1
|
Shehata AA, Yalçın S, Latorre JD, Basiouni S, Attia YA, Abd El-Wahab A, Visscher C, El-Seedi HR, Huber C, Hafez HM, Eisenreich W, Tellez-Isaias G. Probiotics, Prebiotics, and Phytogenic Substances for Optimizing Gut Health in Poultry. Microorganisms 2022; 10:microorganisms10020395. [PMID: 35208851 PMCID: PMC8877156 DOI: 10.3390/microorganisms10020395] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota has been designated as a hidden metabolic ‘organ’ because of its enormous impact on host metabolism, physiology, nutrition, and immune function. The connection between the intestinal microbiota and their respective host animals is dynamic and, in general, mutually beneficial. This complicated interaction is seen as a determinant of health and disease; thus, intestinal dysbiosis is linked with several metabolic diseases. Therefore, tractable strategies targeting the regulation of intestinal microbiota can control several diseases that are closely related to inflammatory and metabolic disorders. As a result, animal health and performance are improved. One of these strategies is related to dietary supplementation with prebiotics, probiotics, and phytogenic substances. These supplements exert their effects indirectly through manipulation of gut microbiota quality and improvement in intestinal epithelial barrier. Several phytogenic substances, such as berberine, resveratrol, curcumin, carvacrol, thymol, isoflavones and hydrolyzed fibers, have been identified as potential supplements that may also act as welcome means to reduce the usage of antibiotics in feedstock, including poultry farming, through manipulation of the gut microbiome. In addition, these compounds may improve the integrity of tight junctions by controlling tight junction-related proteins and inflammatory signaling pathways in the host animals. In this review, we discuss the role of probiotics, prebiotics, and phytogenic substances in optimizing gut function in poultry.
Collapse
|
|
3 |
76 |
2
|
Tarabees R, Elsayed MSA, Shawish R, Basiouni S, Shehata AA. Isolation and characterization of Salmonella Enteritidis and Salmonella Typhimurium from chicken meat in Egypt. J Infect Dev Ctries 2017; 11:314-319. [PMID: 28459222 DOI: 10.3855/jidc.8043] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 07/14/2016] [Accepted: 07/26/2016] [Indexed: 10/31/2022] Open
Abstract
INTRODUCTION Salmonella enterica serovars Enteritidis and Typhimurium represent the major serovars associated with human salmonellosis. Contamination of meat products with these serovars is considered the main source of infection. METHODOLOGY In this study, 100 raw chicken meat samples were investigated for the presence of Salmonella spp., which were subsequently identified based on biochemical and serological tests as well as matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) profile. Furthermore, the isolated serovars were examined using multiplex polymerase chain reaction (PCR) for the presence of virulence genes suspected to have a role in infection. RESULTS S. Enteritidis was isolated from two samples (2%), while S. Typhimurium was isolated from three samples (3%) of chicken meat. Of the 17 examined virulence genes using multiplex PCR, the sitC, sopB, sifA, lpfC, spaN, sipB, invA, spiA, and msgA genes were detected in S. Enteritidis. However, the sitC, iroN, sopB, sifA, lpfC, spaN, sipB, invA, and tolC genes were successfully amplified in S. Typhimurium. CONCLUSIONS The detection of S. Enteritidis and S. Typhimurium in meat, even at low incidence, has important implications. In addition, the data presented here is the first attempt to identify a wide range of virulence genes in Egyptian Salmonella isolates recovered from meat products. A strict public health and food safety regime is urgently needed in order to decrease the human health hazard risk associated with salmonellosis.
Collapse
|
Journal Article |
8 |
32 |
3
|
Elaswad A, Fawzy M, Basiouni S, Shehata AA. Mutational spectra of SARS-CoV-2 isolated from animals. PeerJ 2020; 8:e10609. [PMID: 33384909 PMCID: PMC7751428 DOI: 10.7717/peerj.10609] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/29/2020] [Indexed: 12/03/2022] Open
Abstract
Coronaviruses are ubiquitous and infect a wide spectrum of animals and humans. The newly emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become a worldwide pandemic. To address the role that animals may play in the evolution of SARS-CoV-2, the full genome sequences of SARS-CoV-2 isolated from animals were compared with SARS-CoV-2 human isolates from the same clade and geographic region. Phylogenetic analysis of SARS-CoV-2 isolated from the cat, dog, mink, mouse, and tiger revealed a close relationship with SARS-CoV-2 human isolates from the same clade and geographic region with sequence identities of 99.94-99.99%. The deduced amino acid sequence of spike (S) protein revealed the presence of a furin cleavage site (682RRAR▾685), which did not differ among all SARS-CoV-2 isolates from animals and humans. SARS-CoV-2 isolates from minks exhibited two amino acid substitutions (G261D, A262S) in the N-terminal domain of S protein and four (L452M, Y453F, F486L, N501T) in the receptor-binding motif (RBM). In the mouse, the S protein had two amino acid substitutions, one in the RBM (Q498H) and the other (N969S) in the heptad repeat 1. SARS-CoV-2 isolated from minks furtherly exhibited three unique amino acid substitutions in the nucleocapsid (N)protein. In the cat, two unique amino acid substitutions were discovered in the N (T247I) and matrix (T175M) proteins. Additionally, SARS-CoV-2 isolated from minks possessed sixteen, four, and two unique amino acid substitutions in the open reading frame 1ab (ORF1ab), ORF3a, and ORF6, respectively. Dog and cat SARS-CoV-2 isolates showed one and seven unique amino acid substitutions in ORF1ab, respectively. Further studies may be necessary to determine the pathogenic significance of these amino acid substitutions to understand the molecular epidemiology and evolution of SARS-CoV-2.
Collapse
|
research-article |
5 |
29 |
4
|
Basiouni S, Tellez-Isaias G, Latorre JD, Graham BD, Petrone-Garcia VM, El-Seedi HR, Yalçın S, El-Wahab AA, Visscher C, May-Simera HL, Huber C, Eisenreich W, Shehata AA. Anti-Inflammatory and Antioxidative Phytogenic Substances against Secret Killers in Poultry: Current Status and Prospects. Vet Sci 2023; 10:55. [PMID: 36669057 PMCID: PMC9866488 DOI: 10.3390/vetsci10010055] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/19/2022] [Accepted: 01/04/2023] [Indexed: 01/17/2023] Open
Abstract
Chronic stress is recognized as a secret killer in poultry. It is associated with systemic inflammation due to cytokine release, dysbiosis, and the so-called leaky gut syndrome, which mainly results from oxidative stress reactions that damage the barrier function of the cells lining the gut wall. Poultry, especially the genetically selected broiler breeds, frequently suffer from these chronic stress symptoms when exposed to multiple stressors in their growing environments. Since oxidative stress reactions and inflammatory damages are multi-stage and long-term processes, overshooting immune reactions and their down-stream effects also negatively affect the animal's microbiota, and finally impair its performance and commercial value. Means to counteract oxidative stress in poultry and other animals are, therefore, highly welcome. Many phytogenic substances, including flavonoids and phenolic compounds, are known to exert anti-inflammatory and antioxidant effects. In this review, firstly, the main stressors in poultry, such as heat stress, mycotoxins, dysbiosis and diets that contain oxidized lipids that trigger oxidative stress and inflammation, are discussed, along with the key transcription factors involved in the related signal transduction pathways. Secondly, the most promising phytogenic substances and their current applications to ameliorate oxidative stress and inflammation in poultry are highlighted.
Collapse
|
Review |
2 |
26 |
5
|
Basiouni S, Stöckel K, Fuhrmann H, Schumann J. Polyunsaturated fatty acid supplements modulate mast cell membrane microdomain composition. Cell Immunol 2012; 275:42-6. [DOI: 10.1016/j.cellimm.2012.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 11/16/2022]
|
|
13 |
22 |
6
|
Acheuk F, Basiouni S, Shehata AA, Dick K, Hajri H, Lasram S, Yilmaz M, Emekci M, Tsiamis G, Spona-Friedl M, May-Simera H, Eisenreich W, Ntougias S. Status and Prospects of Botanical Biopesticides in Europe and Mediterranean Countries. Biomolecules 2022; 12:biom12020311. [PMID: 35204810 PMCID: PMC8869379 DOI: 10.3390/biom12020311] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Concerning human and environmental health, safe alternatives to synthetic pesticides are urgently needed. Many of the currently used synthetic pesticides are not authorized for application in organic agriculture. In addition, the developed resistances of various pests against classical pesticides necessitate the urgent demand for efficient and safe products with novel modes of action. Botanical pesticides are assumed to be effective against various crop pests, and they are easily biodegradable and available in high quantities and at a reasonable cost. Many of them may act by diverse yet unexplored mechanisms of action. It is therefore surprising that only few plant species have been developed for commercial usage as biopesticides. This article reviews the status of botanical pesticides, especially in Europe and Mediterranean countries, deepening their active principles and mechanisms of action. Moreover, some constraints and challenges in the development of novel biopesticides are highlighted.
Collapse
|
|
3 |
21 |
7
|
Abd-El Wahab A, Basiouni S, El-Seedi HR, Ahmed MFE, Bielke LR, Hargis B, Tellez-Isaias G, Eisenreich W, Lehnherr H, Kittler S, Shehata AA, Visscher C. An overview of the use of bacteriophages in the poultry industry: Successes, challenges, and possibilities for overcoming breakdowns. Front Microbiol 2023; 14:1136638. [PMID: 37025628 PMCID: PMC10071031 DOI: 10.3389/fmicb.2023.1136638] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
The primary contaminants in poultry are Salmonella enterica, Campylobacter jejuni, Escherichia coli, and Staphylococcus aureus. Their pathogenicity together with the widespread of these bacteria, contributes to many economic losses and poses a threat to public health. With the increasing prevalence of bacterial pathogens being resistant to most conventional antibiotics, scientists have rekindled interest in using bacteriophages as antimicrobial agents. Bacteriophage treatments have also been investigated as an alternative to antibiotics in the poultry industry. Bacteriophages' high specificity may allow them only to target a specific bacterial pathogen in the infected animal. However, a tailor-made sophisticated cocktail of different bacteriophages could broaden their antibacterial activity in typical situations with multiple clinical strains infections. Bacteriophages may not only be used in terms of reducing bacterial contamination in animals but also, under industrial conditions, they can be used as safe disinfectants to reduce contamination on food-contact surfaces or poultry carcasses. Nevertheless, bacteriophage therapies have not been developed sufficiently for widespread use. Problems with resistance, safety, specificity, and long-term stability must be addressed in particular. This review highlights the benefits, challenges, and current limitations of bacteriophage applications in the poultry industry.
Collapse
|
Review |
2 |
16 |
8
|
Asimakis E, Shehata AA, Eisenreich W, Acheuk F, Lasram S, Basiouni S, Emekci M, Ntougias S, Taner G, May-Simera H, Yilmaz M, Tsiamis G. Algae and Their Metabolites as Potential Bio-Pesticides. Microorganisms 2022; 10:microorganisms10020307. [PMID: 35208762 PMCID: PMC8877611 DOI: 10.3390/microorganisms10020307] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
An increasing human population necessitates more food production, yet current techniques in agriculture, such as chemical pesticide use, have negative impacts on the ecosystems and strong public opposition. Alternatives to synthetic pesticides should be safe for humans, the environment, and be sustainable. Extremely diverse ecological niches and millions of years of competition have shaped the genomes of algae to produce a myriad of substances that may serve humans in various biotechnological areas. Among the thousands of described algal species, only a small number have been investigated for valuable metabolites, yet these revealed the potential of algal metabolites as bio-pesticides. This review focuses on macroalgae and microalgae (including cyanobacteria) and their extracts or purified compounds, that have proven to be effective antibacterial, antiviral, antifungal, nematocides, insecticides, herbicides, and plant growth stimulants. Moreover, the mechanisms of action of the majority of these metabolites against plant pests are thoroughly discussed. The available information demonstrated herbicidal activities via inhibition of photosynthesis, antimicrobial activities via induction of plant defense responses, inhibition of quorum sensing and blocking virus entry, and insecticidal activities via neurotoxicity. The discovery of antimetabolites also seems to hold great potential as one recent example showed antimicrobial and herbicidal properties. Algae, especially microalgae, represent a vast untapped resource for discovering novel and safe biopesticide compounds.
Collapse
|
|
3 |
15 |
9
|
Shehata AA, Attia YA, Rahman MT, Basiouni S, El-Seedi HR, Azhar EI, Khafaga AF, Hafez HM. Diversity of Coronaviruses with Particular Attention to the Interspecies Transmission of SARS-CoV-2. Animals (Basel) 2022; 12:ani12030378. [PMID: 35158701 PMCID: PMC8833600 DOI: 10.3390/ani12030378] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Coronaviruses are a broad group of viruses that may infect a wide range of animals, including humans. Despite the fact that each coronavirus has a limited host range, frequent interspecies transmission of coronaviruses across diverse hosts has resulted in a complex ecology. The recently discovered SARS-CoV-2 virus is the clearest evidence of the danger of a global pandemic spreading. Natural infection with SARS-CoV-2 has been reported in a variety of domestic and wild animals, which may complicate the virus’s epidemiology and influence its development. In this review, we discussed the potential determinants of SARS-CoV-2 interspecies transmission. Additionally, despite the efforts that have been made to control this pandemic and to implement the One Health policy, several problems, such as the role of animals in SARS-CoV-2 evolution and the dynamics of interspecies transmission, are still unanswered. Abstract In December 2019, the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in China with serious impacts on global health and economy that is still ongoing. Although interspecies transmission of coronaviruses is common and well documented, each coronavirus has a narrowly restricted host range. Coronaviruses utilize different receptors to mediate membrane fusion and replication in the cell cytoplasm. The interplay between the receptor-binding domain (RBD) of coronaviruses and their coevolution are determinants for host susceptibility. The recently emerged SARS-CoV-2 caused the coronavirus disease 2019 (COVID-19) pandemic and has also been reported in domestic and wild animals, raising the question about the responsibility of animals in virus evolution. Additionally, the COVID-19 pandemic might also substantially have an impact on animal production for a long time. In the present review, we discussed the diversity of coronaviruses in animals and thus the diversity of their receptors. Moreover, the determinants of the susceptibility of SARS-CoV-2 in several animals, with special reference to the current evidence of SARS-CoV-2 in animals, were highlighted. Finally, we shed light on the urgent demand for the implementation of the One Health concept as a collaborative global approach to mitigate the threat for both humans and animals.
Collapse
|
|
3 |
15 |
10
|
Shehata AA, Tarabees R, Basiouni S, ElSayed MS, Gaballah A, Krueger M. Effect of a Potential Probiotic Candidate Enterococcus faecalis-1 on Growth Performance, Intestinal Microbiota, and Immune Response of Commercial Broiler Chickens. Probiotics Antimicrob Proteins 2021; 12:451-460. [PMID: 31111440 DOI: 10.1007/s12602-019-09557-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The probiotic effect of Enterococcus faecalis-1 (isolated from healthy chickens) on growth performance, immune response, and modulation of the intestinal microbiota of broilers was assessed with a total of 100-day-old commercial Cobb chicks. The chicks were randomly divided into two equal groups. The control group received a basal diet, while the test group received a basal diet and was orally supplied with E. faecalis at a dose of 108 CFU/bird/day. Results showed that E. faecalis-1 supplement significantly (P < 0.05) improved the body weight and feed conversion ratio of treated broilers compared with the control ones. The mortality percentage was reduced in E. faecalis-1-supplemented group. The total IgY serum level was significantly (P < 0.05) increased in broilers receiving E. faecalis-1 supplement (7.1 ± 0.39) compared with the control group (5.8 ± 0.3), while the serum avidin level was significantly (P < 0.05) decreased in E. faecalis-1-supplemented broilers (76 ± 11.1). There was no significant change in the immune response towards avian influenza and Newcastle vaccines in both groups. The total Lactobacillus and Enterococcus counts were significantly (P < 0.05) higher in the cecal contents of broilers given E. faecalis-1 than those that received the control treatment. E. faecalis-1 supplement enhanced the enzyme activities, antioxidant system, and liver functions of treated broilers compared with those in the control group. Collectively, these results showed that E. faecalis-1 could promote growth performance and immunological status and convey beneficial modulation of the cecal microbiota in broilers.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
13 |
11
|
Schumann J, Basiouni S, Gück T, Fuhrmann H. Treating canine atopic dermatitis with unsaturated fatty acids: the role of mast cells and potential mechanisms of action. J Anim Physiol Anim Nutr (Berl) 2014; 98:1013-20. [DOI: 10.1111/jpn.12181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 02/13/2014] [Indexed: 12/12/2022]
|
|
11 |
11 |
12
|
Basiouni S, Fayed MAA, Tarabees R, El-Sayed M, Elkhatam A, Töllner KR, Hessel M, Geisberger T, Huber C, Eisenreich W, Shehata AA. Characterization of Sunflower Oil Extracts from the Lichen Usnea barbata. Metabolites 2020; 10:metabo10090353. [PMID: 32878015 PMCID: PMC7570345 DOI: 10.3390/metabo10090353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022] Open
Abstract
The increasing global emergence of multidrug resistant (MDR) pathogens is categorized as one of the most important health problems. Therefore, the discovery of novel antimicrobials is of the utmost importance. Lichens provide a rich source of natural products including unique polyketides and polyphenols. Many of them display pharmaceutical benefits. The aim of this study was directed towards the characterization of sunflower oil extracts from the fruticose lichen, Usnea barbata. The concentration of the major polyketide, usnic acid, was 1.6 mg/mL extract as determined by NMR analysis of the crude mixture corresponding to 80 mg per g of the dried lichen. The total phenolics and flavonoids were determined by photometric assays as 4.4 mg/mL (gallic acid equivalent) and 0.27 mg/mL (rutin equivalent) corresponding to 220 mg/g and 13.7 mg/g lichen, respectively. Gram-positive (e.g., Enterococcus faecalis) and Gram-negative bacteria, as well as clinical isolates of infected chickens were sensitive against these extracts as determined by agar diffusion tests. Most of these activities increased in the presence of zinc salts. The data suggest the potential usage of U. barbata extracts as natural additives and mild antibiotics in animal husbandry, especially against enterococcosis in poultry.
Collapse
|
Journal Article |
5 |
10 |
13
|
Nagy A, Basiouni S, Parvin R, Hafez HM, Shehata AA. Evolutionary insights into the furin cleavage sites of SARS-CoV-2 variants from humans and animals. Arch Virol 2021; 166:2541-2549. [PMID: 34258664 PMCID: PMC8276844 DOI: 10.1007/s00705-021-05166-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 01/03/2023]
Abstract
The SARS-CoV-2 spike protein Q677P/H mutation and furin cleavage site (FCS) have been shown to affect cell tropism and virus transmissibility. Here, we analyzed the frequency of Q677P/H and FCS point mutations in 1,144,793 human and 1042 animal spike protein sequences and from those of the emergent variants B.1.1.7, B.1.351, P.1, B.1.429 + B.1.427, and B.1.525, which were deposited in the database of the GISAID Initiative. Different genetic polymorphisms, particularly P681H and A688V, were detected in the FCS, mainly in human isolates, and otherwise, only pangolin and bat sequences had these mutations. Multiple FCS amino acid deletions such as Δ680SPRRA684 and Δ685RSVA688 were only detected in eight and four human isolates, respectively. Surprisingly, deletion of the entire FCS motif as Δ680SPRRARSVA688 and Δ680SPRRARSVAS689 was detected only in three human isolates. On the other hand, analysis of FCS from emergent variants showed no deletions in the FCS except for spike P681del, which was detected in seven B.1.1.7 isolates from the USA. Spike Q677P was detected only once in variant, B.1.1.7, whereas Q677H was detected in all variants, i.e., B.1.1.7 (n = 1938), B.1.351 (n = 28), P.1 (n = 9), B.1.429 + B.1.427 (n = 132), and B.1.525 (n = 1584). Structural modeling predicted that mutations or deletions at or near the FCS significantly alter the cleavage loop structure and would presumably affect furin binding. Taken together, our results show that Q677H and FCS point mutations are prevalent and may have various biological effects on the circulating variants. Therefore, we recommend urgent monitoring and surveillance of the investigated mutations, as well as laboratory assessment of their pathogenicity and transmissibility.
Collapse
|
Journal Article |
4 |
7 |
14
|
Attia YA, Hassan RA, Addeo NF, Bovera F, Alhotan RA, Al-qurashi AD, Al-Baadani HH, Al-Banoby MA, Khafaga AF, Eisenreich W, Shehata AA, Basiouni S. Effects of Spirulina platensis and/or Allium sativum on Antioxidant Status, Immune Response, Gut Morphology, and Intestinal Lactobacilli and Coliforms of Heat-Stressed Broiler Chicken. Vet Sci 2023; 10:678. [PMID: 38133229 PMCID: PMC10747519 DOI: 10.3390/vetsci10120678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
This study aims to evaluate the effectiveness of the dietary addition of Spirulina platensis (SP) and/or garlic powder (GP) on heat-stressed broiler chickens. For this purpose, 600 Ross-308 broiler chicks were allocated at 22 days of age into five groups (G1-G5), each comprising six groups of 20 birds each. Chickens kept in G1 (negative control) were fed a basal diet and raised at 26 ± 1 °C. Chickens kept in G2 to G5 were exposed to periodic heat stress (35 ± 1 °C for 9 h/day) from 22 to 35 days old. Chickens in G2 (positive control) were provided a basal diet, while G3, G4, and G5 were fed a basal diet enriched with SP (1 g/kg diet), GP (200 mg/kg diet), or SP/GP (1 g SP/kg + 200 mg GP/kg diet), respectively. The assessment parameters included the chickens' performance, malondialdehyde and total antioxidant capacity, blood biochemistry, intestinal morphology, and modulation of lactobacilli and total coliforms in the intestinal microbiota. Our findings demonstrated that supplementing heat-stressed chickens with SP and/or GP significantly mitigated the negative effects on the European production efficiency index (EPEF), survival rate, cholesterol profile, and oxidative stress markers. Chickens supplemented with GP and/or SP exhibited significantly better EPEF and survivability rates. Heat stress had a significant impact on both the gut structure and gut microbiota. However, SP and/or GP supplementation improved the gut morphology, significantly increased the intestinal lactobacilli, and reduced the coliform contents. It was also found that the simultaneous feeding of SP and GP led to even higher recovery levels with improved lipid metabolites, immunity, and oxidative status. Overall, supplementing chickens with SP and/or GP can alleviate the negative effects of heat stress.
Collapse
|
research-article |
2 |
3 |
15
|
Rulff R, Schrödl W, Basiouni S, Neuhaus J, Krüger M. Is downer cow syndrome related to chronic botulism? Pol J Vet Sci 2016; 18:759-65. [PMID: 26812817 DOI: 10.1515/pjvs-2015-0098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present work was directed to investigate the relationship between Downer cow syndrome (DCS) and chronic botulism in dairy cattle. For this purpose, a total of 52 fresh calving downer cows and 206 apparently healthy cows at 14 dairy farms were investigated for Clostridium botulinum ABE and CD antibody levels, C. botulinum and botulinum neurotoxin in rumen fluids as well as in faeces. Results indicated that the downer cows had higher IgG titers for C. botulinum ABE and CD than the healthy cows. All tested rumen fluids were negative for BoNT and C. botulinum. BoNT/D, however, and C. botulinum type D spores were detected in faecal samples of healthy and downer cows in the selected farms. In conclusion, the presence of a significantly higher C. botulinum ABE and CD antibody levels in DCS cows than in the healthy animals suggests that chronic C. botulinum toxico-infection could be a predisposing factor for DCS.
Collapse
|
|
9 |
2 |
16
|
Shehata AA, Basiouni S, Sting R, Akimkin V, Hoferer M, Hafez HM. Poult Enteritis and Mortality Syndrome in Turkey Poults: Causes, Diagnosis and Preventive Measures. Animals (Basel) 2021; 11:ani11072063. [PMID: 34359191 PMCID: PMC8300142 DOI: 10.3390/ani11072063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary The poult enteritis and mortality syndrome (PEMS) causes severe economic losses in turkeys. Several agents were described to be associated with the PEMS; however, a specific etiological agent(s) has not been identified. The diagnosis of PEMS is still a huge challenge for several reasons: (1) no specific clinical signs or pathognomonic lesions, (2) isolation of some enteric viruses still difficult, (3) the pathogenicity of several enteric viruses in turkeys is not fully understood, (4) PEMS is an interaction between several known and might be unknown agents and (5) opportunistic microorganisms also have a role in the pathogenesis of PEMS. Both electron microscopy and molecular techniques can be used for diagnosis of PEMS and might help to discover unknown causes. Until now, no specific vaccines against enteric viruses associated with PEMS. However, biosecurity, maintaining a healthy gut and strengthening the immune system of turkey poults using probiotics, prebiotics and/or phytogenic substances are crucial factors to prevent and/or reduce losses of PEMS in turkeys. This review is a call for scientists to perform further research to investigate the real cause(s) of PEMS and to develop a preventive strategy against it. Abstract Poult enteritis and mortality syndrome (PEMS) is one of the most significant problem affecting turkeys and continues to cause severe economic losses worldwide. Although the specific causes of PEMS remains unknown, this syndrome might involve an interaction between several causative agents such as enteropathogenic viruses (coronaviruses, rotavirus, astroviruses and adenoviruses) and bacteria and protozoa. Non-infectious causes such as feed and management are also interconnected factors. However, it is difficult to determine the specific cause of enteric disorders under field conditions. Additionally, similarities of clinical signs and lesions hamper the accurate diagnosis. The purpose of the present review is to discuss in detail the main viral possible causative agents of PEMS and challenges in diagnosis and control.
Collapse
|
Review |
4 |
1 |
17
|
Shehata AA, Tarabees R, Elsayed M, Wareth G, Basiouni S. Development of Salmonella Enteritidis vaccine candidate based on streptomycin independent suppressor and metabolic drift rifampicin resistance-attenuating markers. Heliyon 2020; 6:e04810. [PMID: 32923728 PMCID: PMC7475269 DOI: 10.1016/j.heliyon.2020.e04810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/22/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
Salmonella is one of the most frequent food-borne pathogens and remains public health threat globally. The control of Salmonella in poultry, the main reservoir of non-typhoidal salmonellae, is a fundamental approach to ensure the safety of poultry products for human consumption. In the present study, a new live attenuated Salmonella enterica serovar Enteritidis vaccine candidate containing three attenuating markers based on streptomycin-independent (Sm-id) suppressor, and metabolic drift antibiotic resistance (MD- “res”) was developed. The streptomycin dependent (Smd) mutants were derived from Salmonella Enteritidis wild-type strain using streptomycin. Then the Sm-id mutants were derived from the isolated Smd mutants and designated “Smd→Sm-id”. A third MD- “res” marker was generated from Smd→Sm-id using rifampicin (Rif) and designated “Smd→Sm-id→Rif”. The colony sizes of these mutants were stable after more than 50 serial passages on blood agar; reversion to virulence can be almost excluded. The safety and efficacy of Smd→Sm-id and Smd→Sm-id→Rif were evaluated in one-day-old commercial layer chicks. Both mutants proved to be safe in terms of clinical signs, mortalities, lesion scores of visceral organs and rapid clearance when administered orally at a dose of 108 colony forming unit (CFU), whereas birds inoculated with 108 CFU Salmonella Enteritidis wild-type strain showed diarrhea, mortalities (3/40) and necrosis in liver and spleen. Chickens vaccinated with the developed mutants showed no seroconversion; however, wild-type strain induced a significant seroconversion at 3-week-postvaccination (wpv). The developed mutants protected chickens against challenge with 108 CFU of Salmonella Enteritidis wild-type strain at 3-wpv. Vaccinated birds showed neither clinical signs nor mortalities during two-week post-challenge. In addition, the challenge strain could not be detected in pooled liver and spleen samples (0/5) at 7th day post-inoculation (dpi). However, non-vaccinated challenged birds showed diarrhea and the challenge strain was re-isolated from pooled liver and spleen samples (3/5) at 7th dpi. In conclusion, the developed mutants are safe and fully protected immunized chickens following heterologous challenge. It is obvious that the genetic characterization of these mutants and evaluation of different vaccination regimes are still in demand.
Collapse
|
Journal Article |
5 |
1 |
18
|
Basiouni S, Abel N, Eisenreich W, May-Simera HL, Shehata AA. Structural Analysis of Cardanol and Its Biological Activities on Human Keratinocyte Cells. Metabolites 2025; 15:83. [PMID: 39997708 PMCID: PMC11857407 DOI: 10.3390/metabo15020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Background/Objectives: Cashew nutshell liquid (CNSL) is obtained during the industrial processing of cashew nuts. It contains anacardic acid (2-hydroxy-6-n-pentadecylbenzoic acid) and cardanol (3-n-pentadecylphenol). Therefore, CNSL provides a rich source of phenolic lipids serving as natural antioxidants or precursors for industrial uses. Here, we have analyzed in detail a commercial sample of cardanol by nuclear magnetic resonance (NMR) spectroscopy and its biological activities in the human keratinocyte cell line (HaCaT cells). Methods: The cytotoxic effects, genotoxicity, cell proliferation, and healing properties on HaCaT cells were studied using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, comet assay, proliferation assay, and scratch assay, respectively. Additionally, the modulatory effect of cardanol on the cellular fatty acid profile of HaCaT cells was analyzed by gas chromatography. Results: NMR showed the structure of cardanol as a mixture of the 8'-monoene (42%), the 8',11'-diene (22%), and the 8',11',14'-triene (36%) for the pentadecyl side chain with all double bonds in Z configuration. The cytotoxic effects on HaCaT cells only occurred at high concentrations of cardanol (>10 µg/mL), which caused significant reductions in cell viability. Using the comet assay, a dose-dependent increase in DNA damage was found at concentrations above 10 µg/mL. Scratch assays revealed that cardanol achieved 99% wound closure of HaCaT cells treated with 1 µg/mL cardanol after 48 h. Cardanol at 1 and 0.1 µg/mL significantly enhanced HaCaT cell proliferation and promoted migration, contributing to accelerated wound healing processes. As shown by gas chromatography, 1 µg/mL cardanol increased the total amount of polyunsaturated fatty acids (PUFA), including ω-3, ω-6, and ω-9 fatty acids. Conclusions: Together, these findings suggest that concentrations of <10 µg/mL cardanol are safe and exhibit beneficial biological activities, particularly wound-healing effects on HaCaT cells. Further studies are necessary to explore additional potential applications of cardanol, to refine its formulations for clinical use, and to ensure its safety and action in other target cells and species.
Collapse
|
research-article |
1 |
|
19
|
Yalçınkaya H, Yalçın S, Ramay MS, Onbaşılar EE, Bakır B, Elibol FKE, Yalçın S, Shehata AA, Basiouni S. Evaluation of Spirulina platensis as a Feed Additive in Low-Protein Diets of Broilers. Int J Mol Sci 2024; 26:24. [PMID: 39795890 PMCID: PMC11720351 DOI: 10.3390/ijms26010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/07/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Spirulina platensis is a natural antioxidant product that has the ability to improve the performance of poultry. Therefore, the present study aimed to evaluate the effect of using Spirulina platensis as a feed additive in broiler diets. A total of 252 daily male Ross 308 chicks were randomly assigned to six groups. There were two different protein groups: one was at the catalog protein value, and the other was reduced by 10%. Spirulina platensis at 0, 0.1, and 0.2% was added to each protein group. The trial lasted 41 days. Reducing the protein level by 10% had a negative impact on the performance of the chicks. However, Spirulina platensis supplementation had a positive effect on the feed conversion ratio, reduced the oxidative stress index in the chicks' liver and meat, increased the total antioxidant status and antioxidant enzyme activities, improved the villus height, serum IgG, and some bone parameters, and reduced the serum triglyceride concentration. The carcass yield, visceral organ weight percentages, total phenolic content, and malondialdehyde (MDA) level in the thigh meat and some serum biochemical parameters were not affected by the usage of Spirulina platensis. In conclusion, 0.1% Spirulina platensis could be a feasible feed additive in low-protein diets due to eliciting an improved performance, antioxidant status, and immune response in broilers.
Collapse
|
research-article |
1 |
|
20
|
Attia YA, Basiouni S, Abdulsalam NM, Bovera F, Aboshok AA, Shehata AA, Hafez HM. Alternative to antibiotic growth promoters: beneficial effects of Saccharomyces cerevisiae and/or Lactobacillus acidophilus supplementation on the growth performance and sustainability of broilers' production. Front Vet Sci 2023; 10:1259426. [PMID: 37771941 PMCID: PMC10523395 DOI: 10.3389/fvets.2023.1259426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023] Open
Abstract
Although antibiotics growth promoters (AGPs), including zinc-bacitracin (ZnB), can threaten human health due to developing antimicrobial resistance, as well as drug residue in animal and poultry products, ZnB is still widely used, particularly in developing countries, for the sustainability of poultry farming. The present investigation aims to assess the use of Saccharomyces cerevisiae and Lactobacillus acidophilus, with or without a prebiotic (mannooligosaccharide, MOS), as alternatives to ZnB. For this reason, 150 one-day-old chicks were grouped into six groups, designated negative control, LA, SC, ZnB, SA + MOS, and LA + MOS (5 replicates of 5 chicks for each group). Chicks kept in the control group were fed the basal diet. Chickens kept in LA and SC groups received L. acidophilus, S. cerevisiae at a 1 g/kg diet and 2 g/Kg, respectively. Chickens kept in ZnB received ZnB at 0.5 g/kg. Chicks kept in the SC + MOS and LA + MOS were fed a basal diet containing 2 g S. cerevisiae + 1 g MOS/kg or 1 g L. acidophilus + 1 g MOS /kg, respectively. The efficacy was assessed based on the growth performance, carcass traits, meat quality, nutrient digestibility, and blood biochemistry composition during the entire trial 1-36 days of age. Results showed that chicks kept in the SC group had greater BW than the control (p < 0.05). Chicks kept in the SC, LA, SC + MOS, and LA + MOS consumed less feed than the control and Zn-B groups (p < 0.05). Supplementation with S. cerevisiae resulted in a better (p < 0.05) feed conversion rate (FCR) than the control group. Supplementation with L. acidophilus + MOS significantly increased (p < 0.05) the relative liver weight compared to those supplemented with ZnB, S. cerevisiae, and L. acidophilus. In addition, supplementation with ZnB-induced spleen hypertrophy compared to S. cerevisiae and L. acidophilus-supplemented groups (p < 0.05). Plasma, meat, and liver cholesterol, as well as the cholesterol-to-lipid ratio of meat and liver, were significantly decreased (p < 0.05) in both SC and LA groups compared to the control group. Our research indicates that adding 2 g/kg of S. cerevisiae to broiler feed can effectively replace ZnB and enhance productive performance and economic profits, making it a viable and sustainable option for broiler farming.
Collapse
|
research-article |
2 |
|