1
|
Kaibuchi K, Kuroda S, Amano M. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem 2000; 68:459-86. [PMID: 10872457 DOI: 10.1146/annurev.biochem.68.1.459] [Citation(s) in RCA: 781] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Members of the Rho family of small Ras-like GTPases--including RhoA, -B, and -C, Rac1 and -2, and Cdc42--exhibit guanine nucleotide-binding activity and function as molecular switches, cycling between an inactive GDP-bound state and an active GTP-bound state. The Rho family GTPases participate in regulation of the actin cytoskeleton and cell adhesion through specific targets. Identification and characterization of these targets have begun to clarify how the Rho family GTPases act to regulate cytoskeletal structure and cell-cell and cell-substratum contacts in mammalian cells. The Rho family GTPases are also involved in regulation of smooth muscle contraction, cell morphology, cell motility, neurite retraction, and cytokinesis. However, the molecular mechanisms by which the Rho family GTPases participate in the regulation of such processes are not well established.
Collapse
|
Review |
25 |
781 |
2
|
Kuroda S, Fukata M, Nakagawa M, Fujii K, Nakamura T, Ookubo T, Izawa I, Nagase T, Nomura N, Tani H, Shoji I, Matsuura Y, Yonehara S, Kaibuchi K. Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin- mediated cell-cell adhesion. Science 1998; 281:832-5. [PMID: 9694656 DOI: 10.1126/science.281.5378.832] [Citation(s) in RCA: 418] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The small guanosine triphosphatases (GTPases) Cdc42 and Rac1 regulate E-cadherin-mediated cell-cell adhesion. IQGAP1, a target of Cdc42 and Rac1, was localized with E-cadherin and beta-catenin at sites of cell-cell contact in mouse L fibroblasts expressing E-cadherin (EL cells), and interacted with E-cadherin and beta-catenin both in vivo and in vitro. IQGAP1 induced the dissociation of alpha-catenin from a cadherin-catenin complex in vitro and in vivo. Overexpression of IQGAP1 in EL cells, but not in L cells expressing an E-cadherin-alpha-catenin chimeric protein, resulted in a decrease in E-cadherin-mediated cell-cell adhesive activity. Thus, IQGAP1, acting downstream of Cdc42 and Rac1, appears to regulate cell-cell adhesion through the cadherin-catenin pathway.
Collapse
|
|
27 |
418 |
3
|
Morimoto A, Uzu T, Fujii T, Nishimura M, Kuroda S, Nakamura S, Inenaga T, Kimura G. Sodium sensitivity and cardiovascular events in patients with essential hypertension. Lancet 1997; 350:1734-7. [PMID: 9413464 DOI: 10.1016/s0140-6736(97)05189-1] [Citation(s) in RCA: 348] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND In patients with sodium-sensitive hypertension, glomerular pressure is increased and microalbuminuria, a marker of glomerular hypertension, is a predictor of cardiovascular events. Similarly, the lack of a nocturnal decrease in blood pressure in these patients is also associated with an increased risk of cardiovascular events. We hypothesised that sodium sensitivity may be the common factor and carried out a retrospective study of cardiovascular events in patients with essential hypertension who had had sodium sensitivity measured in our clinic. METHODS Sodium sensitivity was assessed in about 350 patients with essential hypertension during the initial investigation of their disorder. The definition of sodium sensitivity was a 10% or greater difference in blood pressure on low-sodium or high-sodium diets. By alphabetical order, the records of 201 patients were obtained and 156 patients without pre-existing disorders were followed up. The records of patients who had a cardiovascular event or died were reviewed without knowledge of the patient's sodium-sensitivity status. FINDINGS 62 patients were deemed sodium sensitive and 94 non-sodium sensitive. Left-ventricular hypertrophy was found more frequently in the sodium-sensitive group than in the non-sodium-sensitive group (38 vs 16%; p < 0.01), whereas significantly fewer patients in this group smoked (23 vs 42%; p < 0.05). There were 17 cardiovascular events in the sodium-sensitive group and 14 in the non-sodium-sensitive group. The rate of total, non-fatal and fatal cardiovascular events, was 2.0 per 100 patient-years in the non-sodium-sensitive group and 4.3 per 100 patient-years in the sodium-sensitive group. Cox's proportional-hazards model identified sodium sensitivity (p < 0.01), mean arterial pressure (p < 0.01), and smoking (p < 0.01) as independent cardiovascular risk factors. INTERPRETATION Cardiovascular events occurred more frequently in patients with sodium-sensitive hypertension. Sodium sensitivity is an independent cardiovascular risk factor in Japanese patients with essential hypertension.
Collapse
|
Comparative Study |
28 |
348 |
4
|
Kishi K, Sasaki T, Kuroda S, Itoh T, Takai Y. Regulation of cytoplasmic division of Xenopus embryo by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI). J Cell Biol 1993; 120:1187-95. [PMID: 8436590 PMCID: PMC2119720 DOI: 10.1083/jcb.120.5.1187] [Citation(s) in RCA: 303] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Evidence is accumulating that the rho family, a member of the ras p21-related small GTP-binding protein superfamily, regulates cell morphology, cell motility, and smooth muscle contraction through the actomyosin system. The actomyosin system is also known to be essential for cytoplasmic division of cells (cytokinesis). In this study, we examined the action of rho p21, its inhibitory GDP/GTP exchange protein, named rho GDI, its stimulatory GDP/GTP exchange protein, named smg GDS, and botulinum ADP-ribosyltransferase C3, known to selectively ADP-ribosylate rho p21 and to impair its function, in the cytoplasmic division using Xenopus embryos. The sperm-induced cytoplasmic division of Xenopus embryos was not affected by microinjection into the embryos of either smg GDS or the guanosine-5'-(3-O-thio)triphosphate (GTP gamma S)-bound form of rhoA p21, one member of the rho family, but completely inhibited by microinjection of rho GDI or C3. Under these conditions, nuclear division occurred normally but the furrow formation, which was induced by the contractile ring consisting of actomyosin just beneath the plasma membrane, was impaired. Comicroinjection of rho GDI with the GTP gamma S-bound form of rhoA p21 prevented the rho GDI action. Moreover, the sperm-induced cytoplasmic division of Xenopus embryos was inhibited by microinjection into the embryos of the rhoA p21 pre-ADP-ribosylated by C3 which might serve as a dominant negative inhibitor of endogenous rho p21. These results indicate that rho p21 together with its regulatory proteins regulates the cytoplasmic division through the actomyosin system.
Collapse
|
research-article |
32 |
303 |
5
|
Abstract
BACKGROUND Many clinical features that are specific to moyamoya disease have been reported and cited in textbooks based on previous data. The purpose of this study is to investigate the present epidemiological features of moyamoya disease based on recently obtained regional all-inclusive data. METHODS The authors performed an all-inclusive survey of moyamoya disease in Hokkaido, one of the major islands in Japan that has a population of 5.63 million. The epidemiological features were analysed based on the data from 267 newly registered patients with moyamoya disease in Hokkaido from 2002 to 2006. These analysed data were adjusted to the whole Japanese population at 2005. RESULTS The detection rate of the disease per year was 0.94 patients per 100,000 people, and prevalence was 10.5 patients per 100,000 people. The incidence of ischaemia concerned with the disease was 0.53 patients per 100,000 people-years and haemorrhage was 0.2 patients per 100,000 people-years. The ratio of female to male patients was 2.18. The ratio of patients aged 10 years and above to under 10 years of age at onset was 6.18. Two peaks for age of onset were seen: the highest was observed between 45 and 49 years, and the second between 5 and 9 years. Asymptomatic patients comprised 17.8% of the total number of patients. CONCLUSION The epidemiological features of moyamoya disease determined by this survey varied considerably from previous data. The detection rate and prevalence of the disease were higher than those reported previously. The highest peak of onset age was older than those reported previously. In addition, it was revealed that asymptomatic moyamoya patients are not always rare in Japan.
Collapse
|
|
17 |
288 |
6
|
Kitamura T, Kitamura Y, Kuroda S, Hino Y, Ando M, Kotani K, Konishi H, Matsuzaki H, Kikkawa U, Ogawa W, Kasuga M. Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine-threonine kinase Akt. Mol Cell Biol 1999; 19:6286-96. [PMID: 10454575 PMCID: PMC84592 DOI: 10.1128/mcb.19.9.6286] [Citation(s) in RCA: 278] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclic nucleotide phosphodiesterase (PDE) is an important regulator of the cellular concentrations of the second messengers cyclic AMP (cAMP) and cGMP. Insulin activates the 3B isoform of PDE in adipocytes in a phosphoinositide 3-kinase-dependent manner; however, downstream effectors that mediate signaling to PDE3B remain unknown. Insulin-induced phosphorylation and activation of endogenous or recombinant PDE3B in 3T3-L1 adipocytes have now been shown to be inhibited by a dominant-negative mutant of the serine-threonine kinase Akt, suggesting that Akt is necessary for insulin-induced phosphorylation and activation of PDE3B. Serine-273 of mouse PDE3B is located within a motif (RXRXXS) that is preferentially phosphorylated by Akt. A mutant PDE3B in which serine-273 was replaced by alanine was not phosphorylated either in response to insulin in intact cells or by purified Akt in vitro. In contrast, PDE3B mutants in which alanine was substituted for either serine-296 or serine-421, each of which lies within a sequence (RRXS) preferentially phosphorylated by cAMP-dependent protein kinase, were phosphorylated by Akt in vitro or in response to insulin in intact cells. Moreover, the serine-273 mutant of PDE3B was not activated by insulin when expressed in adipocytes. These results suggest that PDE3B is a physiological substrate of Akt and that Akt-mediated phosphorylation of PDE3B on serine-273 is important for insulin-induced activation of PDE3B.
Collapse
|
research-article |
26 |
278 |
7
|
Kuroda S, Fukata M, Kobayashi K, Nakafuku M, Nomura N, Iwamatsu A, Kaibuchi K. Identification of IQGAP as a putative target for the small GTPases, Cdc42 and Rac1. J Biol Chem 1996; 271:23363-7. [PMID: 8798539 DOI: 10.1074/jbc.271.38.23363] [Citation(s) in RCA: 258] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cdc42 and Rac1 have been implicated in the regulation of various cell functions such as cell morphology, polarity, and cell proliferation. We have partially purified a Cdc42- and Rac1-associated protein with molecular mass of about 170 kDa (p170) from bovine brain cytosol. This protein interacted with guanosine 5'-(3-O-thio)triphosphate (GTPgammaS).glutathione S-transferase (GST)-Cdc42 and GTPgammaS++.GST-Rac1 but not with the GDP.GST-Cdc42, GDP.GST-Rac1, or GTPgammaS.GST-RhoA). We identified p170 as an IQGAP, which is originally identified as a putative Ras GTPase-activating protein. Recombinant IQGAP specifically interacted with GTPgammaS.Cdc42 and GTPgammaS.Rac1. The C-terminal fragment of IQGAP was responsible for their interactions. IQGAP was specifically immunoprecipitated with dominant-active Cdc42(Val12) or Rac1(Val12) from the COS7 cells expressing Cdc42(Val12) or Rac1(Val12), respectively. Immunofluorescence analysis revealed that IQGAP was accumulated at insulin- or Rac1-induced membrane ruffling areas. This accumulation of IQGAP was blocked by the microinjection of the dominant-negative Rac1(Asn17) or Cdc42(Asn17). Moreover, IQGAP was accumulated at the cell-cell junction in MDCK cells, where alpha-catenin and ZO-1 were localized. These results suggest that IQGAP is a novel target molecule for Cdc42 and Rac1.
Collapse
|
|
29 |
258 |
8
|
Fowler BO, Kuroda S. Changes in heated and in laser-irradiated human tooth enamel and their probable effects on solubility. Calcif Tissue Int 1986; 38:197-208. [PMID: 3011230 DOI: 10.1007/bf02556711] [Citation(s) in RCA: 249] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Enamel of intact human teeth laser irradiated in vitro under certain conditions is known to have less subsurface demineralization than unirradiated enamel on exposure to acid; consequently, the potential use of laser irradiance to reduce caries is apparent. The laser-induced physical and/or chemical changes that cause this reduced subsurface demineralization are not known. A laser-irradiated tooth enamel surface will have a temperature gradient that decreases towards the dentin junction. Dependent on irradiant conditions, the temperature may range from greater than 1400 degrees C at the surface to near normal at the dentin-pulp junction. Along this steep temperature gradient, different compositional, structural, and phase changes in the tooth enamel are to be expected. Identification of changes occurring along this gradient has bearing on understanding the dissolution reduction mechanism and, in turn, optimizing its effect. Changes in laser-irradiated material from the highest temperature region have been characterized, but those occurring in sequential layers of decreasing temperatures have not. Since the laser-induced changes are expected to primarily arise from localized heating, previously reported thermally induced changes in tooth enamel on heating in conventional furnaces were utilized to infer corollary changes along the gradient in laser-irradiated tooth enamel. These thermally inferred changes which resulted in modifications in the tooth enamel apatite and/or newly formed phases were correlated with their probable effects on altering solubility. A temperature gradient range from 100-1600 degrees C was considered with subdivisions as follows: I, 100-650 degrees C; II, 650-1100 degrees C; and III, greater than 1100 degrees C. Two of the products formed in range III, alpha-Ca3(PO4)2 and Ca4(PO4)2O, and also identified in the fused-melted material from laser-irradiated tooth enamel, are expected to markedly increase solubility in those regions that contain considerable amounts of these compounds. Products and changes occurring in range II, separate phases of alpha- and/or beta-Ca3(PO4)2 and a modified phase of apatite, may increase or decrease the solubility depending on the Ca/P ratio and the resultant amounts of alpha-, beta-Ca3(PO4)2 formed. Modifications in tooth enamel apatite effected in range I are expected to decrease its solubility; the formation of pyrophosphate in this range may have a substantial effect on reducing the solubility rate.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
Review |
39 |
249 |
9
|
Kitamura T, Ogawa W, Sakaue H, Hino Y, Kuroda S, Takata M, Matsumoto M, Maeda T, Konishi H, Kikkawa U, Kasuga M. Requirement for activation of the serine-threonine kinase Akt (protein kinase B) in insulin stimulation of protein synthesis but not of glucose transport. Mol Cell Biol 1998; 18:3708-17. [PMID: 9632753 PMCID: PMC108953 DOI: 10.1128/mcb.18.7.3708] [Citation(s) in RCA: 249] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A wide variety of biological activities including the major metabolic actions of insulin is regulated by phosphatidylinositol (PI) 3-kinase. However, the downstream effectors of the various signaling pathways that emanate from PI 3-kinase remain unclear. Akt (protein kinase B), a serine-threonine kinase with a pleckstrin homology domain, is thought to be one such downstream effector. A mutant Akt (Akt-AA) in which the phosphorylation sites (Thr308 and Ser473) targeted by growth factors are replaced by alanine has now been shown to lack protein kinase activity and, when overexpressed in CHO cells or 3T3-L1 adipocytes with the use of an adenovirus vector, to inhibit insulin-induced activation of endogenous Akt. Akt-AA thus acts in a dominant negative manner in intact cells. Insulin-stimulated protein synthesis, which is sensitive to wortmannin, a pharmacological inhibitor of PI 3-kinase, was abolished by overexpression of Akt-AA without an effect on amino acid transport into the cells, suggesting that Akt is required for insulin-stimulated protein synthesis. Insulin activation of p70 S6 kinase was inhibited by approximately 75% in CHO cells and approximately 30% in 3T3-L1 adipocytes, whereas insulin-induced activation of endogenous Akt was inhibited by 80 to 95%, by expression of Akt-AA. Thus, Akt activity appears to be required, at least in part, for insulin stimulation of p70 S6 kinase. However, insulin-stimulated glucose uptake in both CHO cells and 3T3-L1 adipocytes was not affected by overexpression of Akt-AA, suggesting that Akt is not required for this effect of insulin. These data indicate that Akt acts as a downstream effector in some, but not all, of the signaling pathways downstream of PI 3-kinase.
Collapse
|
research-article |
27 |
249 |
10
|
Miyoshi K, Honda A, Baba K, Taniguchi M, Oono K, Fujita T, Kuroda S, Katayama T, Tohyama M. Disrupted-In-Schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol Psychiatry 2003; 8:685-94. [PMID: 12874605 DOI: 10.1038/sj.mp.4001352] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Disrupted-In-Schizophrenia 1 (DISC1) was identified as a novel gene disrupted by a (1;11)(q42.1;q14.3) translocation that segregated with schizophrenia in a Scottish family. Predicted DISC1 product has no significant homology to other known proteins. Here, we demonstrated the existence of DISC1 protein and identified fasciculation and elongation protein zeta-1 (FEZ1) as an interacting partner of DISC1 by a yeast two-hybrid study. FEZ1 and its nematode homolog are reported to represent a new protein family involved in axonal outgrowth and fasciculation. In cultured hippocampal neurons, DISC1 and FEZ1 colocalized in growth cones. Interactions of these proteins were associated with F-actin. In the course of neuronal differentiation of PC12 cells, upregulation of DISC1/FEZ1 interaction was observed as along with enhanced extension of neurites by overexpression of DISC1. The present study shows that DISC1 participates in neurite outgrowth through its interaction with FEZ1. Recent studies have provided reliable evidence that schizophrenia is a neurodevelopmental disorder. As there is a high level of DISC1 expression in developing rat brain, dysfunction of DISC1 may confer susceptibility to psychiatric illnesses through abnormal development of the nervous system.
Collapse
|
|
22 |
246 |
11
|
Kuroda S, Houkin K, Kamiyama H, Mitsumori K, Iwasaki Y, Abe H. Long-term prognosis of medically treated patients with internal carotid or middle cerebral artery occlusion: can acetazolamide test predict it? Stroke 2001; 32:2110-6. [PMID: 11546904 DOI: 10.1161/hs0901.095692] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The importance of hemodynamic parameters for predicting outcome in patients with occlusive carotid disease remains controversial. The present study was aimed at testing the hypothesis that regional cerebrovascular reactivity (rCVR) to acetazolamide can be a reliable predictor of subsequent ischemic stroke in medically treated patients with internal carotid artery or middle cerebral artery occlusion. METHODS Seventy-seven symptomatic patients were enrolled in this prospective, longitudinal cohort study. All patients met inclusion criteria of cerebral angiography, no or localized cerebral infarction on MRI or CT, and no or minimal neurological deficit. Regional cerebral blood flow (rCBF) and rCVR to acetazolamide were quantitatively determined by (133)Xe SEPCT. All patients were categorized into 4 types on the basis of SPECT studies. RESULTS During an average follow-up period of 42.7 months, 16 total and 7 ipsilateral ischemic strokes occurred. The annual risks of total and ipsilateral stroke in patients with decreased rCBF and rCVR were 35.6% and 23.7%, respectively, risks that are higher than those in other types of patients. When strokes were categorized into patients with and without decreased rCBF and rCVR, Kaplan-Meier analysis revealed that the risks of total and ipsilateral stroke in patients with decreased rCBF and rCVR were significantly higher than in those without (P<0.0001 and P=0.0001, respectively, log-rank test). Relative risk conferred by decreased rCBF and rCVR was 8.0 (95% CI, 1.9 to 34.4) for ipsilateral stroke and 3.6 (95% CI, 1.4 to 9.3) for total stroke. CONCLUSIONS Decreased rCBF and rCVR to acetazolamide may identify a subgroup of patients who have a higher risk of subsequent ischemic stroke when treated medically.
Collapse
|
Clinical Trial |
24 |
226 |
12
|
Konishi H, Matsuzaki H, Tanaka M, Takemura Y, Kuroda S, Ono Y, Kikkawa U. Activation of protein kinase B (Akt/RAC-protein kinase) by cellular stress and its association with heat shock protein Hsp27. FEBS Lett 1997; 410:493-8. [PMID: 9237690 DOI: 10.1016/s0014-5793(97)00541-3] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Protein kinase B (PKB, also named as Akt or RAC-protein kinase), that is activated by cellular stress such as heat shock and hyperosmotic treatment, was revealed to be activated by oxidative stress and by chemical stressors of CdCl2 and NaAsO2 by measuring the activity of the enzyme immunoprecipitated from the transfected COS-7 cells. Upon stress treatment, a 30-kDa phosphoprotein was co-immunoprecipitated with PKB from the cells metabolic labeled with [32P]orthophosphate. The phosphoprotein was identified as Hsp27, a small heat shock protein, by immunoblot analysis and co-immunoprecipitation. The association of Hsp27 was specific to PKB as the heat shock protein was not co-immunoprecipitated with other protein kinases such as protein kinase C and PKN. When the cells were treated with H2O2, PKB was activated gradually and the association of Hsp27 with PKB increased concurrently with the enhancement of PKB activity. In heat-shocked cells, activation of PKB and the association of Hsp27 were detected immediately after the treatment, and the association of the heat shock protein decreased while PKB kept stimulated activity when the cells were further incubated at 37 degrees C. These results suggest that Hsp27 is involved in the activation process of PKB in the signal transduction pathway of various forms of stress.
Collapse
|
|
28 |
209 |
13
|
Kuroda S, Tokunaga C, Kiyohara Y, Higuchi O, Konishi H, Mizuno K, Gill GN, Kikkawa U. Protein-protein interaction of zinc finger LIM domains with protein kinase C. J Biol Chem 1996; 271:31029-32. [PMID: 8940095 DOI: 10.1074/jbc.271.49.31029] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The LIM domain comprising two zinc-finger motifs is found in a variety of proteins and has been proposed to direct protein-protein interactions. During the identification of protein kinase C (PKC)-interacting proteins by a yeast two-hybrid assay, a novel protein containing three LIM domains, designated ENH, was shown to associate with PKC in an isoform-specific manner. Deletion analysis demonstrated that any single LIM domain of ENH associates with the NH2-terminal region of PKC. ENH associated with PKC in COS-7 cells and was phosphorylated by PKC in vitro. Upon treatment of the cells with phorbol ester, ENH in the membrane fraction was translocated to the cytosol fraction in vivo. Other LIM domain-containing proteins, such as Enigma and LIM-kinase 1, also interacted with PKC through their LIM domains. These results suggest that the LIM domain is one of the targets of PKC and that the LIM-PKC interaction may shed light on undefined roles of LIM domain-containing proteins.
Collapse
|
|
29 |
204 |
14
|
Kuroda S, Tsuchidate R, Smith ML, Maples KR, Siesjö BK. Neuroprotective effects of a novel nitrone, NXY-059, after transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 1999; 19:778-87. [PMID: 10413033 DOI: 10.1097/00004647-199907000-00008] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent results have demonstrated that the spin trapping agent alpha-phenyl-N-tert-butyl nitrone (PBN) reduces infarct volume in rats subjected to 2 hours of middle cerebral artery occlusion, even when given 1 to 3 hours after the start of recirculation. In the current study, the authors assessed the effect of NXY-059, a novel nitrone that is more soluble than PBN. Loading doses were given of 0.30, 3.0, or 30 mg x kg(-1) followed by 0.30, 3.0, or 30 mg x kg(-1) x h(-1) for 24 or 48 hours. Dose-response studies showed that when treatment was begun 1 hour after recirculation, 0.30 mg x kg(-1) had a small and 30 mg x kg(-1) a marked effect on infarct volume. At equimolar doses (3.0 mg x kg(-1) for NXY-059 and 1.4 mg x kg(-1) for PBN), NXY-059 was more efficacious than PBN. Similar results were obtained when a recovery period of 7 days was allowed. The window of therapeutic opportunity for NXY-059 was 3 to 6 hours after the start of recirculation. Studies of the transfer constant of [14C]NXY-059 showed that, in contrast to PBN, this more soluble nitrone penetrates the blood-brain barrier less extensively. This fact, and the pronounced antiischemic effect of NXY-059, suggest that the delayed events leading to infarction may be influenced by reactions occurring at the blood-endothelial interface.
Collapse
|
|
26 |
185 |
15
|
Ujike H, Takaki M, Nakata K, Tanaka Y, Takeda T, Kodama M, Fujiwara Y, Sakai A, Kuroda S. CNR1, central cannabinoid receptor gene, associated with susceptibility to hebephrenic schizophrenia. Mol Psychiatry 2002; 7:515-8. [PMID: 12082570 DOI: 10.1038/sj.mp.4001029] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2001] [Revised: 10/13/2001] [Accepted: 11/13/2001] [Indexed: 11/10/2022]
Abstract
To examine the cannabinoid hypothesis for pathogenesis of schizophrenia, we examined two kinds of polymorphisms of the CNR1 gene, which encodes human CB1 receptor, a subclass of central cannabinoid receptors, in schizophrenics and age-matched controls in the Japanese population. Allelic and genotypic distributions of polymorphism 1359G/A at codon 453 in the coding region and AAT triplet repeats in the 3' flanking region in the Japanese population were quite different from those in Caucasians. Although the polymorphism 1359G/A was not associated with schizophrenia, the triplet repeat polymorphism of the CNR1 gene was significantly associated with schizophrenia, especially the hebephrenic subtype (P = 0.0028). Hebephrenic schizophrenia showed significantly increased rate of the 9 repeat allele (P = 0.032, OR = 2.30, 95% CI (1.91-2.69)), and decreased rate of the 17 repeat allele (P = 0.011, OR = 0.208, 95% CI (0.098-0.439)). The present findings indicated that certain alleles or genotypes of the CNR1 gene may confer a susceptibility of schizophrenia, especially of the hebephrenic type.
Collapse
|
Comparative Study |
23 |
181 |
16
|
Kobayashi K, Kuroda S, Fukata M, Nakamura T, Nagase T, Nomura N, Matsuura Y, Yoshida-Kubomura N, Iwamatsu A, Kaibuchi K. p140Sra-1 (specifically Rac1-associated protein) is a novel specific target for Rac1 small GTPase. J Biol Chem 1998; 273:291-5. [PMID: 9417078 DOI: 10.1074/jbc.273.1.291] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rac1 small GTPase plays pivotal roles in various cell functions such as cell morphology, cell polarity, and cell proliferation. We have previously identified IQGAP1 from bovine brain cytosol as a target for Rac1 by an affinity purification method. By using the same method, we purified a specifically Rac1-associated protein with a molecular mass of about 140 kDa (p140) from bovine brain cytosol. This protein interacted with guanosine 5'-(3-O-thio)triphosphate (GTPgammaS).glutathione S-transferase (GST)-Rac1 but not with the GDP.GST-Rac1, GTPgammaS.GST-Cdc42, or GTPgammaS.GST-RhoA. The amino acid sequences of this protein revealed that p140 is identified as a product of KIAA0068 gene. We denoted this protein as Sra-1 (Specifically Rac1-associated protein). Recombinant Sra-1 interacted with GTPgammaS.GST-Rac1 and weakly with GDP.Rac1 but not with GST-Cdc42 or GST-RhoA. The N-terminal domain of Sra-1 (1-407 amino acids) was responsible for the interaction with Rac1. Myc-tagged Sra-1 and the deletion mutant capable of interacting with Rac1, but not the mutants unable to bind Rac1, were colocalized with dominant active Rac1(Val-12) and cortical actin filament at the Rac1(Val-12)-induced membrane ruffling area in KB cells. Sra-1 was cosedimented with filamentous actin (F-actin), indicating that Sra-1 directly interacts with F-actin. These results suggest that Sra-1 is a novel and specific target for Rac1.
Collapse
|
|
27 |
180 |
17
|
Fukata M, Kuroda S, Nakagawa M, Kawajiri A, Itoh N, Shoji I, Matsuura Y, Yonehara S, Fujisawa H, Kikuchi A, Kaibuchi K. Cdc42 and Rac1 regulate the interaction of IQGAP1 with beta-catenin. J Biol Chem 1999; 274:26044-50. [PMID: 10473551 DOI: 10.1074/jbc.274.37.26044] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
IQGAP1, a target of Cdc42 and Rac1 small GTPases, directly interacts with beta-catenin and negatively regulates E-cadherin-mediated cell-cell adhesion by dissociating alpha-catenin from the cadherin-catenin complex in vivo (Kuroda, S., Fukata, M., Nakagawa, M., Fujii, K., Nakamura, T., Ookubo, T., Izawa, I., Nagase, T., Nomura, N., Tani, H., Shoji, I., Matsuura, Y., Yonehara, S., and Kaibuchi, K. (1998) Science 281, 832-835). Here we investigated how Cdc42 and Rac1 regulate the IQGAP1 function. IQGAP1 interacted with the amino-terminal region (amino acids 1-183) of beta-catenin, which contains the alpha-catenin-binding domain. IQGAP1 dissociated alpha-catenin from the beta-catenin-alpha-catenin complex in a dose-dependent manner in vitro. Guanosine 5'-(3-O-thio)triphosphate (GTPgammaS).glutathione S-transferase (GST)-Cdc42 and GTPgammaS. GST-Rac1 inhibited the binding of IQGAP1 to beta-catenin in a dose-dependent manner in vitro, whereas neither GDP.GST-Cdc42, GDP. GST-Rac1, nor GTPgammaS.GST-RhoA did. The coexpression of dominant active Cdc42 with IQGAP1 suppressed the dissociation of alpha-catenin from the cadherin-catenin complex induced by the overexpression of IQGAP1 in L cells expressing E-cadherin (EL cells). Consistent with this, the overexpression of either dominant negative Cdc42 or Rac1 resulted in the reduction of E-cadherin-mediated cell adhesive activity in EL cells. These results indicate that Cdc42 and Rac1 negatively regulate the IQGAP1 function by inhibiting the interaction of IQGAP1 with beta-catenin, leading to stabilization of the cadherin-catenin complex.
Collapse
|
|
26 |
180 |
18
|
Hirata K, Kikuchi A, Sasaki T, Kuroda S, Kaibuchi K, Matsuura Y, Seki H, Saida K, Takai Y. Involvement of rho p21 in the GTP-enhanced calcium ion sensitivity of smooth muscle contraction. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50337-4] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
|
33 |
177 |
19
|
Houkin K, Kamiyama H, Abe H, Takahashi A, Kuroda S. Surgical therapy for adult moyamoya disease. Can surgical revascularization prevent the recurrence of intracerebral hemorrhage? Stroke 1996; 27:1342-6. [PMID: 8711799 DOI: 10.1161/01.str.27.8.1342] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND PURPOSE It is well recognized that revascularization surgery using direct and/or indirect bypass provides effective surgical management for pediatric moyamoya disease. However, surgical treatment of the adult hemorrhagic type remains controversial. In this study, the effect of surgery for adult moyamoya disease was investigated. METHODS We analyzed 35 patients with adult moyamoya disease (patient age, over 20 years), 24 patients with initial onset of intracerebral hemorrhage, and 11 patients with initial onset of cerebral ischemia who underwent both direct bypass surgery of the superficial temporal artery to the middle cerebral artery anastomosis and indirect revascularization of encephalo-duro-arteriomyo-synangiosis. RESULTS Of 24 patients with hemorrhagic-type disease, 3 showed rebleeding: of 11 patients with the ischemic type, 2 showed intracerebral hemorrhage after surgery. Overall, 5 of 35 patients (14.3%) had hemorrhage after revascularization surgery (mean follow-up period, 6.4 years). Postoperative angiography revealed that direct anastomosis is effective whereas indirect revascularization is not always effective for adult moyamoya disease. Moyamoya vessels, which are supposed to be responsible for hemorrhage, decreased in 25% of patients. CONCLUSIONS Revascularization surgery cannot always prevent rebleeding. However, a decrease in moyamoya vessels was induced by surgery, which may reduce the risk of hemorrhage more effectively than conservative treatment. In cases of adult moyamoya disease, direct bypass is particularly important, since the indirect revascularization is not as useful in adult cases as in pediatric cases.
Collapse
|
Comparative Study |
29 |
177 |
20
|
Kuriyama M, Harada N, Kuroda S, Yamamoto T, Nakafuku M, Iwamatsu A, Yamamoto D, Prasad R, Croce C, Canaani E, Kaibuchi K. Identification of AF-6 and canoe as putative targets for Ras. J Biol Chem 1996; 271:607-10. [PMID: 8557659 DOI: 10.1074/jbc.271.2.607] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Ras (Ha-Ras, Ki-Ras, N-Ras) is implicated in the regulation of various cell functions such as gene expression and cell proliferation downstream from specific extracellular signals. Here, we partially purified a Ras-interacting protein with molecular mass of about 180 kDa (p180) from bovine brain membrane extract by glutathione S-transferase (GST)-Ha-Ras affinity column chromatography. This protein bound to the GTP gamma S (guanosine 5'-(3-O-thio)triphosphate, a nonhydrolyzable GTP analog).GST-Ha-Ras affinity column but not to those containing GDP.GST-Ha-Ras or GTP gamma S.GST-Ha-Ras with a mutation in the effector domain (Ha-RasA38). The amino acid sequences of the peptides derived from p180 were almost identical to those of human AF-6 that is identified as the fusion partner of the ALL-1 protein. The ALL-1/AF-6 chimeric protein is the critical product of the t (6:11) abnormality associated with some human leukemia. AF-6 has a GLGF/Dlg homology repeat (DHR) motif and shows a high degree of sequence similarity with Drosophila Canoe, which is assumed to function downstream from Notch in a common developmental pathway. The recombinant N-terminal domain of AF-6 and Canoe specifically interacted with GTP gamma S.GST-Ha-Ras. The known Ras target c-Raf-1 inhibited the interaction of AF-6 with GTP gamma S.GST-Ha-Ras. These results indicate that AF-6 and Canoe are putative targets for Ras.
Collapse
|
|
29 |
169 |
21
|
Yamauchi T, Tada M, Houkin K, Tanaka T, Nakamura Y, Kuroda S, Abe H, Inoue T, Ikezaki K, Matsushima T, Fukui M. Linkage of familial moyamoya disease (spontaneous occlusion of the circle of Willis) to chromosome 17q25. Stroke 2000; 31:930-5. [PMID: 10754001 DOI: 10.1161/01.str.31.4.930] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Moyamoya disease is a cerebrovascular disease of unknown cause that mainly affects Japanese children. The incidence of familial occurrence accounts for 9% of cases. The characteristic lesions of moyamoya disease are occasionally seen in neurofibromatosis type 1, of which the causative gene (NF1) has been assigned to chromosome 17q11.2. METHODS To determine whether a gene related to moyamoya disease is located on chromosome 17, we conducted microsatellite linkage analyses on 24 families containing 56 patients with moyamoya disease. Leukocyte DNA extracted from the family members was subjected to polymerase chain reaction for a total of 22 microsatellite markers on chromosome 17. The amplified polymerase chain reaction fragments were analyzed with GeneScan on an automated sequencer. RESULTS Two-point linkage analysis gave a maximum log(10) odds (LOD) score of 3.11 at the recombination fraction of 0.00 for the marker at locus D17S939. The affected pedigree member method also showed a significantly low P value (<1. 0x10(-5)) for the 5 adjacent markers at 17q25. Multipoint linkage analysis also indicated that the disease gene is contained within the 9-cM region of D17S785 to D17S836, with a maximum LOD score of 4. 58. CONCLUSIONS A gene for familial moyamoya disease is located on chromosome 17q25.
Collapse
|
|
25 |
168 |
22
|
Fukata M, Kuroda S, Fujii K, Nakamura T, Shoji I, Matsuura Y, Okawa K, Iwamatsu A, Kikuchi A, Kaibuchi K. Regulation of cross-linking of actin filament by IQGAP1, a target for Cdc42. J Biol Chem 1997; 272:29579-83. [PMID: 9368021 DOI: 10.1074/jbc.272.47.29579] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have previously shown that IQGAP1, a recently identified target for Cdc42 and Rac1 small GTPases, showed a distribution similar to that of cortical actin cytoskeleton at the membrane ruffling area induced by insulin and Rac1(val12) (Kuroda, S., Fukata, M., Kobayashi, K., Nakafuku, M., Nomura, N., Iwamatsu, A., and Kaibuchi, K. (1996) J. Biol. Chem. 271, 23363-23367). Here we identified an IQGAP1-interacting molecule with molecular mass of 43 kDa (p43) from bovine brain cytosol, using glutathione S-transferase (GST)-IQGAP1 affinity column chromatography. The amino acid sequencing of the protein revealed that p43 was identical to beta- and gamma-actin. IQGAP1 was cosedimentated with filamentous actin (F-actin). The amino-terminal domain (amino acids 1-216) of IQGAP1 was responsible for the interaction with F-actin. Falling ball viscometry assay revealed that IQGAP1 cross-linked the F-actin. This IQGAP1 activity was further enhanced by guanosine 5'-(3-O-thio)triphosphate (GTPgammaS).GST-Cdc42 but not by GDP.GST-Cdc42. The gel filtration analysis of IQGAP1 revealed that IQGAP1 appeared as oligomers and that GTPgammaS.GST-Cdc42 but not GDP.GST-Cdc42 enhanced the oligomerization of IQGAP1. These results strongly suggest that IQGAP1, acting downstream of Cdc42, can cross-link the actin filament through its oligomerization.
Collapse
|
|
28 |
166 |
23
|
Kaibuchi K, Kuroda S, Fukata M, Nakagawa M. Regulation of cadherin-mediated cell-cell adhesion by the Rho family GTPases. Curr Opin Cell Biol 1999; 11:591-6. [PMID: 10508646 DOI: 10.1016/s0955-0674(99)00014-9] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Reports in the past two years have shown that Cdc42, Rac1, and Rho - belonging to the Rho small GTPase family - participate in the regulation of cadherin-mediated cell-cell adhesion. IQGAP1, an effector of Cdc42 and Rac1, interacts with cadherin and beta-catenin and induces the dissociation of alpha-catenin from the cadherin-catenins complex leading to disruption of cell-cell adhesion: activated Cdc42 and Rac1 counteract the effect of IQGAP1. Thus, Cdc42 and Rac1 appear to regulate cadherin-mediated cell-cell adhesion acting through IQGAP1.
Collapse
|
Review |
26 |
161 |
24
|
Konishi H, Matsuzaki H, Tanaka M, Ono Y, Tokunaga C, Kuroda S, Kikkawa U. Activation of RAC-protein kinase by heat shock and hyperosmolarity stress through a pathway independent of phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A 1996; 93:7639-43. [PMID: 8755528 PMCID: PMC38799 DOI: 10.1073/pnas.93.15.7639] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
RAC protein kinase (RAC-PK), a serine/threonine protein kinase containing a pleckstrin homology (PH) domain, was activated by cellular stress such as heat shock and hyperosmolarity. Wortmannin, which is known as a potent inhibitor of phosphatidylinositol 3-kinase and normally inhibits growth factor-induced activation of RAC-PK, did not suppress heat-shock induced activation of RAC-PK, indicating that this stress-induced activation of the kinase is not mediated by phosphatidylinositol 3-kinase. The PH domain was indispensable for stress-induced activation of RAC PK. In heat-treated cells, PKC delta, a member of the protein kinase C family, was found to associate with the PH domain of RAC-PK. This PKC subspecies was phosphorylated in vitro by RAC-PK. The results suggest that RAC-PK may play a role in the cellular response to stress through its PH domain.
Collapse
|
research-article |
29 |
161 |
25
|
Ihara K, Muraguchi S, Kato M, Shimizu T, Shirakawa M, Kuroda S, Kaibuchi K, Hakoshima T. Crystal structure of human RhoA in a dominantly active form complexed with a GTP analogue. J Biol Chem 1998; 273:9656-66. [PMID: 9545299 DOI: 10.1074/jbc.273.16.9656] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 2.4-A resolution crystal structure of a dominantly active form of the small guanosine triphosphatase (GTPase) RhoA, RhoAV14, complexed with the nonhydrolyzable GTP analogue, guanosine 5'-3-O-(thio)triphosphate (GTPgammaS), reveals a fold similar to RhoA-GDP, which has been recently reported (Wei, Y., Zhang, Y., Derewenda, U., Liu, X., Minor, W., Nakamoto, R. K., Somlyo, A. V., Somlyo, A. P., and Derewenda, Z. S. (1997) Nat. Struct. Biol. 4, 699-703), but shows large conformational differences localized in switch I and switch II. These changes produce hydrophobic patches on the molecular surface of switch I, which has been suggested to be involved in its effector binding. Compared with H-Ras and other GTPases bound to GTP or GTP analogues, the significant conformational differences are located in regions involving switches I and II and part of the antiparallel beta-sheet between switches I and II. Key residues that produce these conformational differences were identified. In addition to these differences, RhoA contains four insertion or deletion sites with an extra helical subdomain that seems to be characteristic of members of the Rho family, including Rac1, but with several variations in details. These sites also display large displacements from those of H-Ras. The ADP-ribosylation residue, Asn41, by C3-like exoenzymes stacks on the indole ring of Trp58 with a hydrogen bond to the main chain of Glu40. The recognition of the guanosine moiety of GTPgammaS by the GTPase contains water-mediated hydrogen bonds, which seem to be common in the Rho family. These structural differences provide an insight into specific interaction sites with the effectors, as well as with modulators such as guanine nucleotide exchange factor (GEF) and guanine nucleotide dissociation inhibitor (GDI).
Collapse
|
|
27 |
159 |