1
|
Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H. Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci U S A 2003; 100:13644-9. [PMID: 14597722 PMCID: PMC263867 DOI: 10.1073/pnas.2233464100] [Citation(s) in RCA: 600] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Database search has led to the identification of a family of proteins, the pannexins, which share some structural features with the gap junction forming proteins of invertebrates and vertebrates. The function of these proteins has remained unclear so far. To test the possibility that pannexins underlie electrical communication in the brain, we have investigated their tissue distribution and functional properties. Here, we show that two of these genes, pannexin 1 (Px1) and Px2, are abundantly expressed in the CNS. In many neuronal cell populations, including hippocampus, olfactory bulb, cortex and cerebellum, there is coexpression of both pannexins, whereas in other brain regions, e.g., white matter, only Px1-positive cells were found. On expression in Xenopus oocytes, Px1, but not Px2 forms functional hemichannels. Coinjection of both pannexin RNAs results in hemichannels with functional properties that are different from those formed by Px1 only. In paired oocytes, Px1, alone and in combination with Px2, induces the formation of intercellular channels. The functional characteristics of homomeric Px1 versus heteromeric Px1/Px2 channels and the different expression patterns of Px1 and Px2 in the brain indicate that pannexins form cell type-specific gap junctions with distinct properties that may subserve different functions.
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
600 |
2
|
Hormuzdi SG, Pais I, LeBeau FE, Towers SK, Rozov A, Buhl EH, Whittington MA, Monyer H. Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice. Neuron 2001; 31:487-95. [PMID: 11516404 DOI: 10.1016/s0896-6273(01)00387-7] [Citation(s) in RCA: 395] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neural processing occurs in parallel in distant cortical areas even for simple perceptual tasks. Associated cognitive binding is believed to occur through the interareal synchronization of rhythmic activity in the gamma (30-80 Hz) range. Such oscillations arise as an emergent property of the neuronal network and require conventional chemical neurotransmission. To test the potential role of gap junction-mediated electrical signaling in this network property, we generated mice lacking connexin 36, the major neuronal connexin. Here we show that the loss of this protein disrupts gamma frequency network oscillations in vitro but leaves high frequency (150 Hz) rhythms, which may involve gap junctions between principal cells (Schmitz et al., 2001), unaffected. Thus, specific connexins differentially deployed throughout cortical networks are likely to regulate different functional aspects of neuronal information processing in the mature brain.
Collapse
|
|
24 |
395 |
3
|
Blatow M, Rozov A, Katona I, Hormuzdi SG, Meyer AH, Whittington MA, Caputi A, Monyer H. A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex. Neuron 2003; 38:805-17. [PMID: 12797964 DOI: 10.1016/s0896-6273(03)00300-3] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
GABAergic interneurons can phase the output of principal cells, giving rise to oscillatory activity in different frequency bands. Here we describe a new subtype of GABAergic interneuron, the multipolar bursting (MB) cell in the mouse neocortex. MB cells are parvalbumin positive but differ from fast-spiking multipolar (FS) cells in their morphological, neurochemical, and physiological properties. MB cells are reciprocally connected with layer 2/3 pyramidal cells and are coupled with each other by chemical and electrical synapses. MB cells innervate FS cells but not vice versa. MB to MB cell as well as MB to pyramidal cell synapses exhibit paired-pulse facilitation. Carbachol selectively induced synchronized theta frequency oscillations in MB cells. Synchrony required both gap junction coupling and GABAergic chemical transmission, but not excitatory glutamatergic input. Hence, MB cells form a distinct inhibitory network, which upon cholinergic drive can generate rhythmic and synchronous theta frequency activity, providing temporal coordination of pyramidal cell output.
Collapse
|
|
22 |
226 |
4
|
Vogt A, Hormuzdi SG, Monyer H. Pannexin1 and Pannexin2 expression in the developing and mature rat brain. ACTA ACUST UNITED AC 2005; 141:113-20. [PMID: 16143426 DOI: 10.1016/j.molbrainres.2005.08.002] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 08/03/2005] [Accepted: 08/03/2005] [Indexed: 11/16/2022]
Abstract
Recent studies have identified a new family of gap junction-forming proteins in vertebrates, called pannexins. Although their function in vivo is still not known, studies in Xenopus oocytes have indicated that pannexin1 (Px1) and pannexin2 (Px2) can form functional gap junction channels and can contribute to functional hemichannels. In this study, we have utilized a combination of radioactive and non-radioactive in situ hybridization experiments to characterize the expression pattern of the two pannexin genes during development and maturation of the rat brain. Expression analysis revealed a widespread and similar mRNA distribution for both genes, but indicated that Px1 and Px2 are inversely regulated during the development of the rat brain. Px1 is expressed at a high level in the embryonic and young postnatal brain and declines considerably in the adult, whereas Px2 mRNA is low in the prenatal brain but increases substantially during subsequent postnatal development. Immunohistochemical studies using different antibodies confirm the neuronal origin of pannexin-expressing cells and ascertain the presence of both pannexins in the majority of pyramidal cells and in GABAergic interneurons. The abundant presence of both pannexins in most neurons suggests that they may play a role in intercellular communication in many neuronal circuits. Furthermore, the temporal difference in the expression of the two genes indicates that the relative contribution of the two pannexins in immature and mature neuronal circuits may vary.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
183 |
5
|
Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R. Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1662:113-37. [PMID: 15033583 DOI: 10.1016/j.bbamem.2003.10.023] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Revised: 10/14/2003] [Accepted: 10/14/2003] [Indexed: 01/25/2023]
Abstract
Gap junctions consist of intercellular channels dedicated to providing a direct pathway for ionic and biochemical communication between contacting cells. After an initial burst of publications describing electrical coupling in the brain, gap junctions progressively became less fashionable among neurobiologists, as the consensus was that this form of synaptic transmission would play a minimal role in shaping neuronal activity in higher vertebrates. Several new findings over the last decade (e.g. the implication of connexins in genetic diseases of the nervous system, in processing sensory information and in synchronizing the activity of neuronal networks) have brought gap junctions back into the spotlight. The appearance of gap junctional coupling in the nervous system is developmentally regulated, restricted to distinct cell types and persists after the establishment of chemical synapses, thus suggesting that this form of cell-cell signaling may be functionally interrelated with, rather than alternative to chemical transmission. This review focuses on gap junctions between neurons and summarizes the available data, derived from molecular, biological, electrophysiological, and genetic approaches, that are contributing to a new appreciation of their role in brain function.
Collapse
|
Review |
21 |
164 |
6
|
Traub RD, Pais I, Bibbig A, LeBeau FEN, Buhl EH, Hormuzdi SG, Monyer H, Whittington MA. Contrasting roles of axonal (pyramidal cell) and dendritic (interneuron) electrical coupling in the generation of neuronal network oscillations. Proc Natl Acad Sci U S A 2003; 100:1370-4. [PMID: 12525690 PMCID: PMC298779 DOI: 10.1073/pnas.0337529100] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Accepted: 12/10/2002] [Indexed: 11/18/2022] Open
Abstract
Electrical coupling between pyramidal cell axons, and between interneuron dendrites, have both been described in the hippocampus. What are the functional roles of the two types of coupling? Interneuron gap junctions enhance synchrony of gamma oscillations (25-70 Hz) in isolated interneuron networks and also in networks containing both interneurons and principal cells, as shown in mice with a knockout of the neuronal (primarily interneuronal) connexin36. We have recently shown that pharmacological gap junction blockade abolishes kainate-induced gamma oscillations in connexin36 knockout mice; without such gap junction blockade, gamma oscillations do occur in the knockout mice, albeit at reduced power compared with wild-type mice. As interneuronal dendritic electrical coupling is almost absent in the knockout mice, these pharmacological data indicate a role of axonal electrical coupling in generating the gamma oscillations. We construct a network model of an experimental gamma oscillation, known to be regulated by both types of electrical coupling. In our model, axonal electrical coupling is required for the gamma oscillation to occur at all; interneuron dendritic gap junctions exert a modulatory effect.
Collapse
|
research-article |
22 |
133 |
7
|
Christie JM, Bark C, Hormuzdi SG, Helbig I, Monyer H, Westbrook GL. Connexin36 mediates spike synchrony in olfactory bulb glomeruli. Neuron 2005; 46:761-72. [PMID: 15924862 DOI: 10.1016/j.neuron.2005.04.030] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 03/14/2005] [Accepted: 04/25/2005] [Indexed: 11/16/2022]
Abstract
Neuronal synchrony is important to network behavior in many brain regions. In the olfactory bulb, principal neurons (mitral cells) project apical dendrites to a common glomerulus where they receive a common input. Synchronized activity within a glomerulus depends on chemical transmission but mitral cells are also electrically coupled. We examined the role of connexin-mediated gap junctions in mitral cell coordinated activity. Electrical coupling as well as correlated spiking between mitral cells projecting to the same glomerulus was entirely absent in connexin36 (Cx36) knockout mice. Ultrastructural analysis of glomeruli confirmed that mitral-mitral cell gap junctions on distal apical dendrites contain Cx36. Coupled AMPA responses between mitral cell pairs were absent in the knockout, demonstrating that electrical coupling, not transmitter spillover, is responsible for synchronization. Our results indicate that Cx36-mediated gap junctions between mitral cells orchestrate rapid coordinated signaling via a novel form of electrochemical transmission.
Collapse
|
Comparative Study |
20 |
122 |
8
|
Sunter G, Hartitz MD, Hormuzdi SG, Brough CL, Bisaro DM. Genetic analysis of tomato golden mosaic virus: ORF AL2 is required for coat protein accumulation while ORF AL3 is necessary for efficient DNA replication. Virology 1990; 179:69-77. [PMID: 2219741 DOI: 10.1016/0042-6822(90)90275-v] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tomato golden mosaic virus (TGMV) is a geminivirus whose genome is divided between two DNA components, designated A and B. The TGMV genome contains six open reading frames (ORFs) which can encode proteins of greater than 10 kDa. We have used a protoplast transfection system to determine the effects of viral proteins, as defined by these ORFs, on the accumulation of viral DNA in infected cells. The accumulation of cost protein was also examined in leaf discs. Our results indicate that mutations in ORFs AR1 and AL2 do not affect viral double-stranded DNA (dsDNA) levels, although AR1 and AL2 mutants accumulate only small amounts of single-stranded viral DNA (ssDNA). In contrast, a large reduction in both ss- and dsDNA levels is observed when a mutation is introduced into ORF AL3. Mutations within either of the two DNA B ORFs do not affect DNA replication. The AL3, BR1, and BL1 mutants are capable of synthesizing coat protein; however, coat protein is not detected in leaf discs inoculated with AR1 or AL2 mutants. Testable models are proposed to explain the influence of AL2 protein on coat protein accumulation and to account for the stimulation of viral DNA synthesis mediated by the AL3 gene product.
Collapse
|
|
35 |
105 |
9
|
Schubert T, Degen J, Willecke K, Hormuzdi SG, Monyer H, Weiler R. Connexin36 mediates gap junctional coupling of alpha-ganglion cells in mouse retina. J Comp Neurol 2005; 485:191-201. [PMID: 15791644 DOI: 10.1002/cne.20510] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Alpha-ganglion cells are present in all vertebrate retinae and are subdivided into ON and OFF types according to their level of dendritic ramification within the inner plexiform layer. They have large dendritic fields and usually a good responsiveness to moving stimuli. They were the first ganglion cells in which tracer coupling was observed, suggesting the presence of gap junctions composed of unknown connexins. Here we show that ON-alpha-ganglion cells in the mouse retina are coupled to amacrine cells, whereas OFF-alpha-ganglion cells are coupled to other OFF-alpha-ganglion cells and to amacrine cells. These tracer coupling patterns were completely absent in mice deficient in connexin36 (Cx36). The expression of Cx36 protein in alpha-ganglion cells but not in coupled amacrine cells was confirmed in mice in which the Cx36 coding DNA was replaced by the lacZ reporter gene. The dendritic localization and the distribution pattern of Cx36 patches, analyzed in mice in which the enhanced green fluorescent protein (EGFP) was linked to the C-terminal region of the Cx36 protein, revealed a rather small number of fluorescent plaques and different patterns for ON- and OFF-alpha-ganglion cells. Furthermore, tracer coupling between OFF-alpha-ganglion cells could be inhibited by quinine, a gap junctional blocker with a slight preference for gap junctions formed by Cx36. These data strongly suggest that Cx36 gap junction channels are functional not only in interneurons but also in output neurons of the retina and are responsible for distinct coupling patterns of ganglion cells.
Collapse
|
Comparative Study |
20 |
84 |
10
|
Hormuzdi SG, Bisaro DM. Genetic analysis of beet curly top virus: examination of the roles of L2 and L3 genes in viral pathogenesis. Virology 1995; 206:1044-54. [PMID: 7856079 DOI: 10.1006/viro.1995.1027] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The monopartite DNA genome of beet curly top geminivirus (BCTV, strain Logan) contains four leftward (complementary sense) open reading frames (ORFs) designated L1, L2, L3, and L4. We investigated the functions of the L2 and L3 ORFs by mutational analysis. We found that in Nicotiana benthamiana and sugarbeet plants, neither a functional L2 nor a functional L3 gene is required for infectivity. Double mutants were also infectious, and no evidence for a synergistic effect of these genes was evident. However, while sugarbeet plants inoculated with L2 or L3 mutants showed symptoms that were indistinguishable from those elicited by wild type virus, mutant-inoculated N. benthamiana plants displayed a novel phenotype in which recovery of the plant from initially severe disease symptoms was greatly enhanced. Enhanced recovery was associated with a large reduction in viral DNA levels. Our studies did not provide evidence for functional homology between the BCTV L2 gene and its presumed homologue (AL2) in the bipartite geminiviruses. In contrast, mutants with lesions in the L3 ORF accumulated three- to five-fold less DNA than wild type virus in a protoplast replication assay, consistent with the interpretation that the BCTV L3 gene is a homologue of the bipartite geminivirus AL3 gene which is known to function as a replication enhancer. Functional homology was directly confirmed in experiments which demonstrated that the BCTV L3 gene can complement a tomato golden mosaic virus AL3 mutant, and vice versa.
Collapse
|
Comparative Study |
30 |
76 |
11
|
Pais I, Hormuzdi SG, Monyer H, Traub RD, Wood IC, Buhl EH, Whittington MA, LeBeau FEN. Sharp wave-like activity in the hippocampus in vitro in mice lacking the gap junction protein connexin 36. J Neurophysiol 2003; 89:2046-54. [PMID: 12686578 DOI: 10.1152/jn.00549.2002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bath application of kainate (100-300 nM) induced a persistent gamma-frequency (30-80 Hz) oscillation that could be recorded in stratum radiatum of the CA3 region in vitro. We have previously described that in knockout mice lacking the gap junction protein connexin 36 (Cx36KO), gamma-frequency oscillations are reduced but still present. We now demonstrate that in the Cx36KO mice, but not in wild-type (WT), large population field excitatory postsynaptic potentials, or sharp wave-burst discharges, also occurred during the on-going gamma-frequency oscillation. These spontaneous burst discharges were not seen in WT mice. Burst discharges in the Cx36KO mice occurred with a mean frequency of 0.23 +/- 0.11 Hz and were accompanied by a series of fast (approximately 60-115 Hz) population spikes or "ripple" oscillations in many recordings. Intracellular recordings from CA3 pyramidal cells showed that the burst discharges consisted of a depolarizing response and presumed coupling potentials (spikelets) could occasionally be seen either before or during the burst discharge. The burst discharges occurring in Cx36KO mice were sensitive to gap junctions blockers as they were fully abolished by carbenoxolone (200 microM). In control mice we made several attempts to replicate this pattern of sharp wave activity/ripples occurring with the on-going kainate-evoked gamma-frequency oscillation by manipulating synaptic and electrical signaling. Partial disruption of inhibition, in control slices, by bath application of the gamma-aminobutyric acid-A (GABA(A)) receptor antagonist bicuculline (1-4 microM) completely abolished all gamma-frequency activity before any burst discharges occurred. Increasing the number of open gap junctions in control slices by using trimethylamine (TMA; 2-10 mM), in conjunction with kainate, failed to elicit any sharp wave bursts or fast ripples. However, bath application of the potassium channel blocker 4-aminopyridine (4-AP; 20-80 microM) produced a pattern of activity in control mice (13/16 slices), consisting of burst discharges occurring in conjunction with kainate-evoked gamma-frequency oscillations, that was similar to that seen in Cx36KO mice. In a few cases (n = 9) the burst discharges were accompanied by fast ripple oscillations. Carbenoxolone also fully blocked the 4-AP-evoked burst discharges (n = 5). Our results show that disruption of electrical signaling in the interneuronal network can, in the presence of kainate, lead to the spontaneous generation of sharp wave/ripple activity similar to that observed in vivo. This suggests a complex role for electrically coupled interneurons in the generation of hippocampal network activity.
Collapse
|
|
22 |
73 |
12
|
Butovas S, Hormuzdi SG, Monyer H, Schwarz C. Effects of electrically coupled inhibitory networks on local neuronal responses to intracortical microstimulation. J Neurophysiol 2006; 96:1227-36. [PMID: 16837655 DOI: 10.1152/jn.01170.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using in vivo multielectrode electrophysiology in mice, we investigated the underpinnings of a local, long-lasting firing rate suppression evoked by intracortical microstimulation. Synaptic inhibition contributes to this suppression as it was reduced by pharmacological blockade of gamma-aminobutyric acid type B (GABAB) receptors. Blockade of GABAB receptors also abolished the known sublinear addition of inhibitory response duration after repetitive electrical stimulation. Furthermore, evoked inhibition was weaker and longer in connexin 36 knockout (KO) mice that feature decoupled cortical inhibitory networks. In supragranular layers of KO mice even an unusually long excitatory response (< or = 50 ms) appeared that was never observed in wild-type (WT) mice. Furthermore, the spread and duration of very fast oscillations (> 200 Hz) evoked by microstimulation at a short latency were strongly enhanced in KO mice. In the spatial domain, lack of connexin 36 unmasked a strong anisotropy of inhibitory spread. Although its reach along layers was almost the same as that in WT mice, the spread across cortical depth was severely hampered. In summary, the present data suggest that connexin 36-coupled networks significantly shape the electrically evoked cortical inhibitory response. Electrical coupling renders evoked cortical inhibition more precise and strong and ensures a uniform spread along the two cardinal axes of neocortical geometry.
Collapse
|
|
19 |
59 |
13
|
Filippov MA, Hormuzdi SG, Fuchs EC, Monyer H. A reporter allele for investigating connexin 26 gene expression in the mouse brain. Eur J Neurosci 2003; 18:3183-92. [PMID: 14686892 DOI: 10.1111/j.1460-9568.2003.03042.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A variety of connexins are expressed in the diverse cell types of the central nervous system and are thought to regulate some of the functional properties exhibited by immature and mature cells. A proper understanding of the role of specific connexins in these processes requires an unambiguous characterization of their spatial and temporal pattern of expression. In order to define the cellular distribution of connexin 26 (Cx26) in the mouse we have generated a reporter allele (Cx26lacZ) by genetically manipulating the locus so that the beta-galactosidase (lacZ) gene is expressed from the endogenous Cx26 promoter. This modification decreased expression from the allele and resulted in embryonic lethality for the Cx26lacZ/lacZ genotype in accordance with previous studies on Cx26 knock-out animals indicating that Cx26-containing gap junctions are necessary for embryonic development. Despite the lower than expected transcript levels, the amount of lacZ protein produced in heterozygous mice was sufficient to label tissues known to contain Cx26, such as liver, kidney, skin, cochlea, small intestine, placenta and thyroid gland. In the embryonic and mature central nervous system, however, lacZ was restricted to meningeal cells and could not be detected in either neurons or glia. The absence of Cx26 mRNA in these cells could also be confirmed by reverse transcription-polymerase chain reaction and in situ hybridization. Our experiments indicate that the Cx26lacZ mouse line can be used as a reporter of Cx26 gene expression and suggest that Cx26, contrary to previous reports, is restricted to the meninges in both embryonic and adult brain.
Collapse
|
|
22 |
56 |
14
|
Rahkonen O, Su M, Hakovirta H, Koskivirta I, Hormuzdi SG, Vuorio E, Bornstein P, Penttinen R. Mice with a deletion in the first intron of the Col1a1 gene develop age-dependent aortic dissection and rupture. Circ Res 2003; 94:83-90. [PMID: 14630726 DOI: 10.1161/01.res.0000108263.74520.15] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The functional significance of the first intron of the Col1a1 gene in regulation of type I collagen synthesis remains uncertain. A previous study in mice established that a mutated Col1a1 allele that lacked a large fraction of the first intron, but retained the sequences required for normal splicing, was subject to an age- and tissue-dependent decrease in expression. In this study, we report that mice homozygous for this deletion are predisposed to dissection and rupture of the aorta during their adult life. Aortic dissection was not detected in autopsies of heterozygous animals or their littermate controls. Electron micrographs revealed fewer collagen fibrils and less compacted, irregular elastic lamellae in the aortic walls of homozygous mutant animals. Northern analysis of aortic RNA from 2.5- and 12-month-old homozygous mutant mice revealed that Col1a1 mRNA levels were decreased by 29% and 42%, respectively, relative to those of control littermates. In 12-month-old heterozygotes, the decrease was 32%. Allele-specific amplification of heterozygous cDNAs demonstrated that this reduction was limited to transcripts from the mutant allele. The collagen content of the aortas of homozygous mutant mice was also significantly lower in comparison to that of age-matched, control animals. These data establish that the integrity of the aortic wall depends on an adequate content of type I collagen, and that continued synthesis of collagen in the aorta as a function of age is critically dependent on sequences in the first intron of the Col1a1 gene.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
22 |
55 |
15
|
Hankenson KD, Hormuzdi SG, Meganck JA, Bornstein P. Mice with a disruption of the thrombospondin 3 gene differ in geometric and biomechanical properties of bone and have accelerated development of the femoral head. Mol Cell Biol 2005; 25:5599-606. [PMID: 15964815 PMCID: PMC1156967 DOI: 10.1128/mcb.25.13.5599-5606.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thrombospondin 3 (TSP3) is structurally similar to cartilage oligomeric matrix protein (COMP/TSP5), but its function is unknown. To determine the functional significance of TSP3, we generated mice with a targeted disruption of Thbs3. TSP3-null mice are viable and fertile and show normal prenatal skeletal patterning, based on Alcian blue/Alizarin red S staining. However, subtle and transient abnormalities were detected in the developing postnatal skeleton. Young adult TSP3-null mice are heavier than controls, and analyses of the geometric and biomechanical properties of long bones show increases in the moments of inertia, endocortical and periostal radii, and failure load. The bones of 9-week-old TSP3-null male mice also have a significantly greater cortical area. Most of these differences were no longer detected in 15-week-old mice. Micro-computed tomography scans showed that the trabecular bone proximal to the femoral head growth plate developed at an earlier time in TSP3-null mice than in wild-type mice. Thus, vascular invasion and ossification start in the femoral heads of TSP3-null mice at 9 weeks, whereas the wild-type femoral head is still composed of hypertrophic chondroctyes in a calcified matrix at 15 weeks. These results provide evidence for a role for TSP3 in the regulation of skeletal maturation in mice.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
47 |
16
|
Hormuzdi SG, Bisaro DM. Genetic analysis of beet curly top virus: evidence for three virion sense genes involved in movement and regulation of single- and double-stranded DNA levels. Virology 1993; 193:900-9. [PMID: 8460493 DOI: 10.1006/viro.1993.1199] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The monopartite DNA genome of beet curly top geminivirus (BCTV, strain Logan) contains four leftward, complementary sense open reading frames (ORFs) designated L1, L2, L3, and L4 and three rightward, virion sense ORFs designated R1, R2, and R3 (R1 encodes the coat protein). The R3 ORF has not been reported previously in the BCTV genome, and evidence for three functional virion sense genes on one genome component has not been presented before for any geminivirus. We investigated the functions of the virion sense ORFs by introducing mutations into each of them. We found that in Nicotiana benthamiana plants, BCTV genomes containing mutations in ORF R1 were not infectious, whereas an R3- mutant was very weakly infectious. The small proportion of plants infected by the R3- mutant remained asymptomatic and contained greatly reduced amounts of viral DNA. An R2- mutant was highly infectious but asymptomatic, and in infected plants it accumulated mostly the double-stranded DNA (dsDNA) replicative form in nearly wild-type amounts. All of the mutants replicated in tobacco protoplasts, although R1- and R2- mutants accumulated reduced amounts of genomic single-stranded DNA (ssDNA) relative to wild-type virus. In the case of R2- mutants, the reduction was large (approx. ninefold) and was accompanied by a similar increase in dsDNA levels. The results suggest that the R1 and R3 gene products are required for efficient movement of the virus in the infected plant, whereas the R2 gene product may be involved in the regulation of ssDNA vs dsDNA levels.
Collapse
|
|
32 |
46 |
17
|
Hormuzdi SG, Penttinen R, Jaenisch R, Bornstein P. A gene-targeting approach identifies a function for the first intron in expression of the alpha1(I) collagen gene. Mol Cell Biol 1998; 18:3368-75. [PMID: 9584177 PMCID: PMC108918 DOI: 10.1128/mcb.18.6.3368] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/1998] [Accepted: 03/10/1998] [Indexed: 02/07/2023] Open
Abstract
The role of the first intron of the Col1A1 gene in the regulation of type I collagen synthesis remains uncertain and controversial despite numerous studies that have made use of transgenic and transfection experiments. To examine the importance of the first intron in regulation of the gene, we have used the double-replacement method of gene targeting to introduce, by homologous recombination in embryonic stem (ES) cells, a mutated Col1A1 allele (Col-IntDelta). The Col-IntDelta allele contains a 1. 3-kb deletion within intron I and is also marked by the introduction of a silent mutation that created an XhoI restriction site in exon 7. Targeted mice were generated from two independently derived ES cell clones. Mice carrying two copies of the mutated gene were born in the expected Mendelian ratio, developed normally, and showed no apparent abnormalities. We used heterozygous mice to determine whether expression of the mutated allele differs from that of the normal allele. For this purpose, we developed a reverse transcription-PCR assay which takes advantage of the XhoI polymorphism in exon 7. Our results indicate that in the skin, and in cultured cells derived from the skin, the intron plays little or no role in constitutive expression of collagen I. However, in the lungs of young mice, the mutated allele was expressed at about 75% of the level of the normal allele, and in the adult lung expression was decreased to less than 50%. These results were confirmed by RNase protection assays which demonstrated a two- to threefold decrease in Col1A1 mRNA in lungs of homozygous mutant mice. Surprisingly, in cultured cells derived from the lung, the mutated allele was expressed at a level similar to that of the wild-type allele. Our results also indicated an age-dependent requirement for the intact intron in expression of the Col1A1 gene in muscle. Since the intron is spliced normally, and since the mutant allele is expressed as well as the wild-type allele in the skin, reduced mRNA stability is unlikely to contribute to the reduction in transcript levels. We conclude that the first intron of the Col1A1 gene plays a tissue-specific and developmentally regulated role in transcriptional regulation of the gene. Our experiments demonstrate the utility of gene-targeting techniques that produce subtle mutations for studies of cis-acting elements in gene regulation.
Collapse
|
research-article |
27 |
42 |
18
|
Stenger DC, Stevenson MC, Hormuzdi SG, Bisaro DM. A number of subgenomic DNAs are produced following agroinoculation of plants with beet curly top virus. J Gen Virol 1992; 73 ( Pt 2):237-42. [PMID: 1538189 DOI: 10.1099/0022-1317-73-2-237] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In addition to ss and ds genomic DNA, agroinoculation of Nicotiana benthamiana plants with the Logan strain of the geminivirus beet curly top virus (BCTV) consistently resulted in de novo production of subgenomic DNAs on initial passage. Single-stranded and dsDNA forms representing at least seven size classes (0.8 to 1.8 kb) of subgenomic DNA were observed in total DNA extracts from inoculated plants. Extracts from infected sugar beet and tomato contained variable but usually smaller amounts of subgenomic DNAs, suggesting that their production may be influenced by the host species. Restriction endonuclease mapping and partial nucleotide sequencing of three independent clones of a 1.5 kb size class indicated that this subgenomic DNA is produced from the standard viral genome by two separate deletion events. One deletion of 941 bp includes portions of the leftward open reading frames (ORFs) L1, L2 and L3, while the other deletion of 579 bp encompasses portions of the intergenic region and the rightward ORFs R1, R2 and R3. The data indicate that the 1.5 kb BCTV subgenomic DNA is a defective DNA that has retained cis-elements essential for replication.
Collapse
|
|
33 |
36 |
19
|
Desarménien MG, Jourdan C, Toutain B, Vessières E, Hormuzdi SG, Guérineau NC. Gap junction signalling is a stress-regulated component of adrenal neuroendocrine stimulus-secretion coupling in vivo. Nat Commun 2013; 4:2938. [PMID: 24356378 DOI: 10.1038/ncomms3938] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/14/2013] [Indexed: 01/06/2023] Open
Abstract
Elucidating the mechanisms whereby neuroendocrine tissues coordinate their input and output signals to ensure appropriate hormone secretion is currently a topical issue. In particular, whether a direct communication mediated by gap junctions between neurosecretory cells contributes to hormone release in vivo still remains unknown. Here we address this issue using a microsurgical approach allowing combined monitoring of adrenal catecholamine secretion and splanchnic nerve stimulation in anaesthetised mice. Pharmacological blockade of adrenal gap junctions by the uncoupling agent carbenoxolone reduces nerve stimulation-evoked catecholamine release in control mice and to a larger extent in stressed mice. In parallel, the gap junction-coupled cell network is extended in stressed mice. Altogether, this argues for a significant contribution of adrenomedullary gap junctions to catecholamine secretion in vivo. As such, gap junctional signalling appears to be a substantial component for neuroendocrine function in the adrenal medulla, as it may represent an additional lever regulating hormone release.
Collapse
|
|
12 |
32 |
20
|
Meyer A, Hilgen G, Dorgau B, Sammler EM, Weiler R, Monyer H, Dedek K, Hormuzdi SG. AII amacrine cells discriminate between heterocellular and homocellular locations when assembling connexin36-containing gap junctions. J Cell Sci 2014; 127:1190-202. [PMID: 24463820 PMCID: PMC3953814 DOI: 10.1242/jcs.133066] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 12/23/2013] [Indexed: 11/24/2022] Open
Abstract
Electrical synapses (gap junctions) rapidly transmit signals between neurons and are composed of connexins. In neurons, connexin36 (Cx36) is the most abundant isoform; however, the mechanisms underlying formation of Cx36-containing electrical synapses are unknown. We focus on homocellular and heterocellular gap junctions formed by an AII amacrine cell, a key interneuron found in all mammalian retinas. In mice lacking native Cx36 but expressing a variant tagged with enhanced green fluorescent protein at the C-terminus (KO-Cx36-EGFP), heterocellular gap junctions formed between AII cells and ON cone bipolar cells are fully functional, whereas homocellular gap junctions between two AII cells are not formed. A tracer injected into an AII amacrine cell spreads into ON cone bipolar cells but is excluded from other AII cells. Reconstruction of Cx36-EGFP clusters on an AII cell in the KO-Cx36-EGFP genotype confirmed that the number, but not average size, of the clusters is reduced - as expected for AII cells lacking a subset of electrical synapses. Our studies indicate that some neurons exhibit at least two discriminatory mechanisms for assembling Cx36. We suggest that employing different gap-junction-forming mechanisms could provide the means for a cell to regulate its gap junctions in a target-cell-specific manner, even if these junctions contain the same connexin.
Collapse
|
research-article |
11 |
27 |
21
|
Titz S, Sammler EM, Hormuzdi SG. Could tuning of the inhibitory tone involve graded changes in neuronal chloride transport? Neuropharmacology 2015; 95:321-31. [PMID: 25843644 DOI: 10.1016/j.neuropharm.2015.03.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 03/17/2015] [Accepted: 03/24/2015] [Indexed: 11/15/2022]
Abstract
Hyperpolarizing synaptic inhibition through GABAA and glycine receptors depends on the presence of the neuronal cation-chloride-cotransporter protein, KCC2. Several transcriptional and post-transcriptional mechanisms have been shown to regulate KCC2 and thereby influence the polarity and efficacy of inhibitory synaptic transmission. It is unclear however whether regulation of KCC2 enables the transporter to attain different levels of activity thus allowing a neuron to modulate the strength of inhibitory synaptic transmission to its changing requirements. We therefore investigated whether phosphorylation can allow KCC2 to achieve distinct levels of [Cl(-)]i in neurons. We generated a variety of KCC2 alanine dephosphorylation mimics and used NH4(+)-induced pHi shifts in cultured hippocampal neurons to quantify the rate of KCC2 transport activity exhibited by these mutants. To explore the relationship between KCC2 transport and GABAA receptor-mediated current amplitudes we performed gramicidine perforated-patch recordings. The correlation between EGABA and NH4(+)-induced pHi shifts enabled an estimate of the range of chloride extrusion possible by kinase/phosphatase regulation of KCC2. Our results demonstrate that KCC2 transport can vary considerably in magnitude depending on the combination of alanine mutations present on the protein. Transport can be enhanced to sufficiently high levels that hyperpolarizing GABAA responses may be obtained even in neurons with an extremely negative resting membrane potential and at high extracellular K(+) concentrations. Our findings highlight the significant potential for regulating the inhibitory tone by KCC2-mediated chloride extrusion and suggest that cellular signaling pathways may act combinatorially to alter KCC2 phosphorylation/dephosphorylation and thereby tune the strength of synaptic inhibition.
Collapse
|
|
10 |
23 |
22
|
Tetenborg S, Yadav SC, Hormuzdi SG, Monyer H, Janssen-Bienhold U, Dedek K. Differential Distribution of Retinal Ca 2+/Calmodulin-Dependent Kinase II (CaMKII) Isoforms Indicates CaMKII-β and -δ as Specific Elements of Electrical Synapses Made of Connexin36 (Cx36). Front Mol Neurosci 2017; 10:425. [PMID: 29311815 PMCID: PMC5742114 DOI: 10.3389/fnmol.2017.00425] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/05/2017] [Indexed: 12/17/2022] Open
Abstract
AII amacrine cells are essential interneurons of the primary rod pathway and transmit rod-driven signals to ON cone bipolar cells to enable scotopic vision. Gap junctions made of connexin36 (Cx36) mediate electrical coupling among AII cells and between AII cells and ON cone bipolar cells. These gap junctions underlie a remarkable degree of plasticity and are modulated by different signaling cascades. In particular, Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been characterized as an important regulator of Cx36, capable of potentiating electrical coupling in AII cells. However, it is unclear which CaMKII isoform mediates this effect. To obtain a more detailed understanding of the isoform composition of CaMKII at retinal gap junctions, we analyzed the retinal distribution of all four CaMKII isoforms using confocal microscopy. These experiments revealed a differential distribution of CaMKII isoforms: CaMKII-α was strongly expressed in starburst amacrine cells, which are known to lack electrical coupling. CaMKII-β was abundant in OFF bipolar cells, which form electrical synapses in the outer and the inner retina. CaMKII-γ was diffusely distributed across the entire retina and could not be assigned to a specific cell type. CaMKII-δ labeling was evident in bipolar and AII amacrine cells, which contain the majority of Cx36-immunoreactive puncta in the inner retina. We double-labeled retinas for Cx36 and the four CaMKII isoforms and revealed that the composition of the CaMKII enzyme differs between gap junctions in the outer and the inner retina: in the outer retina, only CaMKII-β colocalized with Cx36-containing gap junctions, whereas in the inner retina, CaMKII-β and -δ colocalized with Cx36. This finding suggests that gap junctions in the inner and the outer retina may be regulated differently although they both contain the same connexin. Taken together, our study identifies CaMKII-β and -δ as Cx36-specific regulators in the mouse retina with CaMKII-δ regulating the primary rod pathway.
Collapse
|
Journal Article |
8 |
22 |
23
|
Bornstein P, Walsh V, Tullis J, Stainbrook E, Bateman JF, Hormuzdi SG. The globular domain of the proalpha 1(I) N-propeptide is not required for secretion, processing by procollagen N-proteinase, or fibrillogenesis of type I collagen in mice. J Biol Chem 2002; 277:2605-13. [PMID: 11705995 DOI: 10.1074/jbc.m106181200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The globular domain in the NH(2)-terminal propeptide (N-propeptide) of the proalpha1(I) chain is largely encoded by exon 2 of the Col1a1 gene and has been implicated in a number of processes that are involved in the biogenesis, maturation, and function of type I collagen. These include intracellular chain association, transcellular transport and secretion, proteolytic processing of the precursor, feedback regulation of synthesis, and control of fibrillogenesis. However, none of these proposed functions has been firmly established. To evaluate the function of this procollagen domain we have used a targeted mutagenesis approach to generate mice that lack exon 2 in the Col1a1 gene. Mouse lines were established on both a mixed 129 OlaHsd/Sv and C57BL/6 background and a pure 129 OlaHsd/Sv background. Adult mice on the mixed background are normal in appearance and are fertile. To the extent that they have been studied, procollagen synthesis, secretion, and proteolytic processing are normal in these mice, and collagen fibrillogenesis is only slightly altered. However, breeding of heterozygous mutant mice on the 129 background generated homozygous mutants at only 64% of the expected frequency. These findings suggest that although the N-propeptide is not essential for collagen biogenesis in mice it may play some essential role during embryonic development.
Collapse
|
|
23 |
17 |
24
|
Meyer A, Tetenborg S, Greb H, Segelken J, Dorgau B, Weiler R, Hormuzdi SG, Janssen-Bienhold U, Dedek K. Connexin30.2: In Vitro Interaction with Connexin36 in HeLa Cells and Expression in AII Amacrine Cells and Intrinsically Photosensitive Ganglion Cells in the Mouse Retina. Front Mol Neurosci 2016; 9:36. [PMID: 27303262 PMCID: PMC4882342 DOI: 10.3389/fnmol.2016.00036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/09/2016] [Indexed: 11/13/2022] Open
Abstract
Electrical coupling via gap junctions is an abundant phenomenon in the mammalian retina and occurs in all major cell types. Gap junction channels are assembled from different connexin subunits, and the connexin composition of the channel confers specific properties to the electrical synapse. In the mouse retina, gap junctions were demonstrated between intrinsically photosensitive ganglion cells and displaced amacrine cells but the underlying connexin remained undetermined. In the primary rod pathway, gap junctions play a crucial role, coupling AII amacrine cells among each other and to ON cone bipolar cells. Although it has long been known that connexin36 and connexin45 are necessary for the proper functioning of this most sensitive rod pathway, differences between homocellular AII/AII gap junctions and AII/ON bipolar cell gap junctions suggested the presence of an additional connexin in AII amacrine cells. Here, we used a connexin30.2-lacZ mouse line to study the expression of connexin30.2 in the retina. We show that connexin30.2 is expressed in intrinsically photosensitive ganglion cells and AII amacrine cells. Moreover, we tested whether connexin30.2 and connexin36-both expressed in AII amacrine cells-are able to interact with each other and are deposited in the same gap junctional plaques. Using newly generated anti-connexin30.2 antibodies, we show in HeLa cells that both connexins are indeed able to interact and may form heteromeric channels: both connexins were co-immunoprecipitated from transiently transfected HeLa cells and connexin30.2 gap junction plaques became significantly larger when co-expressed with connexin36. These data suggest that connexin36 is able to form heteromeric gap junctions with another connexin. We hypothesize that co-expression of connexin30.2 and connexin36 may endow AII amacrine cells with the means to differentially regulate its electrical coupling to different synaptic partners.
Collapse
|
Journal Article |
9 |
12 |
25
|
Youssef FF, Hormuzdi SG, Irving AJ, Frenguelli BG. Cannabinoid modulation of neuronal function after oxygen/glucose deprivation in area CA1 of the rat hippocampus. Neuropharmacology 2007; 52:1327-35. [PMID: 17382973 DOI: 10.1016/j.neuropharm.2006.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 12/12/2006] [Accepted: 12/14/2006] [Indexed: 01/17/2023]
Abstract
Endocannabinoids released during cerebral ischemia have been implicated as neuroprotective agents. We assessed the role of cannabinoid receptors in modulating the response of neurons to oxygen/glucose deprivation (OGD), a model for in vitro ischemia, in rat hippocampal slices using extracellular recording techniques. Under control conditions, 15 min OGD resulted in only 50% recovery of CA1 field excitatory postsynaptic potentials (fEPSPs) 60 min post-insult. This post-OGD depression of function was primarily NMDA receptor-dependent as the NMDA receptor antagonist MK-801 (50 microM) promoted recovery of synaptic transmission to 76% of the baseline. Treatment with the CB1 receptor antagonist AM251 (1 microM), which prevented the depression of excitatory synaptic transmission caused by WIN55,212-2 (1 microM), also markedly enhanced recovery of function (71% of control). The enhanced recovery after OGD in the presence of AM251 was independent of both GABA(A) receptors and NMDA receptors since co-application of AM251 with either bicuculline (10 microM) or MK-801 (50 microM) did not alter recovery, or further improved recovery, respectively. These results suggest endocannabinoids released during OGD may modulate synaptic transmission and post-OGD neuronal outcome via activation of an AM251-sensitive cannabinoid receptor.
Collapse
|
|
18 |
10 |