating tumor DNA (ctDNA) panel of 112 genes in various subtypes of lymphoma. MATERIALS AND METHODS Targeted deep sequencing with an error-corrected algorithm was performed in ctDNA from plasma samples that were collected before treatment in 42 lymphoma patients. Blood buffy coat was utilized as a germline control. We evaluated the targeted gene panel using mutation detection concordance on the plasma samples with matched tissue samples analyzed the mutation profiles of the ctDNA. RESULTS Next-generation sequencing analysis using matched tissue samples was available for 18 of the 42 patients. At least one mutation was detected in the majority of matched tissue biopsy samples (88.9%) and plasma samples (83.3%). A considerable number of mutations (40.4%) that were detected in the tissue samples were also found in the matched plasma samples. Majority of patients (21/42) were diffuse large B cell lymphoma patients. The overall detection rate of ctDNA in patients was 85.7% (36/42). The frequently mutated genes included PIM1, TET2, BCL2, KMT2D, KLHL6, HIST1H1E, and IRF8. A cutoff concentration (4,506 pg/mL) of ctDNA provided 88.9% sensitivity and 82.1% specificity to predict ctDNA mutation detection. The ctDNA concentration correlated with elevated lactate dehydrogenase level and the disease stage. CONCLUSION Our design panel can detect many actionable gene mutations, including those at low frequency. Therefore, liquid biopsy can be applied clinically in the evaluation of lymphoma patients, especially in aggressive lymphoma patients.
Collapse
|
23
|
Seo Y, Kim TY, Won D, Choi JR, Seo GH, Lee ST, Han J. PTPN23 Neurodevelopmental Disorder Presenting With Optic Atrophy and Spasmus Nutans-Like Nystagmus. J Neuroophthalmol 2023; 43:e316-e318. [PMID: 35427297 DOI: 10.1097/wno.0000000000001582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Kwak JJ, Lee KS, Lee J, Kim YJ, Choi EY, Byeon SH, Chang WS, Kim YR, Kim JS, Shin S, Lee ST, Kim SS, Lee CS. Next-Generation Sequencing of Vitreoretinal Lymphoma by Vitreous Liquid Biopsy: Diagnostic Potential and Genotype/Phenotype Correlation. Invest Ophthalmol Vis Sci 2023; 64:27. [PMID: 37975847 PMCID: PMC10664732 DOI: 10.1167/iovs.64.14.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/31/2023] [Indexed: 11/19/2023] Open
Abstract
Purpose To determine the diagnostic potential of next-generation sequencing (NGS) in vitreous samples, analyze genotype-phenotype characteristics, and compare NGS of matched vitreous and brain samples in patients with associated central nervous system lymphoma (CNSL). Methods A total of 32 patients suspected of vitreoretinal lymphoma (VRL) who underwent diagnostic vitrectomy and NGS were included in this retrospective observational case-series. Fresh vitreous specimens from diagnostic vitrectomy of VRL-suspected patients underwent NGS using a custom panel targeting 747 candidate genes for lymphoma. They also underwent malignancy cytology, interleukin (IL)-10/IL-6, immunoglobulin heavy chain (IGH)/immunoglobulin kappa light chain (IGK) monoclonality testing. MYD88 L265P mutation was examined from anterior chamber tap samples. The diagnosis of VRL was made based on typical clinical characteristics for VRL, as well as malignant cytology, IGH/IGK clonality, or IL-10/IL-6 > 1. Sensitivity and specificity of NGS were compared with conventional diagnostic tests. Brain tissues suspected of lymphoma were collected by stereotactic biopsy and underwent NGS. Genetic variations detected in NGS of vitreous and brain tissue specimens were compared. Results The sensitivity values for cytology, IL-10/IL-6 > 1, clonality assays for IGH and IGK, MYD88 L265P detection in anterior chamber tap samples, and vitreous NGS were 0.23, 0.83, 0.68, 0.79, 0.67, and 0.85, with specificity values of 1.00, 0.83, 0.50, 0.25, 0.83, and 0.83, respectively. The sensitivity (0.85) of vitreous NGS was the highest compared to other conventional diagnostic tests for VRL. The most common mutations were MYD88 (91%), CDKN2A (36%), PIM1 (32%), IGLL5 (27%), and ETV6 (23%). Although several gene alterations demonstrated heterogeneity between the brain and eyes, some common mutational profiles were observed in matched vitreous and brain samples. Conclusions Overall, NGS of the vitreous demonstrated high sensitivity among conventional diagnostic tests. VRL and CNSL appeared to have both shared and distinct genetic variations, which may suggest site-specific variations from a common origin.
Collapse
|
25
|
Kim YN, Chung YS, Lee JH, Park E, Lee ST, Kim S, Lee JY. Application of precision medicine based on next-generation sequencing and immunohistochemistry in ovarian cancer: a real-world experience. J Gynecol Oncol 2023; 34:e70. [PMID: 37417298 PMCID: PMC10627761 DOI: 10.3802/jgo.2023.34.e70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/02/2023] [Accepted: 05/13/2023] [Indexed: 07/08/2023] Open
Abstract
OBJECTIVE To evaluate the landscape of gene alterations and immunohistochemistry (IHC) profiles of patients with ovarian cancer for targeted therapy and investigate the real-world experience of applying precision medicine. METHODS Patients diagnosed with ovarian cancer between January 2015 and May 2021 at Severance Hospital and who underwent tumor next-generation sequencing (NGS) were reviewed. Data on germline mutation, IHC markers for mismatch repair deficiency (MMRd), programmed death ligand 1 (PD-L1) expression, and human epidermal growth factor receptor 2 (HER2) expression were acquired. The use of matched therapy and its clinical outcomes were evaluated. RESULTS Of the 512 patients who underwent tumor NGS, 403 underwent panel-based germline testing. In patients who underwent both tests, tumor NGS identified 39 patients (9.7%) with BRCA mutations and 16 patients (4.0%) with other homologous recombination repair (HRR)-associated gene mutations, which were not found in germline testing. The most common single nucleotide variants were TP53 (82.2%), ARID1A (10.4%), PIK3CA (9.7%), and KRAS (8.4%). Copy number aberrations were found in 122 patients. MMRd was found in 3.2% of patients, high PD-L1 expression in 10.1%, and HER2 overexpression in 6.5%. Subsequently, 75 patients (14.6%) received a poly (ADP-ribose) polymerase inhibitor based on BRCA mutation and 11 patients (2.1%) based on other HRR-associated gene mutations. Six patients (1.2%) with MMRd underwent immunotherapy. Twenty-eight patients (5.5%) received other matched therapies targeting HER2, fibroblast growth factor receptor, folate receptor alpha, RAS, and PIK3CA. CONCLUSION A comprehensive review of germline mutation, IHC, and tumor NGS helped identify candidates for precision therapy in patients with ovarian cancer, a proportion of whom received matched therapy.
Collapse
|