1
|
Stern SA, Bagenal F, Ennico K, Gladstone GR, Grundy WM, McKinnon WB, Moore JM, Olkin CB, Spencer JR, Weaver HA, Young LA, Andert T, Andrews J, Banks M, Bauer B, Bauman J, Barnouin OS, Bedini P, Beisser K, Beyer RA, Bhaskaran S, Binzel RP, Birath E, Bird M, Bogan DJ, Bowman A, Bray VJ, Brozovic M, Bryan C, Buckley MR, Buie MW, Buratti BJ, Bushman SS, Calloway A, Carcich B, Cheng AF, Conard S, Conrad CA, Cook JC, Cruikshank DP, Custodio OS, Dalle Ore CM, Deboy C, Dischner ZJB, Dumont P, Earle AM, Elliott HA, Ercol J, Ernst CM, Finley T, Flanigan SH, Fountain G, Freeze MJ, Greathouse T, Green JL, Guo Y, Hahn M, Hamilton DP, Hamilton SA, Hanley J, Harch A, Hart HM, Hersman CB, Hill A, Hill ME, Hinson DP, Holdridge ME, Horanyi M, Howard AD, Howett CJA, Jackman C, Jacobson RA, Jennings DE, Kammer JA, Kang HK, Kaufmann DE, Kollmann P, Krimigis SM, Kusnierkiewicz D, Lauer TR, Lee JE, Lindstrom KL, Linscott IR, Lisse CM, Lunsford AW, Mallder VA, Martin N, McComas DJ, McNutt RL, Mehoke D, Mehoke T, Melin ED, Mutchler M, Nelson D, Nimmo F, Nunez JI, Ocampo A, Owen WM, Paetzold M, Page B, Parker AH, Parker JW, Pelletier F, Peterson J, Pinkine N, Piquette M, Porter SB, Protopapa S, Redfern J, Reitsema HJ, Reuter DC, Roberts JH, Robbins SJ, Rogers G, Rose D, Runyon K, Retherford KD, Ryschkewitsch MG, Schenk P, Schindhelm E, Sepan B, Showalter MR, Singer KN, Soluri M, Stanbridge D, Steffl AJ, Strobel DF, Stryk T, Summers ME, Szalay JR, Tapley M, Taylor A, Taylor H, Throop HB, Tsang CCC, Tyler GL, Umurhan OM, Verbiscer AJ, Versteeg MH, Vincent M, Webbert R, Weidner S, Weigle GE, White OL, Whittenburg K, Williams BG, Williams K, Williams S, Woods WW, Zangari AM, Zirnstein E. The Pluto system: Initial results from its exploration by New Horizons. Science 2015; 350:aad1815. [DOI: 10.1126/science.aad1815] [Citation(s) in RCA: 367] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
10 |
367 |
2
|
Qaisar R, Bhaskaran S, Van Remmen H. Muscle fiber type diversification during exercise and regeneration. Free Radic Biol Med 2016; 98:56-67. [PMID: 27032709 DOI: 10.1016/j.freeradbiomed.2016.03.025] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/01/2016] [Accepted: 03/24/2016] [Indexed: 01/15/2023]
Abstract
The plasticity of skeletal muscle can be traced down to extensive metabolic, structural and molecular remodeling at the single fiber level. Skeletal muscle is comprised of different fiber types that are the basis of muscle plasticity in response to various functional demands. Resistance and endurance exercises are two external stimuli that differ in their duration and intensity of contraction and elicit markedly different responses in muscles adaptation. Further, eccentric contractions that are associated with exercise-induced injuries, elicit varied muscle adaptation and regenerative responses. Most adaptive changes are fiber type-specific and are highly influenced by diverse structural, metabolic and functional characteristics of individual fiber types. Regulation of signaling pathways by reactive oxygen species (ROS) and oxidative stress also plays an important role in muscle fiber adaptation during exercise. This review focuses on cellular and molecular responses that regulate the adaptation of skeletal muscle to exercise and exercise-related injuries.
Collapse
|
Review |
9 |
132 |
3
|
Stern SA, Weaver HA, Spencer JR, Olkin CB, Gladstone GR, Grundy WM, Moore JM, Cruikshank DP, Elliott HA, McKinnon WB, Parker JW, Verbiscer AJ, Young LA, Aguilar DA, Albers JM, Andert T, Andrews JP, Bagenal F, Banks ME, Bauer BA, Bauman JA, Bechtold KE, Beddingfield CB, Behrooz N, Beisser KB, Benecchi SD, Bernardoni E, Beyer RA, Bhaskaran S, Bierson CJ, Binzel RP, Birath EM, Bird MK, Boone DR, Bowman AF, Bray VJ, Britt DT, Brown LE, Buckley MR, Buie MW, Buratti BJ, Burke LM, Bushman SS, Carcich B, Chaikin AL, Chavez CL, Cheng AF, Colwell EJ, Conard SJ, Conner MP, Conrad CA, Cook JC, Cooper SB, Custodio OS, Dalle Ore CM, Deboy CC, Dharmavaram P, Dhingra RD, Dunn GF, Earle AM, Egan AF, Eisig J, El-Maarry MR, Engelbrecht C, Enke BL, Ercol CJ, Fattig ED, Ferrell CL, Finley TJ, Firer J, Fischetti J, Folkner WM, Fosbury MN, Fountain GH, Freeze JM, Gabasova L, Glaze LS, Green JL, Griffith GA, Guo Y, Hahn M, Hals DW, Hamilton DP, Hamilton SA, Hanley JJ, Harch A, Harmon KA, Hart HM, Hayes J, Hersman CB, Hill ME, Hill TA, Hofgartner JD, Holdridge ME, Horányi M, Hosadurga A, Howard AD, Howett CJA, Jaskulek SE, Jennings DE, Jensen JR, Jones MR, Kang HK, Katz DJ, Kaufmann DE, Kavelaars JJ, Keane JT, Keleher GP, Kinczyk M, Kochte MC, Kollmann P, Krimigis SM, Kruizinga GL, Kusnierkiewicz DY, Lahr MS, Lauer TR, Lawrence GB, Lee JE, Lessac-Chenen EJ, Linscott IR, Lisse CM, Lunsford AW, Mages DM, Mallder VA, Martin NP, May BH, McComas DJ, McNutt RL, Mehoke DS, Mehoke TS, Nelson DS, Nguyen HD, Núñez JI, Ocampo AC, Owen WM, Oxton GK, Parker AH, Pätzold M, Pelgrift JY, Pelletier FJ, Pineau JP, Piquette MR, Porter SB, Protopapa S, Quirico E, Redfern JA, Regiec AL, Reitsema HJ, Reuter DC, Richardson DC, Riedel JE, Ritterbush MA, Robbins SJ, Rodgers DJ, Rogers GD, Rose DM, Rosendall PE, Runyon KD, Ryschkewitsch MG, Saina MM, Salinas MJ, Schenk PM, Scherrer JR, Schlei WR, Schmitt B, Schultz DJ, Schurr DC, Scipioni F, Sepan RL, Shelton RG, Showalter MR, Simon M, Singer KN, Stahlheber EW, Stanbridge DR, Stansberry JA, Steffl AJ, Strobel DF, Stothoff MM, Stryk T, Stuart JR, Summers ME, Tapley MB, Taylor A, Taylor HW, Tedford RM, Throop HB, Turner LS, Umurhan OM, Van Eck J, Velez D, Versteeg MH, Vincent MA, Webbert RW, Weidner SE, Weigle GE, Wendel JR, White OL, Whittenburg KE, Williams BG, Williams KE, Williams SP, Winters HL, Zangari AM, Zurbuchen TH. Initial results from the New Horizons exploration of 2014 MU 69, a small Kuiper Belt object. Science 2019; 364:364/6441/eaaw9771. [PMID: 31097641 DOI: 10.1126/science.aaw9771] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/16/2019] [Indexed: 11/02/2022]
Abstract
The Kuiper Belt is a distant region of the outer Solar System. On 1 January 2019, the New Horizons spacecraft flew close to (486958) 2014 MU69, a cold classical Kuiper Belt object approximately 30 kilometers in diameter. Such objects have never been substantially heated by the Sun and are therefore well preserved since their formation. We describe initial results from these encounter observations. MU69 is a bilobed contact binary with a flattened shape, discrete geological units, and noticeable albedo heterogeneity. However, there is little surface color or compositional heterogeneity. No evidence for satellites, rings or other dust structures, a gas coma, or solar wind interactions was detected. MU69's origin appears consistent with pebble cloud collapse followed by a low-velocity merger of its two lobes.
Collapse
|
|
6 |
88 |
4
|
Thum MY, Bhaskaran S, Abdalla HI, Ford B, Sumar N, Shehata H, Bansal AS. An increase in the absolute count of CD56dimCD16+CD69+ NK cells in the peripheral blood is associated with a poorer IVF treatment and pregnancy outcome. Hum Reprod 2004; 19:2395-400. [PMID: 15319390 DOI: 10.1093/humrep/deh378] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Our aim was to evaluate the effect of the absolute count of the activation marker (CD69), IgG Fc receptor (CD16) and inhibitor marker (CD94) expression on peripheral blood natural killer (NK) cells on implantation and miscarriage rates after IVF treatment. METHODS Prospective observational study of 138 randomly selected women who underwent IVF treatment from December 2002 to September 2003. NK cells were identified as CD56(+) (dim + bright) and CD3(-) by flow cytometry. The absolute counts of the CD69(+), CD16(+) and CD94(+)expressing NK cells were recorded and their relation to IVF treatment outcome and miscarriage rate was analysed. RESULTS The mean (+/-SD) absolute count of the CD56(dim)CD16(+)CD69(+) NK cells for women who had a successful ongoing pregnancy was 0.61 x 10(6)/l (+/-0.31). For those women who failed to achieve a pregnancy, the mean value of the absolute count of CD56(dim)CD16(+)D69(+) NK cells was significantly (P=0.003) higher at 1.66 x 10(6)/l (+/-0.52). The absolute count of CD56(dim)CD16(+)CD94(+) and CD56(dim)CD16(+) NK cells did not show any statistically significant differences between those women with successful and failed IVF treatment. Receiver operating characteristic (ROC) curve analysis was performed to select a CD69 threshold for further statistical analysis. The implantation rate (IR) was significantly lower (13.1%) and miscarriage rate (MR) was significantly higher (66.7%) for women with an absolute CD56(dim)CD16(+)CD69(+) NK cell count of >1.0 x 10(6)/l compared to women with count below this value (IR 28.2% and MR 16.7%). Further analysis of the absolute count of CD56(bright)CD69(+) and CD56(bright)CD94(+) NK cells did not show any significant difference between those women with successful and failed IVF treatment. CONCLUSIONS An increase in the absolute count of activated NK cells (CD56(dim)CD16(+)CD69(+)) in the peripheral blood is associated with a reduced rate of embryo implantation in IVF treatment. Furthermore, women with high CD56(dim)CD16(+)CD69(+) peripheral blood NK cell absolute count, who are able to achieve pregnancy, have a significantly higher miscarriage rate.
Collapse
MESH Headings
- Abortion, Spontaneous/epidemiology
- Adult
- Antigens, CD/analysis
- Antigens, Differentiation, T-Lymphocyte/analysis
- CD56 Antigen/analysis
- Embryo Implantation
- Female
- Fertilization in Vitro
- Humans
- Incidence
- Infertility, Female/blood
- Infertility, Female/therapy
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lectins, C-Type
- Lymphocyte Count
- Pregnancy
- Pregnancy Outcome
- Receptors, IgG/analysis
Collapse
|
|
21 |
80 |
5
|
Deepa SS, Bhaskaran S, Espinoza S, Brooks SV, McArdle A, Jackson MJ, Van Remmen H, Richardson A. A new mouse model of frailty: the Cu/Zn superoxide dismutase knockout mouse. GeroScience 2017; 39:187-198. [PMID: 28409332 PMCID: PMC5411367 DOI: 10.1007/s11357-017-9975-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/06/2017] [Indexed: 11/29/2022] Open
Abstract
Frailty is a geriatric syndrome that is an important public health problem for the older adults living in the USA. Although several methods have been developed to measure frailty in humans, we have very little understanding of its etiology. Because the molecular basis of frailty is poorly understood, mouse models would be of great value in determining which pathways contribute to the development of frailty. More importantly, mouse models would be critical in testing potential therapies to treat and possibly prevent frailty. In this article, we present data showing that Sod1KO mice, which lack the antioxidant enzyme, Cu/Zn superoxide dismutase, are an excellent model of frailty, and we compare the Sod1KO mice to the only other mouse model of frailty, mice with the deletion of the IL-10 gene. Sod1KO mice exhibit four characteristics that have been used to define human frailty: weight loss, weakness, low physical activity, and exhaustion. In addition, Sod1KO mice show increased inflammation and sarcopenia, which are strongly associated with human frailty. The Sod1KO mice also show alterations in pathways that have been proposed to play a role in the etiology of frailty: oxidative stress, mitochondrial dysfunction, and cell senescence. Using Sod1KO mice, we show that dietary restriction can delay/prevent characteristics of frailty in mice.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
73 |
6
|
Deepa SS, Bhaskaran S, Ranjit R, Qaisar R, Nair BC, Liu Y, Walsh ME, Fok WC, Van Remmen H. Down-regulation of the mitochondrial matrix peptidase ClpP in muscle cells causes mitochondrial dysfunction and decreases cell proliferation. Free Radic Biol Med 2016; 91:281-92. [PMID: 26721594 PMCID: PMC5584630 DOI: 10.1016/j.freeradbiomed.2015.12.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 12/14/2015] [Accepted: 12/19/2015] [Indexed: 12/22/2022]
Abstract
The caseinolytic peptidase P (ClpP) is the endopeptidase component of the mitochondrial matrix ATP-dependent ClpXP protease. ClpP degrades unfolded proteins to maintain mitochondrial protein homeostasis and is involved in the initiation of the mitochondrial unfolded protein response (UPR(mt)). Outside of an integral role in the UPR(mt), the cellular function of ClpP is not well characterized in mammalian cells. To investigate the role of ClpP in mitochondrial function, we generated C2C12 muscle cells that are deficient in ClpP using siRNA or stable knockdown using lentiviral transduction. Reduction of ClpP levels by ~70% in C2C12 muscle cells resulted in a number of mitochondrial alterations including reduced mitochondrial respiration and reduced oxygen consumption rate in response to electron transport chain (ETC) complex I and II substrates. The reduction in ClpP altered mitochondrial morphology, changed the expression level of mitochondrial fission protein Drp1 and blunted UPR(mt) induction. In addition, ClpP deficient cells showed increased generation of reactive oxygen species (ROS) and decreased membrane potential. At the cellular level, reduction of ClpP impaired myoblast differentiation, cell proliferation and elevated phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) suggesting an inhibition of translation. Our study is the first to define the effects of ClpP deficiency on mitochondrial function in muscle cells in vitro. In addition, we have uncovered novel effects of ClpP on mitochondrial morphology, cell proliferation and protein translation pathways in muscle cells.
Collapse
|
research-article |
9 |
72 |
7
|
Kumar AP, Bhaskaran S, Ganapathy M, Crosby K, Davis MD, Kochunov P, Schoolfield J, Yeh IT, Troyer DA, Ghosh R. Akt/cAMP-responsive element binding protein/cyclin D1 network: a novel target for prostate cancer inhibition in transgenic adenocarcinoma of mouse prostate model mediated by Nexrutine, a Phellodendron amurense bark extract. Clin Cancer Res 2007; 13:2784-94. [PMID: 17473212 PMCID: PMC1948816 DOI: 10.1158/1078-0432.ccr-06-2974] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Development of prostate cancer prevention strategies is an important priority to overcome high incidence, morbidity, and mortality. Recently, we showed that Nexrutine, an herbal extract, inhibits prostate cancer cell proliferation through modulation of Akt and cAMP-responsive element binding protein (CREB)-mediated signaling pathways. However, it is unknown if Nexrutine can be developed as a dietary supplement for the prevention of prostate cancer. In this study, we used the transgenic adenocarcinoma of mouse prostate (TRAMP) model to examine the ability of Nexrutine to protect TRAMP mice from developing prostate cancer. EXPERIMENTAL DESIGN Eight-week-old TRAMP mice were fed with pelleted diet containing 300 and 600 mg/kg Nexrutine for 20 weeks. Efficacy of Nexrutine was evaluated by magnetic resonance imaging at 18 and 28 weeks of progression and histologic analysis of prostate tumor or tissue at the termination of the experiment. Tumor tissue was analyzed for modulation of various signaling molecules. RESULTS We show that Nexrutine significantly suppressed palpable tumors and progression of cancer in the TRAMP model. Expression of total and phosphorylated Akt, CREB, and cyclin D1 was significantly reduced in prostate tissue from Nexrutine intervention group compared with tumors from control animals. Nexrutine also inhibited cyclin D1 transcriptional activity in androgen-independent PC-3 cells. Overexpression of kinase dead Akt mutant or phosphorylation-defective CREB inhibited cyclin D1 transcriptional activity. CONCLUSIONS The current study shows that Nexrutine-mediated targeting of Akt/CREB-induced activation of cyclin D1 prevents the progression of prostate cancer. Expression of CREB and phosphorylated CREB increased in human prostate tumors compared with normal tissue, suggesting their potential use as prognostic markers.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
71 |
8
|
Qaisar R, Bhaskaran S, Premkumar P, Ranjit R, Natarajan KS, Ahn B, Riddle K, Claflin DR, Richardson A, Brooks SV, Van Remmen H. Oxidative stress-induced dysregulation of excitation-contraction coupling contributes to muscle weakness. J Cachexia Sarcopenia Muscle 2018; 9:1003-1017. [PMID: 30073804 PMCID: PMC6204588 DOI: 10.1002/jcsm.12339] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND We have previously shown that the deletion of the superoxide scavenger, CuZn superoxide dismutase, in mice (Sod1-/- mice) results in increased oxidative stress and an accelerated loss of skeletal muscle mass and force that mirror the changes seen in old control mice. The goal of this study is to define the effect of oxidative stress and ageing on muscle weakness and the Excitation Contraction (EC) coupling machinery in age-matched adult (8-10 months) wild-type (WT) and Sod1-/- mice in comparison with old (25-28 months) WT mice. METHODS In vitro contractile assays were used to measure muscle contractile parameters. The activity of the sarcoplasmic reticulum Ca2+ ATPase (SERCA) pump was measured using an NADH-linked enzyme assay. Immunoblotting and immunofluorescence techniques were used to measure protein expression, and real-time reverse transcription PCR was used to measure gene expression. RESULTS The specific force generated by the extensor digitorum longus muscle was reduced in the Sod1-/- and old WT mice compared with young WT mice along with significant prolongation of time to peak force, increased half relaxation time, and disruption of intracellular calcium handling. The maximal activity of the SERCA calcium uptake pump was significantly reduced in gastrocnemius muscle from both old WT (≈14%) and adult Sod1-/- (≈33%) mice compared with young WT mice along with increased expression of sarcolipin, a known inhibitor of SERCA activity. Protein levels of the voltage sensor and calcium uptake channel proteins dihydropyridine receptor α1 and SERCA2 were significantly elevated (≈45% and ≈57%, respectively), while the ratio of calstabin, a channel stabilizing protein, to ryanodine receptor was significantly reduced (≈21%) in Sod1-/- mice compared with young WT mice. The changes in calcium handling were accompanied by substantially elevated levels of global protein carbonylation and lipid peroxidation. CONCLUSIONS Our data suggest that the muscle weakness in Sod1-/- and old WT mice is in part driven by reactive oxygen species-mediated EC uncoupling and supports a role for reduced SERCA pump activity in compromised muscle function. The novel quantitative mechanistic data provided here can lead to potential therapeutic interventions of SERCA dysfunction for sarcopenia and muscle diseases.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
66 |
9
|
Bhaskaran S, Pharaoh G, Ranjit R, Murphy A, Matsuzaki S, Nair BC, Forbes B, Gispert S, Auburger G, Humphries KM, Kinter M, Griffin TM, Deepa SS. Loss of mitochondrial protease ClpP protects mice from diet-induced obesity and insulin resistance. EMBO Rep 2018; 19:embr.201745009. [PMID: 29420235 DOI: 10.15252/embr.201745009] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/08/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023] Open
Abstract
Caseinolytic peptidase P (ClpP) is a mammalian quality control protease that is proposed to play an important role in the initiation of the mitochondrial unfolded protein response (UPRmt), a retrograde signaling response that helps to maintain mitochondrial protein homeostasis. Mitochondrial dysfunction is associated with the development of metabolic disorders, and to understand the effect of a defective UPRmt on metabolism, ClpP knockout (ClpP-/-) mice were analyzed. ClpP-/- mice fed ad libitum have reduced adiposity and paradoxically improved insulin sensitivity. Absence of ClpP increased whole-body energy expenditure and markers of mitochondrial biogenesis are selectively up-regulated in the white adipose tissue (WAT) of ClpP-/- mice. When challenged with a metabolic stress such as high-fat diet, despite similar caloric intake, ClpP-/- mice are protected from diet-induced obesity, glucose intolerance, insulin resistance, and hepatic steatosis. Our results show that absence of ClpP triggers compensatory responses in mice and suggest that ClpP might be dispensable for mammalian UPRmt initiation. Thus, we made an unexpected finding that deficiency of ClpP in mice is metabolically beneficial.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
66 |
10
|
Qaisar R, Bhaskaran S, Ranjit R, Sataranatarajan K, Premkumar P, Huseman K, Van Remmen H. Restoration of SERCA ATPase prevents oxidative stress-related muscle atrophy and weakness. Redox Biol 2018; 20:68-74. [PMID: 30296699 PMCID: PMC6174848 DOI: 10.1016/j.redox.2018.09.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/13/2018] [Accepted: 09/25/2018] [Indexed: 01/01/2023] Open
Abstract
Molecular targets to reduce muscle weakness and atrophy due to oxidative stress have been elusive. Here we show that activation of Sarcoplasmic Reticulum (SR) Ca2+ ATPase (SERCA) with CDN1163, a novel small molecule allosteric SERCA activator, ameliorates the muscle impairment in the CuZnSOD deficient (Sod1-/-) mouse model of oxidative stress. Sod1-/- mice are characterized by reduced SERCA activity, muscle weakness and atrophy, increased oxidative stress and mitochondrial dysfunction. Seven weeks of CDN1163 treatment completely restored SERCA activity and reversed the 23% reduction in gastrocnemius mass and 22% reduction in specific force in untreated Sod1-/- versus wild type mice. These changes were accompanied by restoration of autophagy protein markers to the levels found in wild-type mice. CDN1163 also reversed the increase in mitochondrial ROS generation and oxidative damage in muscle tissue from Sod1-/- mice. Taken together our findings suggest that the pharmacological restoration of SERCA is a promising therapeutic approach to counter oxidative stress-associated muscle impairment.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
60 |
11
|
Butler JA, Mishur RJ, Bhaskaran S, Rea SL. A metabolic signature for long life in the Caenorhabditis elegans Mit mutants. Aging Cell 2013; 12:130-8. [PMID: 23173729 DOI: 10.1111/acel.12029] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2012] [Indexed: 11/26/2022] Open
Abstract
Mit mutations that disrupt function of the mitochondrial electron transport chain can, inexplicably, prolong Caenorhabditis elegans lifespan. In this study we use a metabolomics approach to identify an ensemble of mitochondrial-derived α-ketoacids and α-hydroxyacids that are produced by long-lived Mit mutants but not by other long-lived mutants or by short-lived mitochondrial mutants. We show that accumulation of these compounds is dependent on concerted inhibition of three α-ketoacid dehydrogenases that share dihydrolipoamide dehydrogenase (DLD) as a common subunit, a protein previously linked in humans with increased risk of Alzheimer's disease. When the expression of DLD in wild-type animals was reduced using RNA interference we observed an unprecedented effect on lifespan - as RNAi dosage was increased lifespan was significantly shortened, but, at higher doses, it was significantly lengthened, suggesting that DLD plays a unique role in modulating length of life. Our findings provide novel insight into the origin of the Mit phenotype.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
59 |
12
|
Sataranatarajan K, Qaisar R, Davis C, Sakellariou GK, Vasilaki A, Zhang Y, Liu Y, Bhaskaran S, McArdle A, Jackson M, Brooks SV, Richardson A, Van Remmen H. Neuron specific reduction in CuZnSOD is not sufficient to initiate a full sarcopenia phenotype. Redox Biol 2015; 5:140-148. [PMID: 25917273 PMCID: PMC5022075 DOI: 10.1016/j.redox.2015.04.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 04/08/2015] [Accepted: 04/13/2015] [Indexed: 11/27/2022] Open
Abstract
Our previous studies showed that adult (8 month) mice lacking CuZn-superoxide dismutase (CuZnSOD, Sod1KO mice) have neuromuscular changes resulting in dramatic accelerated muscle atrophy and weakness that mimics age-related sarcopenia. We have further shown that loss of CuZnSOD targeted to skeletal muscle alone results in only mild weakness and no muscle atrophy. In this study, we targeted deletion of CuZnSOD specifically to neurons (nSod1KO mice) and determined the effect on muscle mass and weakness. The nSod1KO mice show a significant loss of CuZnSOD activity and protein level in brain and spinal cord but not in muscle tissue. The masses of the gastrocnemius, tibialis anterior and extensor digitorum longus (EDL) muscles were not reduced in nSod1KO compared to wild type mice, even at 20 months of age, although the quadriceps and soleus muscles showed small but statistically significant reductions in mass in the nSod1KO mice. Maximum isometric specific force was reduced by 8–10% in the gastrocnemius and EDL muscle of nSod1KO mice, while soleus was not affected. Muscle mitochondrial ROS generation and oxidative stress measured by levels of reactive oxygen/nitrogen species (RONS) regulatory enzymes, protein nitration and F2-isoprostane levels were not increased in muscle from the nSod1KO mice. Although we did not find evidence of denervation in the nSod1KO mice, neuromuscular junction morphology was altered and the expression of genes associated with denervation acetylcholine receptor subunit alpha (AChRα), the transcription factor, Runx1 and GADD45α) was increased, supporting a role for neuronal loss of CuZnSOD initiating alterations at the neuromuscular junction. These results and our previous studies support the concept that CuZnSOD deficits in either the motor neuron or muscle alone are not sufficient to initiate a full sarcopenic phenotype and that deficits in both tissues are required to recapitulate the loss of muscle observed in Sod1KO mice.
CuZnSOD deletion in nSod1KO mice does not induce an overt sarcopenia phenotype. Force is slightly reduced in the gastrocnemius of nSod1KO mice but mass is unaffected. Neuronal Sod1 depletion does not induce denervation despite altered NMJ morphology. Neuronal Sod1 depletion does not induce muscle oxidative stress or mitochondrial ROS. Deficits in both motor neurons and muscle are required to initiate sarcopenia.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
56 |
13
|
Garcia GE, Nicole A, Bhaskaran S, Gupta A, Kyprianou N, Kumar AP. Akt-and CREB-mediated prostate cancer cell proliferation inhibition by Nexrutine, a Phellodendron amurense extract. Neoplasia 2006; 8:523-33. [PMID: 16820098 PMCID: PMC1601469 DOI: 10.1593/neo.05745] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 03/10/2006] [Accepted: 03/13/2006] [Indexed: 11/18/2022]
Abstract
Evidence from epidemiological studies suggests that plant-based diets can reduce the risk of prostate cancer. However, very little information is available concerning the use of botanicals in preventing prostate cancer. As a first step toward developing botanicals as prostate cancer preventives, we examined the effect of Nexrutine on human prostate cancer cells. Nexrutine is a herbal extract developed from Phellodendron amurense. Phellodendron extracts have been used traditionally in Chinese medicine for hundreds of years as an antidiarrheal, astringent, and anti-inflammatory agent. The present study investigated its potential antitumor effect on human prostate cancer cells. Our results suggest that it inhibits tumor cell proliferation through apoptosis induction and inhibition of cell survival signaling. The results of the present study indicate that Nexrutine treatment 1) inhibits the proliferation of both androgen-responsive and androgen-independent human prostate cancer cells through induction of apoptosis; 2) reduces levels of pAkt, phosphorylated cAMP response-binding protein (pCREB) and CREB DNA-binding activity; and 3) induces apoptosis in prostate cancer cells stably overexpressing Bcl-2. Further, Akt kinase activity was reduced in cells treated with Nexrutine, and ectopic expression of myristoylated Akt protected from Nexrutine induced inhibition of proliferation, implicating a role for Akt signaling.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
49 |
14
|
Ahn B, Ranjit R, Premkumar P, Pharaoh G, Piekarz KM, Matsuzaki S, Claflin DR, Riddle K, Judge J, Bhaskaran S, Satara Natarajan K, Barboza E, Wronowski B, Kinter M, Humphries KM, Griffin TM, Freeman WM, Richardson A, Brooks SV, Van Remmen H. Mitochondrial oxidative stress impairs contractile function but paradoxically increases muscle mass via fibre branching. J Cachexia Sarcopenia Muscle 2019; 10:411-428. [PMID: 30706998 PMCID: PMC6463475 DOI: 10.1002/jcsm.12375] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Excess reactive oxygen species (ROS) and muscle weakness occur in parallel in multiple pathological conditions. However, the causative role of skeletal muscle mitochondrial ROS (mtROS) on neuromuscular junction (NMJ) morphology and function and muscle weakness has not been directly investigated. METHODS We generated mice lacking skeletal muscle-specific manganese-superoxide dismutase (mSod2KO) to increase mtROS using a cre-Lox approach driven by human skeletal actin. We determined primary functional parameters of skeletal muscle mitochondrial function (respiration, ROS, and calcium retention capacity) using permeabilized muscle fibres and isolated muscle mitochondria. We assessed contractile properties of isolated skeletal muscle using in situ and in vitro preparations and whole lumbrical muscles to elucidate the mechanisms of contractile dysfunction. RESULTS The mSod2KO mice, contrary to our prediction, exhibit a 10-15% increase in muscle mass associated with an ~50% increase in central nuclei and ~35% increase in branched fibres (P < 0.05). Despite the increase in muscle mass of gastrocnemius and quadriceps, in situ sciatic nerve-stimulated isometric maximum-specific force (N/cm2 ), force per cross-sectional area, is impaired by ~60% and associated with increased NMJ fragmentation and size by ~40% (P < 0.05). Intrinsic alterations of components of the contractile machinery show elevated markers of oxidative stress, for example, lipid peroxidation is increased by ~100%, oxidized glutathione is elevated by ~50%, and oxidative modifications of myofibrillar proteins are increased by ~30% (P < 0.05). We also find an approximate 20% decrease in the intracellular calcium transient that is associated with specific force deficit. Excess superoxide generation from the mitochondrial complexes causes a deficiency of succinate dehydrogenase and reduced complex-II-mediated respiration and adenosine triphosphate generation rates leading to severe exercise intolerance (~10 min vs. ~2 h in wild type, P < 0.05). CONCLUSIONS Increased skeletal muscle mtROS is sufficient to elicit NMJ disruption and contractile abnormalities, but not muscle atrophy, suggesting new roles for mitochondrial oxidative stress in maintenance of muscle mass through increased fibre branching.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
47 |
15
|
Thum MY, Bhaskaran S, Bansal AS, Shehata H, Ford B, Sumar N, Abdalla HI. Simple enumerations of peripheral blood natural killer (CD56+ NK) cells, B cells and T cells have no predictive value in IVF treatment outcome. Hum Reprod 2005; 20:1272-6. [PMID: 15829490 DOI: 10.1093/humrep/deh774] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND To evaluate the association between the absolute counts of the peripheral natural killer (NK) cells (including total CD56(+) NK cells, CD56(dim) NK cells and CD56(bright) NK cells), B cells and T cells on the implantation rate and miscarriage rate after IVF treatment. METHODS This was a prospective observation study. A total of 138 patients who underwent IVF treatment from December 2002 to July 2003 were recruited to the study. Blood samples were obtained on the day of vaginal oocyte retrieval prior to the procedure. The absolute counts of lymphocytes, NK cells, B cells and T cells were identified by flow cytometry. These absolute counts and their relationships to IVF treatment outcome and miscarriage rate were analysed. RESULTS There were no significant differences with regard the mean values of absolute lymphocyte count, T cell count, B cell count and NK cell count (including total CD56(+) NK, CD56(dim) NK and CD56(bright) NK cells) between the pregnant and non-pregnant groups and also between the ongoing pregnancy and miscarriage groups. The cause of infertility, duration of infertility, basal FSH levels, number of previous failed IVF treatments, number of previous miscarriages and stimulation characteristics were not significantly different between the pregnant and non-pregnant groups. Previous studies have suggested that women with a history of recurrent miscarriage and those with infertility accompanied by recurrent failed IVF treatments are associated with a peripheral blood NK cell percentage >12%, therefore further analysis of peripheral CD56(+) NK cell levels <12% (group A) and >12% (group B) was performed. There was no significant difference in implantation rate (group A: 17.0%; group B: 23.2%), pregnancy rate (group A: 36.6%; group B: 47.7%) or miscarriage rate (group A: 23.3%; group B: 28.6%). CONCLUSION There were no significant differences between simple enumerations of peripheral blood NK cells (including total CD56(+) NK, CD56(dim) NK and CD56(bright) NK cells), B cells and T cells with IVF treatment outcome and pregnancy outcome. Women who had a peripheral NK cell level >12% did not have higher number of previous pregnancy losses. Importantly their pregnancy rate was not reduced and their miscarriages were not increased compared to women who had a peripheral NK cells level <12%.
Collapse
|
Journal Article |
20 |
46 |
16
|
Bhaskaran S, Pollock N, C. Macpherson P, Ahn B, Piekarz KM, Staunton CA, Brown JL, Qaisar R, Vasilaki A, Richardson A, McArdle A, Jackson MJ, Brooks SV, Van Remmen H. Neuron-specific deletion of CuZnSOD leads to an advanced sarcopenic phenotype in older mice. Aging Cell 2020; 19:e13225. [PMID: 32886862 PMCID: PMC7576239 DOI: 10.1111/acel.13225] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/01/2020] [Accepted: 07/26/2020] [Indexed: 01/21/2023] Open
Abstract
Age-associated loss of muscle mass and function (sarcopenia) has a profound effect on the quality of life in the elderly. Our previous studies show that CuZnSOD deletion in mice (Sod1-/- mice) recapitulates sarcopenia phenotypes, including elevated oxidative stress and accelerated muscle atrophy, weakness, and disruption of neuromuscular junctions (NMJs). To determine whether deletion of Sod1 initiated in neurons in adult mice is sufficient to induce muscle atrophy, we treated young (2- to 4-month-old) Sod1flox/SlickHCre mice with tamoxifen to generate i-mn-Sod1KO mice. CuZnSOD protein was 40-50% lower in neuronal tissue in i-mn-Sod1KO mice. Motor neuron number in ventral spinal cord was reduced 28% at 10 months and more than 50% in 18- to 22-month-old i-mn-Sod1KO mice. By 24 months, 22% of NMJs in i-mn-Sod1KO mice displayed a complete lack of innervation and deficits in specific force that are partially reversed by direct muscle stimulation, supporting the loss of NMJ structure and function. Muscle mass was significantly reduced by 16 months of age and further decreased at 24 months of age. Overall, our findings show that neuronal-specific deletion of CuZnSOD is sufficient to cause motor neuron loss in young mice, but that NMJ disruption, muscle atrophy, and weakness are not evident until past middle age. These results suggest that loss of innervation is critical but may not be sufficient until the muscle reaches a threshold beyond which it cannot compensate for neuronal loss or rescue additional fibers past the maximum size of the motor unit.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
40 |
17
|
Bhaskaran S, Santanam N, Penumetcha M, Parthasarathy S. Inhibition of Atherosclerosis in Low-Density Lipoprotein Receptor-Negative Mice by Sesame Oil. J Med Food 2006; 9:487-90. [PMID: 17201634 DOI: 10.1089/jmf.2006.9.487] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diet has profound effects on the development of atherosclerosis. Fatty acid composition, antioxidants, and other components such as lignans have major effects on the atherosclerotic process. Sesame oil has both mono- and polyunsaturated fatty acid constituents in equal proportions. In addition, it also has high levels of numerous antioxidants and inducers of peroxisome proliferator-activated receptor. The objective of this study was to determine the anti-atherosclerotic effects of sesame oil. In this study, male low-density lipoprotein (LDL) receptor (LDLR) -/- mice were fed atherogenic diet or atherogenic diet reformulated with the same level of sesame oil (sesame oil diet). Plasma lipids and atherosclerotic lesions were quantified after 3 months of feeding. Sesame oil-containing diet significantly reduced the atherosclerotic lesion formation and plasma cholesterol, triglyceride, and LDL cholesterol levels in LDLR -/- mice. These findings suggest that sesame oil could inhibit atherosclerosis lesion formation effectively, perhaps because of the synergistic actions of fatty acid and nonsaponifiable components.
Collapse
|
|
19 |
36 |
18
|
Gladstone GR, Stern SA, Ennico K, Olkin CB, Weaver HA, Young LA, Summers ME, Strobel DF, Hinson DP, Kammer JA, Parker AH, Steffl AJ, Linscott IR, Parker JW, Cheng AF, Slater DC, Versteeg MH, Greathouse TK, Retherford KD, Throop H, Cunningham NJ, Woods WW, Singer KN, Tsang CCC, Schindhelm E, Lisse CM, Wong ML, Yung YL, Zhu X, Curdt W, Lavvas P, Young EF, Tyler GL, Bagenal F, Grundy WM, McKinnon WB, Moore JM, Spencer JR, Andert T, Andrews J, Banks M, Bauer B, Bauman J, Barnouin OS, Bedini P, Beisser K, Beyer RA, Bhaskaran S, Binzel RP, Birath E, Bird M, Bogan DJ, Bowman A, Bray VJ, Brozovic M, Bryan C, Buckley MR, Buie MW, Buratti BJ, Bushman SS, Calloway A, Carcich B, Conard S, Conrad CA, Cook JC, Cruikshank DP, Custodio OS, Ore CMD, Deboy C, Dischner ZJB, Dumont P, Earle AM, Elliott HA, Ercol J, Ernst CM, Finley T, Flanigan SH, Fountain G, Freeze MJ, Green JL, Guo Y, Hahn M, Hamilton DP, Hamilton SA, Hanley J, Harch A, Hart HM, Hersman CB, Hill A, Hill ME, Holdridge ME, Horanyi M, Howard AD, Howett CJA, Jackman C, Jacobson RA, Jennings DE, Kang HK, Kaufmann DE, Kollmann P, Krimigis SM, Kusnierkiewicz D, Lauer TR, Lee JE, Lindstrom KL, Lunsford AW, Mallder VA, Martin N, McComas DJ, McNutt RL, Mehoke D, Mehoke T, Melin ED, Mutchler M, Nelson D, Nimmo F, Nunez JI, Ocampo A, Owen WM, Paetzold M, Page B, Pelletier F, Peterson J, Pinkine N, Piquette M, Porter SB, Protopapa S, Redfern J, Reitsema HJ, Reuter DC, Roberts JH, Robbins SJ, Rogers G, Rose D, Runyon K, Ryschkewitsch MG, Schenk P, Sepan B, Showalter MR, Soluri M, Stanbridge D, Stryk T, Szalay JR, Tapley M, Taylor A, Taylor H, Umurhan OM, Verbiscer AJ, Versteeg MH, Vincent M, Webbert R, Weidner S, Weigle GE, White OL, Whittenburg K, Williams BG, Williams K, Williams S, Zangari AM, Zirnstein E. The atmosphere of Pluto as observed by New Horizons. Science 2016; 351:aad8866. [PMID: 26989258 DOI: 10.1126/science.aad8866] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
|
9 |
34 |
19
|
Piekarz KM, Bhaskaran S, Sataranatarajan K, Street K, Premkumar P, Saunders D, Zalles M, Gulej R, Khademi S, Laurin J, Peelor R, Miller BF, Towner R, Van Remmen H. Molecular changes associated with spinal cord aging. GeroScience 2020; 42:765-784. [PMID: 32144690 DOI: 10.1007/s11357-020-00172-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/21/2020] [Indexed: 12/25/2022] Open
Abstract
Age-related muscle weakness and loss of muscle mass (sarcopenia) is a universal problem in the elderly. Our previous studies indicate that alpha motor neurons (α-MNs) play a critical role in this process. The goal of the current study is to uncover changes in the aging spinal cord that contribute to loss of innervation and the downstream degenerative processes that occur in skeletal muscle. The number of α-MNs is decreased in the spinal cord of wildtype mice during aging, beginning in middle age and reaching a 41% loss by 27 months of age. There is evidence for age-related loss of myelin and mild inflammation, including astrocyte and microglia activation and an increase in levels of sICAM-1. We identified changes in metabolites consistent with compromised neuronal viability, such as reduced levels of N-acetyl-aspartate. Cleaved caspase-3 is more abundant in spinal cord from old mice, suggesting that apoptosis contributes to neuronal loss. RNA-seq analysis revealed changes in the expression of a number of genes in spinal cord from old mice, in particular genes encoding extracellular matrix components (ECM) and a 172-fold increase in MMP-12 expression. Furthermore, blood-spinal cord barrier (BSCB) permeability is increased in old mice, which may contribute to alterations in spinal cord homeostasis and exacerbate neuronal distress. Together, these data show for the first time that the spinal cord undergoes significant changes during aging, including progressive α-MNs loss that is associated with low-grade inflammation, apoptosis, changes in ECM, myelination, and vascular permeability.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
5 |
28 |
20
|
Pharaoh G, Owen D, Yeganeh A, Premkumar P, Farley J, Bhaskaran S, Ashpole N, Kinter M, Van Remmen H, Logan S. Disparate Central and Peripheral Effects of Circulating IGF-1 Deficiency on Tissue Mitochondrial Function. Mol Neurobiol 2019; 57:1317-1331. [PMID: 31732912 PMCID: PMC7060968 DOI: 10.1007/s12035-019-01821-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022]
Abstract
Age-related decline in circulating levels of insulin-like growth factor (IGF)-1 is associated with reduced cognitive function, neuronal aging, and neurodegeneration. Decreased mitochondrial function along with increased reactive oxygen species (ROS) and accumulation of damaged macromolecules are hallmarks of cellular aging. Based on numerous studies indicating pleiotropic effects of IGF-1 during aging, we compared the central and peripheral effects of circulating IGF-1 deficiency on tissue mitochondrial function using an inducible liver IGF-1 knockout (LID). Circulating levels of IGF-1 (~ 75%) were depleted in adult male Igf1f/f mice via AAV-mediated knockdown of hepatic IGF-1 at 5 months of age. Cognitive function was evaluated at 18 months using the radial arm water maze and glucose and insulin tolerance assessed. Mitochondrial function was analyzed in hippocampus, muscle, and visceral fat tissues using high-resolution respirometry O2K as well as redox status and oxidative stress in the cortex. Peripherally, IGF-1 deficiency did not significantly impact muscle mass or mitochondrial function. Aged LID mice were insulin resistant and exhibited ~ 60% less adipose tissue but increased fat mitochondrial respiration (20%). The effects on fat metabolism were attributed to increases in growth hormone. Centrally, IGF-1 deficiency impaired hippocampal-dependent spatial acquisition as well as reversal learning in male mice. Hippocampal mitochondrial OXPHOS coupling efficiency and cortex ATP levels (~ 50%) were decreased and hippocampal oxidative stress (protein carbonylation and F2-isoprostanes) was increased. These data suggest that IGF-1 is critical for regulating mitochondrial function, redox status, and spatial learning in the central nervous system but has limited impact on peripheral (liver and muscle) metabolism with age. Therefore, IGF-1 deficiency with age may increase sensitivity to damage in the brain and propensity for cognitive deficits. Targeting mitochondrial function in the brain may be an avenue for therapy of age-related impairment of cognitive function. Regulation of mitochondrial function and redox status by IGF-1 is essential to maintain brain function and coordinate hippocampal-dependent spatial learning. While a decline in IGF-1 in the periphery may be beneficial to avert cancer progression, diminished central IGF-1 signaling may mediate, in part, age-related cognitive dysfunction and cognitive pathologies potentially by decreasing mitochondrial function.
Collapse
|
Journal Article |
6 |
26 |
21
|
Swaminathan MS, Chopra VL, Bhaskaran S. Cytological Aberrations Observed in Barley Embryos Cultured in Irradiated Potato Mash. Radiat Res 1962. [DOI: 10.2307/3571199] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
63 |
25 |
22
|
Bhaskaran S, Butler JA, Becerra S, Fassio V, Girotti M, Rea SL. Breaking Caenorhabditis elegans the easy way using the Balch homogenizer: an old tool for a new application. Anal Biochem 2011; 413:123-32. [PMID: 21354098 DOI: 10.1016/j.ab.2011.02.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/03/2011] [Accepted: 02/18/2011] [Indexed: 11/19/2022]
Abstract
The nematode Caenorhabditis elegans is a model organism best known for its powerful genetics. There is an increasing need in the worm community to couple genetics with biochemistry. Isolation of functionally active proteins or nucleic acids without the use of strong oxidizing denaturants or of subcellular compartments from C. elegans has, however, been challenging because of the worms' thick surrounding cuticle. The Balch homogenizer is a tool that has found much use in mammalian cell culture biology. The interchangeable single ball-bearing design of this instrument permits rapid permeabilization, or homogenization, of cells. Here we demonstrate the utility of the Balch homogenizer for studies with C. elegans. We describe procedures for the efficient breakage and homogenization of every larval stage, including dauers, and show that the Balch homogenizer can be used to extract functionally active proteins. Enzymatic assays for catalase and dihydrolipoamide dehydrogenase show that sample preparation using the Balch homogenizer equals or outperforms conventional methods employing boiling, sonication, or Dounce homogenization. We also describe phenol-free techniques for isolation of genomic DNA and RNA. Finally, we used the tool to isolate coupled mitochondria and polysomes. The reusable Balch homogenizer represents a quick and convenient solution for undertaking biochemical studies on C. elegans.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
23 |
23
|
Badrinath SS, Bhaskaran S, Sundararaj I, Rao BS, Mukesh BN. Mortality and Morbidity Associated With Ophthalmic Surgery. Ophthalmic Surg Lasers Imaging Retina 1995. [DOI: 10.3928/1542-8877-19951101-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
|
30 |
23 |
24
|
Bhaskaran S, Unnikrishnan A, Ranjit R, Qaisar R, Pharaoh G, Matyi S, Kinter M, Deepa SS. A fish oil diet induces mitochondrial uncoupling and mitochondrial unfolded protein response in epididymal white adipose tissue of mice. Free Radic Biol Med 2017; 108:704-714. [PMID: 28455142 DOI: 10.1016/j.freeradbiomed.2017.04.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 01/14/2023]
Abstract
White adipose tissue (WAT) mitochondrial dysfunction is linked to the pathogenesis of obesity driven insulin resistance. Dietary conditions that alter fat mass are known to affect white adipocyte mitochondrial function, however, the impact of high calorie diets on white adipocyte mitochondria is not fully understood. The aim of this study is to assess the effect of a diet rich in saturated or polyunsaturated fat on mitochondrial unfolded protein response (UPRmt), a retrograde signaling response that maintains mitochondrial homeostasis, in epididymal WAT (eWAT). Mice were fed a low fat diet (LFD), saturated fat diet (SFD) or fish oil (unsaturated fat diet, UFD) and assessed changes in eWAT mitochondria. Compared to mice fed a LFD, SFD-fed mice have reduced mitochondrial biogenesis markers, mitochondrial fatty acid oxidation enzymes and TCA cycle enzymes, suggesting an impaired mitochondrial function that could contribute to increased fat mass. In contrast, isocaloric UFD-fed mice have increased expression of mitochondrial uncoupling protein 1 (UCP1) and peroxisomal fatty acid oxidation enzymes suggesting that elevated mitochondrial uncoupling and peroxisomal fatty acid oxidation could contribute to the reduction in fat mass. Interestingly, expression of UPRmt-associated proteins caseinolytic peptidase (ClpP) and heat shock protein 60 (Hsp60) are induced by UFD, whereas SFD reduced the expression of ClpP. Based on our data, we propose that induction of UPRmt helps to preserve a functional mitochondria and efficient utilization of fat by UFD whereas a dampened UPRmt response might impair mitochondrial function and promote fat accumulation by SFD. Thus, our findings suggest a potential role of UPRmt in mediating the beneficial effects of fish oil.
Collapse
|
|
8 |
23 |
25
|
Smith RH, Bhaskaran S, Miller FR. Screening for drought tolerance in Sorghum using cell culture. ACTA ACUST UNITED AC 1985. [DOI: 10.1007/bf02620883] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
40 |
22 |