1
|
Lin X, Koelsch G, Wu S, Downs D, Dashti A, Tang J. Human aspartic protease memapsin 2 cleaves the beta-secretase site of beta-amyloid precursor protein. Proc Natl Acad Sci U S A 2000; 97:1456-60. [PMID: 10677483 PMCID: PMC26455 DOI: 10.1073/pnas.97.4.1456] [Citation(s) in RCA: 638] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/1999] [Accepted: 12/14/1999] [Indexed: 11/18/2022] Open
Abstract
The cDNAs of two new human membrane-associated aspartic proteases, memapsin 1 and memapsin 2, have been cloned and sequenced. The deduced amino acid sequences show that each contains the typical pre, pro, and aspartic protease regions, but each also has a C-terminal extension of over 80 residues, which includes a single transmembrane domain and a C-terminal cytosolic domain. Memapsin 2 mRNA is abundant in human brain. The protease domain of memapsin 2 cDNA was expressed in Escherichia coli and was purified. Recombinant memapsin 2 specifically hydrolyzed peptides derived from the beta-secretase site of both the wild-type and Swedish mutant beta-amyloid precursor protein (APP) with over 60-fold increase of catalytic efficiency for the latter. Expression of APP and memapsin 2 in HeLa cells showed that memapsin 2 cleaved the beta-secretase site of APP intracellularly. These and other results suggest that memapsin 2 fits all of the criteria of beta-secretase, which catalyzes the rate-limiting step of the in vivo production of the beta-amyloid (Abeta) peptide leading to the progression of Alzheimer's disease. Recombinant memapsin 2 also cleaved a peptide derived from the processing site of presenilin 1, albeit with poor kinetic efficiency. Alignment of cleavage site sequences of peptides indicates that the specificity of memapsin 2 resides mainly at the S(1)' subsite, which prefers small side chains such as Ala, Ser, and Asp.
Collapse
|
research-article |
25 |
638 |
2
|
Hong L, Koelsch G, Lin X, Wu S, Terzyan S, Ghosh AK, Zhang XC, Tang J. Structure of the protease domain of memapsin 2 (beta-secretase) complexed with inhibitor. Science 2000; 290:150-3. [PMID: 11021803 DOI: 10.1126/science.290.5489.150] [Citation(s) in RCA: 536] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Memapsin 2 (beta-secretase) is a membrane-associated aspartic protease involved in the production of beta-amyloid peptide in Alzheimer's disease and is a major target for drug design. We determined the crystal structure of the protease domain of human memapsin 2 complexed to an eight-residue inhibitor at 1.9 angstrom resolution. The active site of memapsin 2 is more open and less hydrophobic than that of other human aspartic proteases. The subsite locations from S4 to S2' are well defined. A kink of the inhibitor chain at P2' and the change of chain direction of P3' and P4' may be mimicked to provide inhibitor selectivity.
Collapse
|
|
25 |
536 |
3
|
Dunman PM, Murphy E, Haney S, Palacios D, Tucker-Kellogg G, Wu S, Brown EL, Zagursky RJ, Shlaes D, Projan SJ. Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 2001; 183:7341-53. [PMID: 11717293 PMCID: PMC95583 DOI: 10.1128/jb.183.24.7341-7353.2001] [Citation(s) in RCA: 477] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The advent of transcription profiling technologies has provided researchers with an unprecedented ability to study biological processes. Accordingly, a custom-made Affymetrix GeneChip, constituting >86% of the Staphylococcus aureus genome, was used to identify open reading frames that are regulated by agr and/or SarA, the two best-studied regulators of the organism's virulence response. RNA extracted from wild-type cells and agr, sarA, and agr sarA mutant cells in the early-, mid-, and late-log and stationary phases of growth was analyzed. Open reading frames with transcription patterns expected of genes either up- or downregulated in an agr- and/or SarA-dependent manner were identified. Oligonucleotide microarray and Northern blot analyses confirmed that the transcription of several known virulence genes, including hla (alpha-toxin) and spa (protein A), is regulated by each effector and provided insights about the regulatory cascades involved in both alpha-hemolysin and protein A expression. Several putative virulence factors were also identified as regulated by agr and/or SarA. In addition, genes that are involved in several biological processes but which are difficult to reconcile as playing a direct role in the organism's pathogenesis also appeared to be regulated by each effector, suggesting that products of both the agr and the sarA locus are more-global transcription regulators than previously realized.
Collapse
|
meeting-report |
24 |
477 |
4
|
Schrag JD, Li YG, Wu S, Cygler M. Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum. Nature 1991; 351:761-4. [PMID: 2062369 DOI: 10.1038/351761a0] [Citation(s) in RCA: 438] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Ser-His-Asp triad is a well known structural feature of the serine proteases. It has also been directly observed in the catalytic sites of two lipases, whose high-resolution three-dimensional structures have been determined 1,2. Lipases show a wide variety of sizes, substrate and positional specificities, and catalytic rates 3. They achieve maximal catalytic rates at oil-water interfaces. The fungus Geotrichum candidum produces several different forms of lipases, two of which have been purified to homogeneity 4,5. Two lipase genes have been identified, cloned and sequenced 6,7. Both code for proteins of 544 amino acids with a total relative molecular mass of about 60,000 (Mr 60K). The two forms are 86% identical. Their isoelectric points differ slightly, being between 4.3 and 4.6. About 7% of the total Mr is carbohydrate. Until now, only a low resolution structure of GCL has been reported 8, but no high resolution structure has followed. We now report the three-dimensional structure of a lipase from G. candidum (GCL) at 2.2 A resolution. Unlike the other lipases and serine proteases, the catalytic triad of GCL is Ser-His-Glu, with glutamic acid replacing the usual aspartate. Although the sequence similarity with the other two lipases is limited to the region near the active-site serine, there is some similarity in their three-dimensional structures. The GCL is also an alpha/beta protein with a central mixed beta sheet whose topology is similar to that of the N-terminal domain of human pancreatic lipase. As in the other lipases 1,2, the catalytic site is buried under surface loops. Sequence comparisons with proteins from the cholinesterase family suggest that they also contain the Ser-His-Glu triad.
Collapse
|
Comparative Study |
34 |
438 |
5
|
Abstract
The biliprotein phytochrome regulates plant growth and developmental responses to the ambient light environment through an unknown mechanism. Biochemical analyses demonstrate that phytochrome is an ancient molecule that evolved from a more compact light sensor in cyanobacteria. The cyanobacterial phytochrome Cph1 is a light-regulated histidine kinase that mediates red, far-red reversible phosphorylation of a small response regulator, Rcp1 (response regulator for cyanobacterial phytochrome), encoded by the adjacent gene, thus implicating protein phosphorylation-dephosphorylation in the initial step of light signal transduction by phytochrome.
Collapse
|
|
28 |
393 |
6
|
Wu S, Moomaw CR, Tomer KB, Falck JR, Zeldin DC. Molecular cloning and expression of CYP2J2, a human cytochrome P450 arachidonic acid epoxygenase highly expressed in heart. J Biol Chem 1996; 271:3460-8. [PMID: 8631948 DOI: 10.1074/jbc.271.7.3460] [Citation(s) in RCA: 375] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A cDNA encoding a human cytochrome P450 arachidonic acid epoxygenase was isolated from a human liver cDNA library. Sequence analysis revealed that this 1,876-base pair cDNA contained an open reading frame and encoded a new 502-amino acid protein designated CYP2J2. Blot hybridization analysis of RNA prepared from human tissues revealed that CYP2J2 was highly expressed in the heart. Recombinant CYP2J2 protein was prepared using the baculovirus expression system and purified to near electrophoretic homogeneity. The enzyme metabolized arachidonic acid predominantly via olefin epoxidation to all four regioisomeric cis-epoxyeicosatrienoic acids (catalytic turnover 65 pmol of product formed/nmol of cytochrome P450/min at 30 degrees C). Epoxidation of arachidonic acid by CYP2J2 at the 14,15-olefin was highly enantioselective for (14R, 15S)-epoxyeicosatrienoic acid (76% optical purity). Immunoblotting of microsomal fractions prepared from human tissues using a polyclonal antibody raised against the recombinant hemoprotein confirmed primary expression of CYP2J2 protein in human heart. The in vivo significance of CYP2J2 was suggested by documenting the presence of epoxyeicosatrienoic acids in the human heart using gas chromatography/mass spectroscopy. Importantly, the chirality of CYP2J2 products matched that of the epoxyeicosatrienoic acid enantiomers present, in vivo, in human heart. We propose that CYP2J2 is one of the enzymes responsible for epoxidation of endogenous arachidonic acid pools in human heart and that epoxyeicosatrienoic acids may, therefore, play important functional roles in cardiac physiology.
Collapse
|
|
29 |
375 |
7
|
Baumann U, Wu S, Flaherty KM, McKay DB. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J 1993; 12:3357-64. [PMID: 8253063 PMCID: PMC413609 DOI: 10.1002/j.1460-2075.1993.tb06009.x] [Citation(s) in RCA: 341] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa, a zinc metalloprotease, has been solved to a resolution of 1.64 A by multiple isomorphous replacement and non-crystallographic symmetry averaging between different crystal forms. The molecule is elongated with overall dimensions of 90 x 35 x 25 A; it has two distinct structural domains. The N-terminal domain is the proteolytic domain; it has an overall tertiary fold and active site zinc ligation similar to that of astacin, a metalloprotease isolated from a European freshwater crayfish. The C-terminal domain consists of a 21-strand beta sandwich. Within this domain is a novel 'parallel beta roll' structure in which successive beta strands are wound in a right-handed spiral, and in which Ca2+ ions are bound within the turns between strands by a repeated GGXGXD sequence motif, a motif that is found in a diverse group of proteins secreted by Gram-negative bacteria.
Collapse
|
|
32 |
341 |
8
|
Wu S, Huang S, Ding J, Zhao Y, Liang L, Liu T, Zhan R, He X. Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3' untranslated region. Oncogene 2010; 29:2302-8. [PMID: 20190813 DOI: 10.1038/onc.2010.34] [Citation(s) in RCA: 305] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cyclin-dependent kinase inhibitor 1A (CDKN1A), also known as p21Cip1/Waf1, is a master downstream effector of tumor suppressors. In this study, we experimentally demonstrate through a high-throughput luciferase reporter screen that p21Cip1/Waf1 can be directly targeted by nearly 28 microRNAs (miRNAs). The results were further confirmed by a series of mutational analyses and luciferase reporter assays. These 28 miRNAs can substantially inhibit p21Cip1/Waf1 expression, predominantly at translational level. Many of these miRNAs were upregulated in cancers and might serve as modulators of oncogenesis. Furthermore, 8 of these 28 p21-regulating miRNAs are located in the chromosome 19 miRNA cluster, the largest miRNA gene cluster in humans, and they can clearly promote cell proliferation and cell-cycle progression in choriocarcinoma cells. In conclusion, our screening strategy provides an alternative approach to uncovering miRNA modulators of an individual mRNA, and it has identified multiple miRNAs that can suppress p21Cip1/Waf1 expression by directly targeting its 3' untranslated region.
Collapse
|
Journal Article |
15 |
305 |
9
|
Kingston AE, Ornstein PL, Wright RA, Johnson BG, Mayne NG, Burnett JP, Belagaje R, Wu S, Schoepp DD. LY341495 is a nanomolar potent and selective antagonist of group II metabotropic glutamate receptors. Neuropharmacology 1998; 37:1-12. [PMID: 9680254 DOI: 10.1016/s0028-3908(97)00191-3] [Citation(s) in RCA: 298] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The in vitro pharmacology of a structurally novel compound, LY341495, was investigated at human recombinant metabotropic glutamate (mGlu) receptor subtypes expressed in non-neuronal (RGT, rat glutamate transporter) cells. LY341495 was a nanomolar potent antagonist of 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD)-induced inhibition of forskolin-stimulated cAMP formation at mGlu2 and mGlu3 receptors (respective IC50S of 0.021 and 0.014 microM). At group I mGlu receptor expressing cells, LY341495 was micromolar potent in antagonizing quisqualate-induced phosphoinositide (PI) hydrolysis, with IC50 values of 7.8 and 8.2 microM for mGlu1a and mGlu5a receptors, respectively. Among the human group III mGlu receptors, the most potent inhibition of L-2-amino-4-phosphonobutyric acid (L-AP4) responses was seen for LY341495 at mGlu8, with an IC50 of 0.17 microM. LY341495 was less potent at mGlu7 (IC50 = 0.99 microM) and least potent at mGlu4 (IC50 = 22 microM). Binding studies in rat brain membranes also demonstrated nanomolar potent group II mGlu receptor affinity for LY341495, with no appreciable displacement of ionotropic glutamate receptor ligand binding. Thus, LY341495 has a unique range of selectivity across the mGlu receptor subtypes with a potency order of mGlu3 > or = mGlu2 > mGlu8 > mGlu7 >> mGlu1a = mGlu5a > mGlu4. In particular, LY341495 is the most potent antagonist yet reported at mGlu2, 3 and 8 receptors. Thus, it represents a novel pharmacological agent for elucidating the function of mGlu receptors in experimental systems.
Collapse
|
Comparative Study |
27 |
298 |
10
|
Belum VR, Benhuri B, Postow MA, Hellmann MD, Lesokhin AM, Segal NH, Motzer RJ, Wu S, Busam KJ, Wolchok JD, Lacouture ME. Characterisation and management of dermatologic adverse events to agents targeting the PD-1 receptor. Eur J Cancer 2016; 60:12-25. [PMID: 27043866 PMCID: PMC4998047 DOI: 10.1016/j.ejca.2016.02.010] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/12/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Dermatologic adverse events (AEs) are some of the most frequently observed toxicities of immune-checkpoint inhibitor therapy, but they have received little attention. The drugs, pembrolizumab and nivolumab are recently approved inhibitors of the programmed death (PD)-1 receptor that have overlapping AE profiles however, the incidence, relative risk (RR), and clinico-morphological pattern of the associated dermatologic AEs are not known. METHODS We conducted a systematic review of the literature, and performed a meta-analysis of dermatologic AEs observed with the use of pembrolizumab and nivolumab in cancer patients. An electronic search was conducted using the PubMed, and Web of Science, and on the American Society of Clinical Oncology and European Society for Medical Oncology meeting abstracts' libraries for potentially relevant oncology trials, that employed the drugs at Food and Drug Administration-approved doses and reported dermatologic AEs. The incidence, RR and 95% confidence intervals were calculated using either random- or fixed-effects models based on the heterogeneity of included studies. The clinical presentation, histology of affected skin areas, and management strategies (based on institutional experience), are also presented. RESULTS Rash, pruritus and vitiligo were found to be the most frequently reported dermatologic AEs. The calculated incidence of all-grade rash with pembrolizumab and nivolumab was 16.7% (RR = 2.6) and 14.3% (RR = 2.5), respectively. Other significant all-grade AEs included pruritus (pembrolizumab: incidence, 20.2% [RR = 49.9]; nivolumab: incidence, 13.2% [RR = 34.5]) and vitiligo (pembrolizumab: incidence, 8.3% [RR = 17.5]; nivolumab: 7.5% [RR = 14.6]). Interestingly, all the vitiligo events were reported in trials investigating melanoma. The RR for developing dermatologic AEs in general, was 2.95 with pembrolizumab, and 2.3 with nivolumab. CONCLUSION We found that pembrolizumab and nivolumab are both associated with dermatologic AEs, primarily low-grade rash, pruritus, and vitiligo, which are reminiscent of those seen with ipilimumab. Knowledge of these findings is critical for optimal care, maintaining dose intensity, and health-related quality of life in cancer patients receiving PD-1 inhibitors.
Collapse
|
Meta-Analysis |
9 |
297 |
11
|
Wu S, Romfo CM, Nilsen TW, Green MR. Functional recognition of the 3' splice site AG by the splicing factor U2AF35. Nature 1999; 402:832-5. [PMID: 10617206 DOI: 10.1038/45590] [Citation(s) in RCA: 286] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In metazoans, spliceosome assembly is initiated through recognition of the 5' splice site by U1 snRNP and the polypyrimidine tract by the U2 small nuclear ribonucleoprotein particle (snRNP) auxiliary factor, U2AF. U2AF is a heterodimer comprising a large subunit, U2AF65, and a small subunit, U2AF35. U2AF65 directly contacts the polypyrimidine tract and is required for splicing in vitro. In comparison, the role of U2AF35 has been puzzling: U2AF35 is highly conserved and is required for viability, but can be dispensed with for splicing in vitro. Here we use site-specific crosslinking to show that very early during spliceosome assembly U2AF35 directly contacts the 3' splice site. Mutational analysis and in vitro genetic selection indicate that U2AF35 has a sequence-specific RNA-binding activity that recognizes the 3'-splice-site consensus, AG/G. We show that for introns with weak polypyrimidine tracts, the U2AF35-3'-splice-site interaction is critical for U2AF binding and splicing. Our results demonstrate a new biochemical activity of U2AF35, identify the factor that initially recognizes the 3' splice site, and explain why the AG dinucleotide is required for the first step of splicing for some but not all introns.
Collapse
|
|
26 |
286 |
12
|
Budd Haeberlein S, Aisen PS, Barkhof F, Chalkias S, Chen T, Cohen S, Dent G, Hansson O, Harrison K, von Hehn C, Iwatsubo T, Mallinckrodt C, Mummery CJ, Muralidharan KK, Nestorov I, Nisenbaum L, Rajagovindan R, Skordos L, Tian Y, van Dyck CH, Vellas B, Wu S, Zhu Y, Sandrock A. Two Randomized Phase 3 Studies of Aducanumab in Early Alzheimer's Disease. J Prev Alzheimers Dis 2022; 9:197-210. [PMID: 35542991 DOI: 10.14283/jpad.2022.30] [Citation(s) in RCA: 282] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Alzheimer's disease is a progressive, irreversible, and fatal disease for which accumulation of amyloid beta is thought to play a key role in pathogenesis. Aducanumab is a human monoclonal antibody directed against aggregated soluble and insoluble forms of amyloid beta. OBJECTIVES We evaluated the efficacy and safety of aducanumab in early Alzheimer's disease. DESIGN EMERGE and ENGAGE were two randomized, double-blind, placebo-controlled, global, phase 3 studies of aducanumab in patients with early Alzheimer's disease. SETTING These studies involved 348 sites in 20 countries. PARTICIPANTS Participants included 1638 (EMERGE) and 1647 (ENGAGE) patients (aged 50-85 years, confirmed amyloid pathology) who met clinical criteria for mild cognitive impairment due to Alzheimer's disease or mild Alzheimer's disease dementia, of which 1812 (55.2%) completed the study. INTERVENTION Participants were randomly assigned 1:1:1 to receive aducanumab low dose (3 or 6 mg/kg target dose), high dose (10 mg/kg target dose), or placebo via IV infusion once every 4 weeks over 76 weeks. MEASUREMENTS The primary outcome measure was change from baseline to week 78 on the Clinical Dementia Rating Sum of Boxes (CDR-SB), an integrated scale that assesses both function and cognition. Other measures included safety assessments; secondary and tertiary clinical outcomes that assessed cognition, function, and behavior; and biomarker endpoints. RESULTS EMERGE and ENGAGE were halted based on futility analysis of data pooled from the first approximately 50% of enrolled patients; subsequent efficacy analyses included data from a larger data set collected up to futility declaration and followed prespecified statistical analyses. The primary endpoint was met in EMERGE (difference of -0.39 for high-dose aducanumab vs placebo [95% CI, -0.69 to -0.09; P=.012; 22% decrease]) but not in ENGAGE (difference of 0.03, [95% CI, -0.26 to 0.33; P=.833; 2% increase]). Results of biomarker substudies confirmed target engagement and dose-dependent reduction in markers of Alzheimer's disease pathophysiology. The most common adverse event was amyloid-related imaging abnormalities-edema. CONCLUSIONS Data from EMERGE demonstrated a statistically significant change across all four primary and secondary clinical endpoints. ENGAGE did not meet its primary or secondary endpoints. A dose- and time-dependent reduction in pathophysiological markers of Alzheimer's disease was observed in both trials.
Collapse
|
Clinical Trial, Phase III |
3 |
282 |
13
|
Wu S, Lim KC, Huang J, Saidi RF, Sears CL. Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc Natl Acad Sci U S A 1998; 95:14979-84. [PMID: 9844001 PMCID: PMC24561 DOI: 10.1073/pnas.95.25.14979] [Citation(s) in RCA: 281] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/1998] [Accepted: 10/02/1998] [Indexed: 12/12/2022] Open
Abstract
Strains of Bacteroides fragilis associated with diarrheal disease (enterotoxigenic B. fragilis) produce a 20-kDa zinc-dependent metalloprotease toxin (B. fragilis enterotoxin; BFT) that reversibly stimulates chloride secretion and alters tight junctional function in polarized intestinal epithelial cells. BFT alters cellular morphology and physiology most potently and rapidly when placed on the basolateral membrane of epithelial cells, suggesting that the cellular substrate for BFT may be present on this membrane. Herein, we demonstrate that BFT specifically cleaves within 1 min the extracellular domain of the zonula adherens protein, E-cadherin. Cleavage of E-cadherin by BFT is ATP-independent and essential to the morphologic and physiologic activity of BFT. However, the morphologic changes occurring in response to BFT are dependent on target-cell ATP. E-cadherin is shown here to be a cellular substrate for a bacterial toxin and represents the identification of a mechanism of action, cell-surface proteolytic activity, for a bacterial toxin.
Collapse
|
research-article |
27 |
281 |
14
|
Holtzman DM, Bales KR, Wu S, Bhat P, Parsadanian M, Fagan AM, Chang LK, Sun Y, Paul SM. Expression of human apolipoprotein E reduces amyloid-beta deposition in a mouse model of Alzheimer's disease. J Clin Invest 1999; 103:R15-R21. [PMID: 10079115 PMCID: PMC408154 DOI: 10.1172/jci6179] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The epsilon4 allele of apolipoprotein E (apo E) is associated with an increased risk for developing Alzheimer's disease (AD). This may be due to interactions between apo E and the amyloid-beta protein (Abeta). To assess the effects of human apo E isoforms on Abeta deposition in vivo, we bred apo E3 and apo E4 hemizygous (+/-) transgenic mice expressing apo E by astrocytes to mice homozygous (+/+) for a mutant amyloid precursor protein (APPV717F) transgene that develop age-dependent AD neuropathology. All mice were on a mouse apo E null (-/-) background. By nine months of age, APPV717F+/-, apo E-/- mice had developed Abeta deposition, and, as reported previously, the quantity of Abeta deposits was significantly less than that seen in APPV717F+/- mice expressing mouse apo E. In contrast to effects of mouse apo E, similar levels of human apo E3 and apo E4 markedly suppressed early Abeta deposition at nine months of age in APPV717F+/- transgenic mice, even when compared with mice lacking apo E. These findings suggest that human apo E isoforms decrease Abeta aggregation or increase Abeta clearance relative to an environment in which mouse apo E or no apo E is present. The results may have important implications for understanding mechanisms underlying the link between apo E and AD.
Collapse
|
research-article |
26 |
247 |
15
|
Comings DE, Gonzalez N, Wu S, Gade R, Muhleman D, Saucier G, Johnson P, Verde R, Rosenthal RJ, Lesieur HR, Rugle LJ, Miller WB, MacMurray JP. Studies of the 48 bp repeat polymorphism of the DRD4 gene in impulsive, compulsive, addictive behaviors: Tourette syndrome, ADHD, pathological gambling, and substance abuse. AMERICAN JOURNAL OF MEDICAL GENETICS 1999; 88:358-68. [PMID: 10402503 DOI: 10.1002/(sici)1096-8628(19990820)88:4<358::aid-ajmg13>3.0.co;2-g] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Prior studies have reported an association between the presence of the 7 repeat allele of the 48 bp repeat polymorphism of the third cytoplasmic loop of the dopamine D4 receptor gene (DRD4) and novelty seeking behaviors, attention deficit hyperactivity disorder (ADHD), Tourette syndrome (TS), pathological gambling, and substance abuse. However, other studies have failed to replicate some of these observations. To determine whether we could replicate these associations we genotyped 737 individuals from four different groups of control subjects, and 707 index subjects from four different groups of impulsive, compulsive addictive behaviors including substance abuse, pathological gambling, TS, and ADHD. Chi-square analysis of those carrying the 7 allele versus non-7 allele carriers was not significant for any of the groups using a Bonferroni corrected alpha of.0125. However, chi-square analysis of those carrying any 5 to 8 allele versus noncarriers was significant for pathological gambling (p <.0001), ADHD (p </=.01) and the total index group (p </=.0004). When the comparison included all 7 alleles the results were significant for gamblers (p <.0001), TS (p </=.003), ADHD (p </=.003), and the total group (p </=.0002). There was a significant increase in the frequency of heterozygosity versus homozygosity for all alleles for pathological gamblers (p </=.0031) and the total index group (p </=.0015), suggesting that heterosis played a role. In the substance abuse subjects a quantitative summary variable for the severity of drug dependence, based on the Addiction Severity Index, showed that the scores varied by increasing severity across the following genotypes: 44 </= heterozygotes </= 77 </= 22. Studies of other quantitative traits indicated an important role for the 2 allele and the 22, 24, and 27 genotypes. All studies indicated that the role of the DRD4 gene in impulsive, compulsive, addictive behaviors is more complex than a sole focus on the 7 versus non-7 alleles.
Collapse
|
|
26 |
229 |
16
|
Abstract
We propose a method of modifying a kernel function to improve the performance of a support vector machine classifier. This is based on the structure of the Riemannian geometry induced by the kernel function. The idea is to enlarge the spatial resolution around the separating boundary surface, by a conformal mapping, such that the separability between classes is increased. Examples are given specifically for modifying Gaussian Radial Basis Function kernels. Simulation results for both artificial and real data show remarkable improvement of generalization errors, supporting our idea.
Collapse
|
|
26 |
225 |
17
|
Rottenberg H, Wu S. Quantitative assay by flow cytometry of the mitochondrial membrane potential in intact cells. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1404:393-404. [PMID: 9739168 DOI: 10.1016/s0167-4889(98)00088-3] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mitochondrial membrane potential, in situ, is an important indicator of mitochondrial function and dysfunction. Because of recent interest in the role of mitochondria in signaling, cell injury and cell death, there is a need for a convenient, sensitive and accurate method for the measurement of the mitochondrial membrane potential, Deltapsim, in situ, in a heterogeneous cell population. We have adapted a flow cytometry method for the quantitative measurement of DeltaPsim which utilizes the lipophilic, cationic, fluorescent probe 3,3'-dihexyloxacarbocyanine iodide (DiOC6(3)). We developed a new protocol in which cells are equilibrated with very low dye concentrations (<1 nM). Only under these condition, the cell fluorescence appears to be correlated with the magnitude of DeltaPsim, as evident from the sensitivity of the fluorescence to low concentrations of uncouplers, ionophores and inhibitors of the mitochondrial proton pumps. The magnitude of the plasma membrane potential, DeltaPsip, also affects cell fluorescence, and a procedure that corrects for this effect is outlined. This method offers a distinct advantage over existing methods for estimation of Deltapsim by flow cytometry.
Collapse
|
|
27 |
216 |
18
|
Abstract
Neurotrophins are growth factors implicated in the development and maintenance of different neuronal populations in the nervous system. Neurotrophins bind to two sets of receptors, Trk receptor tyrosine kinases and the p75NTR receptor, to activate several different signaling pathways that mediate various biological functions. While Trk receptor activation has been well-studied and triggers the well-characterized Ras/Rap-MAPK, PI3K-Akt, and PLCgamma-PKC cascades, p75NTR signaling is more complex, and its in vivo significance has not yet been completely determined. In the last few years, p75NTR has received much attention mainly due to recent findings describing pro-neurotrophins as new ligands for the receptor and the ability of the receptor to form different complexes with other transmembrane proteins. This review will update the neurotrophin signaling pathways known for Trk receptors to include newly identified Trk-interacting molecules and will address surprising new findings that suggest a role for p75NTR in different receptor complexes and functions.
Collapse
|
Review |
19 |
211 |
19
|
Wu S, Dovichi NJ. High-sensitivity fluorescence detector fluorescein isothiocyanate derivatives of amino acids separated by capillary zone electrophoresis. J Chromatogr A 1989; 480:141-55. [PMID: 12408116 DOI: 10.1016/s0021-9673(01)84284-9] [Citation(s) in RCA: 211] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A fluorescence detector has been developed for capillary zone electrophoresis that produces a ten-fold improvement in precision compared with the previous state-of-the-art in fluorescence detection. This instrument, which is based on a sheath-flow cuvette flow chamber and a 0.05-W argon ion laser beam, combines a high numerical aperture collection optic, N.A = 0.65, with a high quantum yield photomultiplier tube, phi approximately = 0.15 at the wavelength of maximum emission. Detection limits (3 sigma) range from the injection of 1.7 . 10(-21) mol (1.3 . 10(-12) M) of fluorescein isothiocyanate (FITC)-labeled arginine, the best case, to 6 . 10(-21) mol (5.6 . 10(-12) M) of FITC-cysteine, the worse case. Signal linearity extends for at least five orders of magnitude from the detection limit to greater than 10(-16) mol (10(-7) M) injected.
Collapse
|
|
36 |
211 |
20
|
Huang PX, Wu F, Zhu BL, Gao XP, Zhu HY, Yan TY, Huang WP, Wu SH, Song DY. CeO2 Nanorods and Gold Nanocrystals Supported on CeO2 Nanorods as Catalyst. J Phys Chem B 2005; 109:19169-74. [PMID: 16853472 DOI: 10.1021/jp052978u] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The formation mechanism of uniform CeO2 structure at the nanometer scale via a wet-chemical reaction is of great interest in fundamental study as well as a variety of applications. In this work, large-scale well-crystallized CeO2 nanorods with uniform diameters in the range of 20-30 nm and lengths up to tens of micrometers are first synthesized through a hydrothermal synthetic route in 5 M KOH solution at 180 degrees C for 45 h without any templates and surfactants. The nanorod formation involves dehydration of CeO2 nanoparticles and orientation growth along the 110 direction in KOH solution. Subsequently, gold nanoparticles with crystallite sizes between 10 and 20 nm are loaded on the surface of CeO2 nanorods using HAuCl4 solution as the gold source and NaBH4 solution as a reducing agent. The synthesized Au/CeO2 nanorods demonstrate a higher catalytic activity in CO oxidation than the pure CeO2 nanorods.
Collapse
|
|
20 |
196 |
21
|
Oertel D, Wu SH, Garb MW, Dizack C. Morphology and physiology of cells in slice preparations of the posteroventral cochlear nucleus of mice. J Comp Neurol 1990; 295:136-54. [PMID: 2341631 DOI: 10.1002/cne.902950112] [Citation(s) in RCA: 189] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In an effort to understand what integrative tasks are performed in the cochlear nuclei, the present study was undertaken to describe neuronal circuits in the posteroventral cochlear nucleus (PVCN) anatomically and physiologically. The cochlear nuclear complex receives auditory information from the cochlea through the auditory nerve. Within the cochlear nuclei, signals travel along several parallel and interconnected pathways. From the cochlear nuclei, transformed versions of the signals are passed to higher auditory centers in the brainstem. We have recorded electrophysiological responses from cells that were subsequently visualized with horseradish peroxidase (HRP). Responses to shocks to the auditory nerve root and to intracellularly injected current pulses were recorded and correlated with morphology. Two types of stellate cells and octopus cells were distinguished. T stellate cells project out of the cochlear nuclei through the Trapezoid body; D stellate cells do not. The axons of D stellate cells extend Dorsalward to the dorsal cochlear nucleus (DCN) but have not been traced out of the nucleus. Both T and D stellate cells have terminal collaterals in the multipolar cell region of the PVCN and in the DCN. The endings of one T stellate cell formed a narrow band rostrocaudally in the fusiform cell layer of the DCN that resembled an isofrequency band. The endings of one D stellate cell lay closely apposed to multipolar cells in the deep layer of the DCN. The dendrites of T stellate cells are often aligned along the path of auditory nerve fibers and end in tufts, whereas those of D stellate cells extend radially in the plane of the lateral surface of the PVCN toward granule cell areas and branch sparingly. Octopus cells have dendrites oriented perpendicularly to the path of auditory nerve fibers. Their axons were cut medially in the slices; none had collateral branches. Both T and D stellate cells were monosynaptically excited to threshold by shocks to the nerve root, indicating that they could participate in local circuits that we measure physiologically. T stellate cells have action potentials that peak at about 0 mV and are followed by single undershoots. The D stellate cell that was best impaled fired overshooting action potentials that were followed by double undershoots. Octopus cells were monosynaptically excited to threshold by shocks to the auditory nerve.
Collapse
|
|
35 |
189 |
22
|
Bell GI, Xiang KS, Newman MV, Wu SH, Wright LG, Fajans SS, Spielman RS, Cox NJ. Gene for non-insulin-dependent diabetes mellitus (maturity-onset diabetes of the young subtype) is linked to DNA polymorphism on human chromosome 20q. Proc Natl Acad Sci U S A 1991; 88:1484-8. [PMID: 1899928 PMCID: PMC51043 DOI: 10.1073/pnas.88.4.1484] [Citation(s) in RCA: 188] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) is a form of non-insulin-dependent diabetes mellitus characterized by an early age of onset, usually before 25 years of age, and an autosomal dominant mode of inheritance. The largest and best-studied MODY pedigree is the RW family. The majority of the diabetic subjects in this pedigree has a reduced and delayed insulin-secretory response to glucose, and it has been proposed that this abnormal response is the manifestation of the basic genetic defect that leads to diabetes. Using DNA from members of the RW family, we tested more than 75 DNA markers for linkage with MODY. A DNA polymorphism in the adenosine deaminase gene (ADA) on the long arm of chromosome 20 was found to cosegregate with MODY. The maximum logarithm of odds (lod score) for linkage between MODY and ADA was 5.25 at a recombination fraction of 0.00. These results indicate that the odds are greater than 178,000:1 that the gene responsible for MODY in this family is tightly linked to the ADA gene on chromosome 20q.
Collapse
|
research-article |
34 |
188 |
23
|
Wu S, de Lencastre H, Tomasz A. Sigma-B, a putative operon encoding alternate sigma factor of Staphylococcus aureus RNA polymerase: molecular cloning and DNA sequencing. J Bacteriol 1996; 178:6036-42. [PMID: 8830703 PMCID: PMC178463 DOI: 10.1128/jb.178.20.6036-6042.1996] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have identified a gene cluster located on the chromosomal SmaI I fragment of a highly methicillin resistant strain of Staphylococcus aureus, consisting of four open reading frames (ORFs), named after the number of deduced amino acid residues, in the sequential order orf333-orf108-orf159-orf256. The gene cluster showed close similarities to the Bacillus subtilis sigB operon both in overall organization and in primary sequences of the gene products. The complete gene cluster (provisionally named sigma-B or sigB) was preceded by an sigmaA-like promoter (PA) and had an internal sigmaB-like promoter sequence (PB) between orf333 and orf108, suggesting a complex regulatory mechanism. The polypeptides encoded by orf333, -108, -159, and -256 showed 62, 67, 71, and 77% homologies, respectively, with the RsbU, RsbV, RsbW, and SigB polypeptides encoded by the B. subtilis sigB operon. A Tn551 insertional mutant, RUSA168 (insert in orf256 of the staphylococcal sigma-B operon), showed drastic reduction in methicillin resistance (decrease in MIC from 1,600 microg ml-1 to 12 to 25 microg ml-1off
Collapse
|
research-article |
29 |
187 |
24
|
Wu S, Chen W, Murphy E, Gabel S, Tomer KB, Foley J, Steenbergen C, Falck JR, Moomaw CR, Zeldin DC. Molecular cloning, expression, and functional significance of a cytochrome P450 highly expressed in rat heart myocytes. J Biol Chem 1997; 272:12551-9. [PMID: 9139707 DOI: 10.1074/jbc.272.19.12551] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A cDNA encoding a P450 monooxygenase was amplified from reverse transcribed rat heart and liver total RNA by polymerase chain reaction using primers based on the 5'- and 3'-end sequences of two rat pseudogenes, CYP2J3P1 and CYP2J3P2. Sequence analysis revealed that this 1,778-base pair cDNA contained an open reading frame and encoded a new 502 amino acid protein designated CYP2J3. Based on the deduced amino acid sequence, CYP2J3 was approximately 70% homologous to both human CYP2J2 and rabbit CYP2J1. Recombinant CYP2J3 protein was co-expressed with NADPH-cytochrome P450 oxidoreductase in Sf9 insect cells using a baculovirus expression system. Microsomal fractions of CYP2J3/NADPH-cytochrome P450 oxidoreductase-transfected cells metabolized arachidonic acid to 14,15-, 11,12-, and 8, 9-epoxyeicosatrienoic acids and 19-hydroxyeicosatetraenoic acid as the principal reaction products (catalytic turnover, 0.2 nmol of product/nmol of cytochrome P450/min at 37 degrees C). Immunoblotting of microsomal fractions prepared from rat tissues using a polyclonal antibody raised against recombinant CYP2J2 that cross-reacted with CYP2J3 but not with other known rat P450s demonstrated abundant expression of CYP2J3 protein in heart and liver. Immunohistochemical staining of formalin-fixed paraffin-embedded rat heart tissue sections using the anti-CYP2J2 IgG and avidin-biotin-peroxidase detection localized expression of CYP2J3 primarily to atrial and ventricular myocytes. In an isolated-perfused rat heart model, 20 min of global ischemia followed by 40 min of reflow resulted in recovery of only 44 +/- 6% of base-line contractile function. The addition of 5 microM 11, 12-epoxyeicosatrienoic acid to the perfusate prior to global ischemia resulted in a significant 1.6-fold improvement in recovery of cardiac contractility (69 +/- 5% of base line, p = 0.01 versus vehicle alone). Importantly, neither 14,15-epoxyeicosatrienoic acid nor 19-hydroxyeicosatetraenoic acid significantly improved functional recovery following global ischemia, demonstrating the specificity of the biological effect for the 11, 12-epoxyeicosatrienoic acid regioisomer. Based on these data, we conclude that (a) CYP2J3 is one of the predominant enzymes responsible for the oxidation of endogenous arachidonic acid pools in rat heart myocytes and (b) 11,12-epoxyeicosatrienoic acid may play an important functional role in the response of the heart to ischemia.
Collapse
|
|
28 |
180 |
25
|
Abstract
Phosphoinositide-dependent kinase 1 (PDK1) is at the hub of many signalling pathways, activating PKB and PKC isoenzymes, as well as p70 S6 kinase and perhaps PKA. PDK1 action is determined by colocalization with substrate and by target site availability, features that may enable it to operate in both resting and stimulated cells.
Collapse
|
Comparative Study |
26 |
177 |