1
|
Tsubosaka M, Maruyama M, Lui E, Moeinzadeh S, Huang EE, Kushioka J, Hirata H, Jain C, Storaci HW, Chan C, Toya M, Gao Q, Teissier V, Shen H, Li X, Zhang N, Matsumoto T, Kuroda R, Goodman SB, Yang YP. The efficiency of genetically modified mesenchymal stromal cells combined with a functionally graded scaffold for bone regeneration in corticosteroid-induced osteonecrosis of the femoral head in rabbits. J Biomed Mater Res A 2023; 111:1120-1134. [PMID: 36606330 PMCID: PMC10277231 DOI: 10.1002/jbm.a.37495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
Core decompression (CD) with mesenchymal stromal cells (MSCs) is an effective therapy for early-stage osteonecrosis of the femoral head (ONFH). Preconditioning of MSCs, using inflammatory mediators, is widely used in immunology and various cell therapies. We developed a three-dimensional printed functionally graded scaffold (FGS), made of β-TCP and PCL, for cell delivery at a specific location. The present study examined the efficacy of CD treatments with genetically modified (GM) MSCs over-expressing PDGF-BB (PDGF-MSCs) or GM MSCs co-over-expressing IL-4 and PDGF-BB and preconditioned for three days of exposure to lipopolysaccharide and tumor necrosis factor-alpha (IL-4-PDGF-pMSCs) using the FGS for treating steroid-induced ONFH in rabbits. We compared CD without cell-therapy, with IL-4-PDGF-pMSCs alone, and with FGS loaded with PDGF-MSCs or IL-4-PDGF-pMSCs. For the area inside the CD, the bone volume in the CD alone was higher than in both FGS groups. The IL-4-PDGF-pMSCs alone and FGS + PDGF-MSCs reduced the occurrence of empty lacunae and improved osteoclastogenesis. There was no significant difference in angiogenesis among the four groups. The combined effect of GM MSCs or pMSCs and the FGS was not superior to the effect of each alone. To establish an important adjunctive therapy for CD for early ONFH in the future, it is necessary and essential to develop an FGS that delivers biologics appropriately and provides structural and mechanical support.
Collapse
|
2
|
Lin S, Maekawa H, Moeinzadeh S, Lui E, Alizadeh HV, Li J, Kim S, Poland M, Gadomski BC, Easley JT, Young J, Gardner M, Mohler D, Maloney WJ, Yang YP. An osteoinductive and biodegradable intramedullary implant accelerates bone healing and mitigates complications of bone transport in male rats. Nat Commun 2023; 14:4455. [PMID: 37488113 PMCID: PMC10366099 DOI: 10.1038/s41467-023-40149-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 07/12/2023] [Indexed: 07/26/2023] Open
Abstract
Bone transport is a surgery-driven procedure for the treatment of large bone defects. However, challenging complications include prolonged consolidation, docking site nonunion and pin tract infection. Here, we develop an osteoinductive and biodegradable intramedullary implant by a hybrid tissue engineering construct technique to enable sustained delivery of bone morphogenetic protein-2 as an adjunctive therapy. In a male rat bone transport model, the eluting bone morphogenetic protein-2 from the implants accelerates bone formation and remodeling, leading to early bony fusion as shown by imaging, mechanical testing, histological analysis, and microarray assays. Moreover, no pin tract infection but tight osseointegration are observed. In contrast, conventional treatments show higher proportion of docking site nonunion and pin tract infection. The findings of this study demonstrate that the novel intramedullary implant holds great promise for advancing bone transport techniques by promoting bone regeneration and reducing complications in the treatment of bone defects.
Collapse
|
3
|
Li J, Moeinzadeh S, Kim C, Pan CC, Weale G, Kim S, Abrams G, James AW, Choo H, Chan C, Yang YP. Development and systematic characterization of GelMA/alginate/PEGDMA/xanthan gum hydrogel bioink system for extrusion bioprinting. Biomaterials 2023; 293:121969. [PMID: 36566553 PMCID: PMC9868087 DOI: 10.1016/j.biomaterials.2022.121969] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/27/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Gelatin methacryloyl (GelMA)/alginate-based hydrogels have shown great promise in bioprinting, but their printability is limited at room temperature. In this paper, we present our development of a room temperature printable hydrogel bioink by introducing polyethylene glycol dimethacrylate (PEGDMA) and xanthan gum into the GelMA/alginate system. The inclusion of PEGDMA facilitates tuning of the hydrogel's mechanical property, while xanthan gum improves the viscosity of the hydrogel system and allows easy extrusion at room temperature. To fine-tune the mechanical and degradation properties, methacrylated xanthan gum was synthesized and chemically crosslinked to the system. We systematically characterized this hydrogel with attention to printability, strut size, mechanical property, degradation and cytocompatibility, and achieved a broad range of compression modulus (∼10-100 kPa) and degradation profile (100% degradation by 24 h-40% by 2 weeks). Moreover, xanthan gum demonstrated solubility in ionic solutions such as cell culture medium, which is essential for biocompatibility. Live/dead staining showed that cell viability in the printed hydrogels was over 90% for 7 days. Metabolic activity analysis demonstrated excellent cell proliferation and survival within 4 weeks of incubation. In summary, the newly developed hydrogel system has demonstrated distinct features including extrusion printability, widely tunable mechanical property and degradation, ionic solubility, and cytocompatibility. It offers great flexibility in bioprinting and tissue engineering.
Collapse
|
4
|
Stahl A, Hao D, Barrera J, Henn D, Lin S, Moeinzadeh S, Kim S, Maloney W, Gurtner G, Wang A, Yang YP. A bioactive compliant vascular graft modulates macrophage polarization and maintains patency with robust vascular remodeling. Bioact Mater 2023; 19:167-178. [PMID: 35510174 PMCID: PMC9034314 DOI: 10.1016/j.bioactmat.2022.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/14/2022] [Accepted: 04/05/2022] [Indexed: 12/20/2022] Open
Abstract
Conventional synthetic vascular grafts are associated with significant failure rates due to their mismatched mechanical properties with the native vessel and poor regenerative potential. Though different tissue engineering approaches have been used to improve the biocompatibility of synthetic vascular grafts, it is still crucial to develop a new generation of synthetic grafts that can match the dynamics of native vessel and direct the host response to achieve robust vascular regeneration. The size of pores within implanted biomaterials has shown significant effects on macrophage polarization, which has been further confirmed as necessary for efficient vascular formation and remodeling. Here, we developed biodegradable, autoclavable synthetic vascular grafts from a new polyurethane elastomer and tailored the grafts' interconnected pore sizes to promote macrophage populations with a pro-regenerative phenotype and improve vascular regeneration and patency rate. The synthetic vascular grafts showed similar mechanical properties to native blood vessels, encouraged macrophage populations with varying M2 to M1 phenotypic expression, and maintained patency and vascular regeneration in a one-month rat carotid interposition model and in a four-month rat aortic interposition model. This innovative bioactive synthetic vascular graft holds promise to treat clinical vascular diseases.
Small diameter vascular grafts were fabricated from a new elastomeric polyurethane designed for vascular tissue engineering. The grafts combined excellent elasticity, strength, porosity, hemocompatibility, degradability, and biocompatibility. In vivo, grafts maintained patency for four months and supported tissue regeneration resembling the native arterial wall. Pore size was found to influence graft characteristics and efficacy.
Collapse
|
5
|
Park Y, Lin S, Bai Y, Moeinzadeh S, Kim S, Huang J, Lee U, Huang NF, Yang YP. Dual Delivery of BMP2 and IGF1 Through Injectable Hydrogel Promotes Cranial Bone Defect Healing. Tissue Eng Part A 2022; 28:760-769. [PMID: 35357948 PMCID: PMC9508443 DOI: 10.1089/ten.tea.2022.0002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/29/2022] [Indexed: 11/12/2022] Open
Abstract
Critical-sized cranial bone defect remains a great clinical challenge. With advantages in regenerative medicine, injectable hydrogels incorporated with bioactive molecules show great potential in promoting cranial bone repair. Recently, we developed a dual delivery system by sequential release of bone morphogenetic protein 2 (BMP2) followed by insulin-like growth factor 1 (IGF1) in microparticles (MPs), and an injectable alginate/collagen (alg/col)-based hydrogel. In this study, we aim to evaluate the effect of dual delivery of BMP2 and IGF1 in MPs through the injectable hydrogel in critical-sized cranial bone defect healing. The gelatin MPs loaded with BMP2 and poly(lactic-co-glycolic acid)-poly(ethylene glycol)-carboxyl (PLGA-PEG-COOH) MPs loaded with IGF1 were prepared, respectively. The encapsulation efficiency and release profile of growth factors in MPs were measured. A cranial defect model was applied to evaluate the efficacy of the dual delivery system in bone regeneration. Adult Sprague Dawley rats were subjected to osteotomy to make an ⌀8-mm cranial defect. The injectable hydrogel containing MPs loaded with BMP2 (2 μg), IGF1 (2 μg), or a combination of BMP2 (1 μg) and IGF1 (1 μg) were injected to the defect site. New bone formation was evaluated by microcomputed tomography, histological analysis, and immunohistochemistry after 4 or 8 weeks. Data showed that dual delivery of the low-dose BMP2 and IGF1 in MPs through alg/col-based hydrogel successfully restored cranial bone as early as 4 weeks after implantation, whose effect was comparable to the single delivery of high-dose BMP2 in MPs. In conclusion, this study suggests that dual delivery of BMP2 and IGF1 in MPs in alg/col-based hydrogel achieves early bone regeneration in critical-sized bone defect, with advantage in reducing the dose of BMP2. Impact Statement Sequential release of bone morphogenetic protein 2 (BMP2) followed by insulin-like growth factor 1 (IGF1) in two different microparticles promotes critical-sized bone defect healing. This dual delivery system reduces the dose of BMP2 by supplementing IGF1, which may diminish the potential side effects of BMP2.
Collapse
|
6
|
Lui E, Maruyama M, Guzman RA, Moeinzadeh S, Pan CC, Pius AK, Quig MSV, Wong LE, Goodman SB, Yang YP. Applying deep learning to quantify empty lacunae in histologic sections of osteonecrosis of the femoral head. J Orthop Res 2022; 40:1801-1809. [PMID: 34676596 PMCID: PMC9021324 DOI: 10.1002/jor.25201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/28/2021] [Accepted: 10/18/2021] [Indexed: 02/04/2023]
Abstract
Osteonecrosis of the femoral head (ONFH) is a disease in which inadequate blood supply to the subchondral bone causes the death of cells in the bone marrow. Decalcified histology and assessment of the percentage of empty lacunae are used to quantify the severity of ONFH. However, the current clinical practice of manually counting cells is a tedious and inefficient process. We utilized the power of artificial intelligence by training an established deep convolutional neural network framework, Faster-RCNN, to automatically classify and quantify osteocytes (healthy and pyknotic) and empty lacunae in 135 histology images. The adjusted correlation coefficient between the trained cell classifier and the ground truth was R = 0.98. The methods detailed in this study significantly reduced the manual effort of cell counting in ONFH histological samples and can be translated to other fields of image quantification.
Collapse
|
7
|
Li J, Kim C, Pan CC, Babian A, Lui E, Young JL, Moeinzadeh S, Kim S, Yang YP. Hybprinting for musculoskeletal tissue engineering. iScience 2022; 25:104229. [PMID: 35494239 PMCID: PMC9051619 DOI: 10.1016/j.isci.2022.104229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review presents bioprinting methods, biomaterials, and printing strategies that may be used for composite tissue constructs for musculoskeletal applications. The printing methods discussed include those that are suitable for acellular and cellular components, and the biomaterials include soft and rigid components that are suitable for soft and/or hard tissues. We also present strategies that focus on the integration of cell-laden soft and acellular rigid components under a single printing platform. Given the structural and functional complexity of native musculoskeletal tissue, we envision that hybrid bioprinting, referred to as hybprinting, could provide unprecedented potential by combining different materials and bioprinting techniques to engineer and assemble modular tissues.
Collapse
|
8
|
Guzman RA, Maruyama M, Moeinzadeh S, Lui E, Zhang N, Storaci HW, Tam K, Huang EE, Utsunomiya T, Rhee C, Gao Q, Yao Z, Yang YP, Goodman SB. The effect of genetically modified platelet-derived growth factor-BB over-expressing mesenchymal stromal cells during core decompression for steroid-associated osteonecrosis of the femoral head in rabbits. Stem Cell Res Ther 2021; 12:503. [PMID: 34526115 PMCID: PMC8444495 DOI: 10.1186/s13287-021-02572-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Approximately one third of patients undergoing core decompression (CD) for early-stage osteonecrosis of the femoral head (ONFH) experience progression of the disease, and subsequently require total hip arthroplasty (THA). Thus, identifying adjunctive treatments to optimize bone regeneration during CD is an unmet clinical need. Platelet-derived growth factor (PDGF)-BB plays a central role in cell growth and differentiation. The aim of this study was to characterize mesenchymal stromal cells (MSCs) that were genetically modified to overexpress PDGF-BB (PDGF-BB-MSCs) in vitro and evaluate their therapeutic effect when injected into the bone tunnel at the time of CD in an in vivo rabbit model of steroid-associated ONFH. METHODS In vitro studies: Rabbit MSCs were transduced with a lentivirus vector carrying the human PDGF-BB gene under the control of either the cytomegalovirus (CMV) or phosphoglycerate (PGK) promoter. The proliferative rate, PDGF-BB expression level, and osteogenic differentiation capacity of unmodified MSCs, CMV-PDGF-BB-MSCs, and PGK-PDGF-BB-MSCs were assessed. In vivo studies: Twenty-four male New Zealand white rabbits received an intramuscular (IM) injection of methylprednisolone 20 mg/kg. Four weeks later, the rabbits were divided into four groups: the CD group, the hydrogel [HG, (a collagen-alginate mixture)] group, the MSC group, and the PGK-PDGF-BB-MSC group. Eight weeks later, the rabbits were sacrificed, their femurs were harvested, and microCT, mechanical testing, and histological analyses were performed. RESULTS In vitro studies: PGK-PDGF-BB-MSCs proliferated more rapidly than unmodified MSCs (P < 0.001) and CMV-PDGF-BB-MSCs (P < 0.05) at days 3 and 7. CMV-PDGF-BB-MSCs demonstrated greater PDGF-BB expression than PGK-PDGF-BB-MSCs (P < 0.01). However, PGK-PDGF-BB-MSCs exhibited greater alkaline phosphatase staining at 14 days (P < 0.01), and osteogenic differentiation at 28 days (P = 0.07) than CMV-PDGF-BB-MSCs. In vivo: The PGK-PDGF-BB-MSC group had a trend towards greater bone mineral density (BMD) than the CD group (P = 0.074). The PGK-PDGF-BB-MSC group demonstrated significantly lower numbers of empty lacunae (P < 0.001), greater osteoclast density (P < 0.01), and greater angiogenesis (P < 0.01) than the other treatment groups. CONCLUSION The use of PGK-PDGF-BB-MSCs as an adjunctive treatment with CD may reduce progression of osteonecrosis and enhance bone regeneration and angiogenesis in the treatment of early-stage ONFH.
Collapse
|
9
|
Maruyama M, Moeinzadeh S, Guzman RA, Zhang N, Storaci HW, Utsunomiya T, Lui E, Huang EE, Rhee C, Gao Q, Yao Z, Takagi M, Yang YP, Goodman SB. The efficacy of lapine preconditioned or genetically modified IL4 over-expressing bone marrow-derived mesenchymal stromal cells in corticosteroid-associated osteonecrosis of the femoral head in rabbits. Biomaterials 2021; 275:120972. [PMID: 34186237 DOI: 10.1016/j.biomaterials.2021.120972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/29/2021] [Accepted: 06/10/2021] [Indexed: 02/09/2023]
Abstract
Cell-based therapy for augmentation of core decompression (CD) using mesenchymal stromal cells (MSCs) is a promising treatment for early stage osteonecrosis of the femoral head (ONFH). Recently, the therapeutic potential for immunomodulation of osteogenesis using preconditioned (with pro-inflammatory cytokines) MSCs (pMSCs), or by the timely resolution of inflammation using MSCs that over-express anti-inflammatory cytokines has been described. Here, pMSCs exposed to tumor necrosis factor-alpha and lipopolysaccharide for 3 days accelerated osteogenic differentiation in vitro. Furthermore, injection of pMSCs encapsulated with injectable hydrogels into the bone tunnel facilitated angiogenesis and osteogenesis in the femoral head in vivo, using rabbit bone marrow-derived MSCs and a model of corticosteroid-associated ONFH in rabbits. In contrast, in vitro and in vivo studies demonstrated that genetically-modified MSCs that over-express IL4 (IL4-MSCs), established by using a lentiviral vector carrying the rabbit IL4 gene under the cytomegalovirus promoter, accelerated proliferation of MSCs and decreased the percentage of empty lacunae in the femoral head. Therefore, adjunctive cell-based therapy of CD using pMSCs and IL4-MSCs may hold promise to heal osteonecrotic lesions in the early stage ONFH. These interventions must be applied in a temporally sensitive fashion, without interfering with the mandatory acute inflammatory phase of bone healing.
Collapse
|
10
|
Yang YP, Gadomski BC, Bruyas A, Easley J, Labus KM, Nelson B, Palmer RH, Stewart H, McGilvray K, Puttlitz CM, Regan D, Stahl A, Lui E, Li J, Moeinzadeh S, Kim S, Maloney W, Gardner MJ. Investigation of a Prevascularized Bone Graft for Large Defects in the Ovine Tibia. Tissue Eng Part A 2021; 27:1458-1469. [PMID: 33858216 DOI: 10.1089/ten.tea.2020.0347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In vivo bioreactors are a promising approach for engineering vascularized autologous bone grafts to repair large bone defects. In this pilot parametric study, we first developed a three-dimensional (3D) printed scaffold uniquely designed to accommodate inclusion of a vascular bundle and facilitate growth factor delivery for accelerated vascular invasion and ectopic bone formation. Second, we established a new sheep deep circumflex iliac artery (DCIA) model as an in vivo bioreactor for engineering a vascularized bone graft and evaluated the effect of implantation duration on ectopic bone formation. Third, after 8 weeks of implantation around the DCIA, we transplanted the prevascularized bone graft to a 5 cm segmental bone defect in the sheep tibia, using the custom 3D printed bone morphogenic protein 2 (BMP-2) loaded scaffold without prior in vivo bioreactor maturation as a control. Analysis by micro-computed tomography and histomorphometry found ectopic bone formation in BMP-2 loaded scaffolds implanted for 8 and 12 weeks in the iliac pouch, with greater bone formation occurring after 12 weeks. Grafts transplanted to the tibial defect supported bone growth, mainly on the periphery of the graft, but greater bone growth and less soft tissue invasion was observed in the avascular BMP-2 loaded scaffold implanted directly into the tibia without prior in vivo maturation. Histopathological evaluation noted considerably greater vascularity in the bone grafts that underwent in vivo maturation with an inserted vascular bundle compared with the avascular BMP-2 loaded graft. Our findings indicate that the use of an initial DCIA in vivo bioreactor maturation step is a promising approach to developing vascularized autologous bone grafts, although scaffolds with greater osteoinductivity should be further studied. Impact statement This translational pilot study aims at combining a tissue engineering scaffold strategy, in vivo prevascularization, and a modified transplantation technique to accelerate large segmental bone defect repair. First, we three-dimensional (3D) printed a 5 cm scaffold with a unique design to facilitate vascular bundle inclusion and osteoinductive growth factor delivery. Second, we established a new sheep deep circumflex iliac artery model as an in vivo bioreactor for prevascularizing the novel 3D printed osteoinductive scaffold. Subsequently, we transplanted the prevascularized bone graft to a clinically relevant 5 cm segmental bone defect in the sheep tibia for bone regeneration.
Collapse
|
11
|
Yang YP, Labus KM, Gadomski BC, Bruyas A, Easley J, Nelson B, Palmer RH, McGilvray K, Regan D, Puttlitz CM, Stahl A, Lui E, Li J, Moeinzadeh S, Kim S, Maloney W, Gardner MJ. Osteoinductive 3D printed scaffold healed 5 cm segmental bone defects in the ovine metatarsus. Sci Rep 2021; 11:6704. [PMID: 33758338 PMCID: PMC7987996 DOI: 10.1038/s41598-021-86210-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Autologous bone grafts are considered the gold standard grafting material for the treatment of nonunion, but in very large bone defects, traditional autograft alone is insufficient to induce repair. Recombinant human bone morphogenetic protein 2 (rhBMP-2) can stimulate bone regeneration and enhance the healing efficacy of bone grafts. The delivery of rhBMP-2 may even enable engineered synthetic scaffolds to be used in place of autologous bone grafts for the treatment of critical size defects, eliminating risks associated with autologous tissue harvest. We here demonstrate that an osteoinductive scaffold, fabricated by combining a 3D printed rigid polymer/ceramic composite scaffold with an rhBMP-2-eluting collagen sponge can treat extremely large-scale segmental defects in a pilot feasibility study using a new sheep metatarsus fracture model stabilized with an intramedullary nail. Bone regeneration after 24 weeks was evaluated by micro-computed tomography, mechanical testing, and histological characterization. Load-bearing cortical bridging was achieved in all animals, with increased bone volume observed in sheep that received osteoinductive scaffolds compared to sheep that received an rhBMP-2-eluting collagen sponge alone.
Collapse
|
12
|
Maruyama M, Pan CC, Moeinzadeh S, Storaci HW, Guzman RA, Lui E, Ueno M, Utsunomiya T, Zhang N, Rhee C, Yao Z, Takagi M, Goodman SB, Yang YP. Effect of porosity of a functionally-graded scaffold for the treatment of corticosteroid-associated osteonecrosis of the femoral head in rabbits. J Orthop Translat 2021; 28:90-99. [PMID: 33816112 PMCID: PMC7995660 DOI: 10.1016/j.jot.2021.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/24/2020] [Accepted: 01/07/2021] [Indexed: 11/24/2022] Open
Abstract
Background/Objective: Core decompression (CD) with scaffold and cell-based therapies is a promising strategy for providing both mechanical support and regeneration of the osteonecrotic area for early stage osteonecrosis of the femoral head (ONFH). We designed a new 3D printed porous functionally-graded scaffold (FGS) with a central channel to facilitate delivery of transplanted cells in a hydrogel to the osteonecrotic area. However, the optimal porous structural design for the FGS for the engineering of bone in ONFH has not been elucidated. The aim of this study was to fabricate and evaluate two different porous structures (30% or 60% porosity) of the FGSs in corticosteroid-associated ONFH in rabbits. Methods Two different FGSs with 30% or 60% porosity containing a 1-mm central channel were 3D printed using polycaprolactone and β-tricalcium phosphate. The FGS was 3-mm diameter and 32-mm length and was composed of three segments: 1-mm in length for the non-porous proximal segment, 22-mm in length for the porous (30% versus 60%) middle segment, and 9-mm in length for the 15% porous distal segment. Eighteen male New Zealand White rabbits were given a single dose of 20 mg/kg methylprednisolone acetate intramuscularly. Four weeks later, rabbits were divided into three groups: the CD group, the 30% porosity FGS group, and the 60% porosity FGS group. In the CD group, a 3-mm diameter drill hole was created into the left femoral head. In the FGS groups, a 30% or 60% porosity implant was inserted into the bone tunnel. Eight weeks postoperatively, femurs were harvested and microCT, mechanical, and histological analyses were performed. Results The actual porosity and pore size of the middle segments were 26.4% ± 2.3% and 699 ± 56 μm in the 30% porosity FGS, and 56.0% ± 4.5% and 999 ± 71 μm in the 60% porosity FGS, respectively using microCT analysis. Bone ingrowth ratio in the 30% porosity FGS group was 73.9% ± 15.8%, which was significantly higher than 39.5% ± 13.0% in the CD group on microCT (p < 0.05). Bone ingrowth ratio in the 60% porosity FGS group (61.3% ± 30.1%) showed no significant differences compared to the other two groups. The stiffness at the bone tunnel site in the 30% porosity FGS group was 582.4 ± 192.3 N/mm3, which was significantly higher than 338.7 ± 164.6 N/mm3 in the 60% porosity FGS group during push-out testing (p < 0.05). Hematoxylin and eosin staining exhibited thick and mature trabecular bone around the porous FGS in the 30% porosity FGS group, whereas thinner, more immature trabecular bone was seen around the porous FGS in the 60% porosity FGS group. Conclusion These findings indicate that the 30% porosity FGS may enhance bone regeneration and have superior biomechanical properties in the bone tunnel after CD in ONFH, compared to the 60% porosity FGS. Translation potential statement The translational potential of this article: This FGS implant holds promise for improving outcomes of CD for early stage ONFH.
Collapse
|
13
|
Moeinzadeh S, Park Y, Lin S, Yang YP. In-situ stable injectable collagen-based hydrogels for cell and growth factor delivery. MATERIALIA 2021; 15:100954. [PMID: 33367226 PMCID: PMC7751945 DOI: 10.1016/j.mtla.2020.100954] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Here we report development of in-situ stable injectable hydrogels for delivery of cells and growth factors based on two precursors, alginate, and collagen/calcium sulfate (CaSO4). The alg/col hydrogels were shear-thinning, injectable through commercially available needles and stable right after injection. Rheological measurements revealed that pre-crosslinked alg/col hydrogels fully crosslinked at 37°C and that the storage modulus of alg/col hydrogels increased with increasing the collagen content or the concentration of CaSO4. The viscoelastic characteristics and injectability of the alg/col hydrogels were not significantly impacted by the storage of precursor solutions for 28 days. An osteoinductive bone morphogenic protein-2 (BMP-2) loaded into alg/col hydrogels was released in 14 days. Human mesenchymal stem cells (hMSCs) encapsulated in alg/col hydrogels had over 90% viability over 7 days after injection. The DNA content of hMSC-laden alg/col hydrogels increased by 6-37 folds for 28 days, depending on the initial cell density. In addition, hMSCs encapsulated in alg/col hydrogels and incubated in osteogenic medium were osteogenically differentiated and formed a mineralized matrix. Finally, a BMP-2 loaded alg/col hydrogel was used to heal a critical size calvarial bone defect in rats after 8 weeks of injection. The alg/col hydrogel holds great promise in tissue engineering and bioprinting applications.
Collapse
|
14
|
Bai Y, Moeinzadeh S, Kim S, Park Y, Lui E, Tan H, Zhao W, Zhou X, Yang YP. Development of PLGA-PEG-COOH and gelatin-based microparticles dual delivery system and E-beam sterilization effects for controlled release of BMP-2 and IGF-1. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2020; 37:2000180. [PMID: 33384477 PMCID: PMC7771709 DOI: 10.1002/ppsc.202000180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The purpose of this study was to develop a PLGA-PEG-COOH- and gelatin-based microparticles (MPs) dual delivery system for release of BMP-2 and IGF-1. We made and characterized the delivery system based on its morphology, loading capacity, Encapsulation efficiency and release kinetics. Second, we examined the effects of electron beam (EB) sterilization on BMP-2 and IGF-1 loaded MPs and their biological effects. Third, we evaluated the synergistic effect of a controlled dual release of BMP-2 and IGF-1 on osteogenesis of MSCs. Encapsulation efficiency of growth factors into gelatin and PLGA-PEG-COOH MPs are in the range of 64.78% to 76.11%. E-beam sterilized growth factor delivery systems were effective in significantly promoting osteogenesis of MSCs, although E-beam sterilization decreased the bioactivity of growth factors in MPs by approximately 22%. BMP-2 release behavior from gelatin MPs/PEG hydrogel shows a faster release (52.7%) than that of IGF-1 from the PLGA-PEG-COOH MPs/PEG hydrogel (27.3%). The results demonstrate that the gelatin and PLGA-PEG-COOH MPs based delivery system could realize temporal release of therapeutic biomolecules by incorporating different growth factors into distinct microparticles. EB sterilization was an accessible method for sterilizing growth factors loaded carriers, which could pave the way for implementing growth factor delivery in clinical applications.
Collapse
|
15
|
Monavarian M, Kader S, Moeinzadeh S, Jabbari E. Regenerative Scar-Free Skin Wound Healing. TISSUE ENGINEERING PART B-REVIEWS 2020; 25:294-311. [PMID: 30938269 DOI: 10.1089/ten.teb.2018.0350] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPACT STATEMENT Millions of people every year develop scars in response to skin injuries after surgery, trauma, or burns with significant undesired physical and psychological effects. This review provides an update on engineering strategies for scar-free wound healing and discusses the role of different cell types, growth factors, cytokines, and extracellular components in regenerative wound healing. The use of pro-regenerative matrices combined with engineered cells with less intrinsic potential for fibrogenesis is a promising strategy for achieving scar-free skin tissue regeneration.
Collapse
|
16
|
Maruyama M, Lin T, Pan CC, Moeinzadeh S, Takagi M, Yang YP, Goodman SB. Cell-Based and Scaffold-Based Therapies for Joint Preservation in Early-Stage Osteonecrosis of the Femoral Head. JBJS Rev 2019; 7:e5. [DOI: 10.2106/jbjs.rvw.18.00202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Kader S, Monavarian M, Barati D, Moeinzadeh S, Makris TM, Jabbari E. Plasmin-Cleavable Nanoparticles for On-Demand Release of Morphogens in Vascularized Osteogenesis. Biomacromolecules 2019; 20:2973-2988. [DOI: 10.1021/acs.biomac.9b00532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Barati D, Karaman O, Moeinzadeh S, Kader S, Jabbari E. Material and regenerative properties of an osteon-mimetic cortical bone-like scaffold. Regen Biomater 2019; 6:89-98. [PMID: 30967963 PMCID: PMC6446997 DOI: 10.1093/rb/rbz008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/16/2019] [Accepted: 01/29/2019] [Indexed: 11/17/2022] Open
Abstract
The objective of this work was to fabricate a rigid, resorbable and osteoconductive scaffold by mimicking the hierarchical structure of the cortical bone. Aligned peptide-functionalize nanofiber microsheets were generated with calcium phosphate (CaP) content similar to that of the natural cortical bone. Next, the CaP-rich fibrous microsheets were wrapped around a microneedle to form a laminated microtube mimicking the structure of an osteon. Then, a set of the osteon-mimetic microtubes were assembled around a solid rod and the assembly was annealed to fuse the microtubes and form a shell. Next, an array of circular microholes were drilled on the outer surface of the shell to generate a cortical bone-like scaffold with an interconnected network of Haversian- and Volkmann-like microcanals. The CaP content, porosity and density of the bone-mimetic microsheets were 240 wt%, 8% and 1.9 g/ml, respectively, which were close to that of natural cortical bone. The interconnected network of microcanals in the fused microtubes increased permeability of a model protein in the scaffold. The cortical scaffold induced osteogenesis and vasculogenesis in the absence of bone morphogenetic proteins upon seeding with human mesenchymal stem cells and endothelial colony-forming cells. The localized and timed-release of morphogenetic factors significantly increased the extent of osteogenic and vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming cells in the cortical scaffold. The cortical bone-mimetic nature of the cellular construct provided balanced rigidity, resorption rate, osteoconductivity and nutrient diffusivity to support vascularization and osteogenesis.
Collapse
|
19
|
Moeinzadeh S, Monavarian M, Kader S, Jabbari E. Sequential Zonal Chondrogenic Differentiation of Mesenchymal Stem Cells in Cartilage Matrices. Tissue Eng Part A 2018; 25:234-247. [PMID: 30146939 DOI: 10.1089/ten.tea.2018.0083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
IMPACT STATEMENT The higher regenerative capacity of fetal articular cartilage compared with the adult is rooted in differences in cell density and matrix composition. We hypothesized that the zonal organization of articular cartilage can be engineered by encapsulation of mesenchymal stem cells in a single superficial zone-like matrix followed by sequential addition of zone-specific growth factors within the matrix, similar to the process of fetal cartilage development. The results demonstrate that the zonal organization of articular cartilage can potentially be regenerated using an injectable, monolayer cell-laden hydrogel with sequential release of growth factors.
Collapse
|
20
|
Bruyas A, Moeinzadeh S, Kim S, Lowenberg DW, Yang YP. Effect of Electron Beam Sterilization on Three-Dimensional-Printed Polycaprolactone/Beta-Tricalcium Phosphate Scaffolds for Bone Tissue Engineering. Tissue Eng Part A 2018; 25:248-256. [PMID: 30234441 DOI: 10.1089/ten.tea.2018.0130] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IMPACT STATEMENT Providing customized geometries and improved control in physical and biological properties, 3D-printed polycaprolactone/beta-tricalcium phosphate (PCL/β-TCP) composite constructs are of high interest for bone tissue engineering applications. A critical step toward the translation and clinical applications of these types of scaffolds is terminal sterilization, and E-beam irradiation might be the most relevant method because of PCL properties. Through in vitro experimental testing of both physical and biological properties, it is proven in this article that E-beam irradiation is relevant for sterilization of 3D-printed PCL/β-TCP scaffolds for bone tissue engineering applications.
Collapse
|
21
|
Moeinzadeh S, Shariati SRP, Kader S, Melero-Martin JM, Jabbari E. Devitalized Stem Cell Microsheets for Sustainable Release of Osteogenic and Vasculogenic Growth Factors and Regulation of Anti-Inflammatory Immune Response. ACTA ACUST UNITED AC 2017; 1. [PMID: 30221188 DOI: 10.1002/adbi.201600011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The objective of this work was to investigate the effect of devitalized human mesenchymal stem cells (hMSCs) and endothelial colony-forming cells (ECFCs) seeded on mineralized nanofiber microsheets on protein release, osteogenesis, vasculogenesis, and macrophage polarization. Calcium phosphate nanocrystals were grown on the surface of aligned, functionalized nanofiber microsheets. The microsheets were seeded with hMSCs, ECFCs, or a mixture of hMSCs+ECFCs, cultured for cell attachment, differentiated to the osteogenic or vasculogenic lineage, and devitalized by lyophilization. The release kinetic of total protein, bone morphogenetic protein-2 (BMP2), and vascular endothelial growth factor (VEGF) from the devitalized microsheets was measured. Next, hMSCs and/or ECFCs were seeded on the devitalized cell microsheets and cultured in the absence of osteo-/vasculo-inductive factors to determine the effect of devitalized cell microsheets on hMSC/ECFC differentiation. Human macrophages were seeded on the microsheets to determine the effect of devitalized cells on macrophage polarization. Based on the results, devitalized undifferentiated hMSC and vasculogenic-differentiated ECFC microsheets had highest sustained release of BMP2 and VEGF, respectively. The devitalized hMSC microsheets did not affect M2 macrophage polarization while vascular-differentiated, devitalized ECFC microsheets did not affect M1 polarization. Both groups stimulated higher M2 macrophage polarization compared to M1.
Collapse
|
22
|
Barati D, Kader S, Pajoum Shariati SR, Moeinzadeh S, Sawyer RH, Jabbari E. Synthesis and Characterization of Photo-Cross-Linkable Keratin Hydrogels for Stem Cell Encapsulation. Biomacromolecules 2017; 18:398-412. [DOI: 10.1021/acs.biomac.6b01493] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
23
|
Moeinzadeh S, Jabbari E. Nanoparticles and Their Applications. SPRINGER HANDBOOK OF NANOTECHNOLOGY 2017. [DOI: 10.1007/978-3-662-54357-3_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Moeinzadeh S, Pajoum Shariati SR, Jabbari E. Comparative effect of physicomechanical and biomolecular cues on zone-specific chondrogenic differentiation of mesenchymal stem cells. Biomaterials 2016; 92:57-70. [PMID: 27038568 DOI: 10.1016/j.biomaterials.2016.03.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/29/2016] [Accepted: 03/22/2016] [Indexed: 01/20/2023]
Abstract
Current tissue engineering approaches to regeneration of articular cartilage rarely restore the tissue to its normal state because the generated tissue lacks the intricate zonal organization of the native cartilage. Zonal regeneration of articular cartilage is hampered by the lack of knowledge for the relation between physical, mechanical, and biomolecular cues and zone-specific chondrogenic differentiation of progenitor cells. This work investigated in 3D the effect of TGF-β1, zone-specific growth factors, optimum matrix stiffness, and adding nanofibers on the expression of chondrogenic markers specific to the superficial, middle, and calcified zones of articular cartilage by the differentiating human mesenchymal stem cells (hMSCs). Growth factors included BMP-7, IGF-1, and hydroxyapatite (HA) for the superficial, middle, and calcified zones, respectively; optimum matrix stiffness was 80 kPa, 2.1 MPa, and 320 MPa; and nanofibers were aligned horizontal, random, and perpendicular to the gel surface. hMSCs with zone-specific cell densities were encapsulated in engineered hydrogels and cultured with or without TGF-β1, zone-specific growth factor, optimum matrix modulus, and fiber addition and cultured in basic chondrogenic medium. The expression of encapsulated cells was measured by mRNA, protein, and biochemical analysis. Results indicated that zone-specific matrix stiffness had a dominating effect on chondrogenic differentiation of hMSCs to the superficial and calcified zone phenotypes. Addition of aligned nanofibers parallel to the direction of gel surface significantly enhanced expression of Col II in the superficial zone chondrogenic differentiation of hMSCs. Conversely, biomolecular factor IGF-1 in combination with TGF-β1 had a dominating effect on the middle zone chondrogenic differentiation of hMSCs. Results of this work could potentially lead to the development of multilayer grafts mimicking the zonal organization of articular cartilage.
Collapse
|
25
|
Barati D, Shariati SRP, Moeinzadeh S, Melero-Martin JM, Khademhosseini A, Jabbari E. Spatiotemporal release of BMP-2 and VEGF enhances osteogenic and vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming cells co-encapsulated in a patterned hydrogel. J Control Release 2015; 223:126-136. [PMID: 26721447 DOI: 10.1016/j.jconrel.2015.12.031] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/30/2015] [Accepted: 12/16/2015] [Indexed: 01/02/2023]
Abstract
Reconstruction of large bone defects is limited by insufficient vascularization and slow bone regeneration. The objective of this work was to investigate the effect of spatial and temporal release of recombinant human bone morphogenetic protein-2 (BMP2) and vascular endothelial growth factor (VEGF) on the extent of osteogenic and vasculogenic differentiation of human mesenchymal stem cells (hMSCs) and endothelial colony-forming cells (ECFCs) encapsulated in a patterned hydrogel. Nanogels (NGs) based on polyethylene glycol (PEG) macromers chain-extended with short lactide (L) and glycolide (G) segments were used for grafting and timed-release of BMP2 and VEGF. NGs with 12kDa PEG molecular weight (MW), 24 LG segment length, and 60/40L/G ratio (P12-II, NG(10)) released the grafted VEGF in 10days. NGs with 8kDa PEG MW, 26 LG segment length, and 60/40L/G ratio (P8-I, NG(21)) released the grafted BMP2 in 21days. hMSCs and NG-BMP2 were encapsulated in a patterned matrix based on acrylate-functionalized lactide-chain-extended star polyethylene glycol (SPELA) hydrogel and microchannel patterns filled with a suspension of hMSCs+ECFCs and NG-VEGF in a crosslinked gelatin methacryloyl (GelMA) hydrogel. Groups included patterned constructs without BMP2/VEGF (None), with directly added BMP2/VEGF, and NG-BMP2/NG-VEGF. Based on the results, timed-release of VEGF in the microchannels in 10days from NG(10) and BMP2 in the matrix in 21days from NG(21) resulted in highest extent of osteogenic and vasculogenic differentiation of the encapsulated hMSCs and ECFCs compared to direct addition of VEGF and BMP2. Further, timed-release of VEGF from NG(10) in hMSC+ECFC encapsulating microchannels and BMP2 from NG(21) in hMSC encapsulating matrix sharply increased bFGF expression in the patterned constructs. The results suggest that mineralization and vascularization are coupled by localized secretion of paracrine signaling factors by the differentiating hMSCs and ECFCs.
Collapse
|