Nemati SS, Dehghan G, Soleymani J, Jouyban A. Advances in electrochemical sensors for naproxen detection: Mechanisms, performance factors, and emerging challenges.
Heliyon 2025;
11:e40906. [PMID:
39758385 PMCID:
PMC11699440 DOI:
10.1016/j.heliyon.2024.e40906]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Naproxen (NAP), a nonsteroidal anti-inflammatory, analgesic, and antipyretic drug, has fewer side effects than similar drugs due to its aryl acetic acid structure. For this reason, it is widely prescribed to manage fever, short-term and long-term pain, and musculoskeletal disorders. However, its use has complications such as changes in kidney function, severe gastrointestinal lesions, and increased bleeding after surgery. In addition, the toxicity of NAP or its metabolites affects the organisms in the ecosystem. Therefore, it is necessary to determine the pharmaceutical quality of produced NAP and measure its amount in living organisms and the environment. Spectroscopy, chromatography, and electrochemical methods have been used to determine NAP. Electrochemical methods have attracted more attention due to their low cost, easy sample preparation, availability, sensitivity, and acceptable results. In addition, using nanomaterials for NAP oxidation results in high surface-to-volume, high available active sites, low cost, and long-term usability with high sensitivity. In this review, electrochemical-based methods for NAP analysis and sensing have been reviewed. Also, the influential factors in NAP identification and evaluation, and their oxidation mechanism have been discussed.
Collapse