1
|
Roy KR, Smith JD, Vonesch SC, Lin G, Tu CS, Lederer AR, Chu A, Suresh S, Nguyen M, Horecka J, Tripathi A, Burnett WT, Morgan MA, Schulz J, Orsley KM, Wei W, Aiyar RS, Davis RW, Bankaitis VA, Haber JE, Salit ML, St Onge RP, Steinmetz LM. Multiplexed precision genome editing with trackable genomic barcodes in yeast. Nat Biotechnol 2018; 36:512-520. [PMID: 29734294 PMCID: PMC5990450 DOI: 10.1038/nbt.4137] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/12/2018] [Indexed: 12/26/2022]
Abstract
Our understanding of how genotype controls phenotype is limited by the scale at which we can precisely alter the genome and assess the phenotypic consequences of each perturbation. Here we describe a CRISPR-Cas9-based method for multiplexed accurate genome editing with short, trackable, integrated cellular barcodes (MAGESTIC) in Saccharomyces cerevisiae. MAGESTIC uses array-synthesized guide-donor oligos for plasmid-based high-throughput editing and features genomic barcode integration to prevent plasmid barcode loss and to enable robust phenotyping. We demonstrate that editing efficiency can be increased more than fivefold by recruiting donor DNA to the site of breaks using the LexA-Fkh1p fusion protein. We performed saturation editing of the essential gene SEC14 and identified amino acids critical for chemical inhibition of lipid signaling. We also constructed thousands of natural genetic variants, characterized guide mismatch tolerance at the genome scale, and ascertained that cryptic Pol III termination elements substantially reduce guide efficacy. MAGESTIC will be broadly useful to uncover the genetic basis of phenotypes in yeast.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
117 |
2
|
Wohlschlager T, Butschi A, Zurfluh K, Vonesch SC, Auf dem Keller U, Gehrig P, Bleuler-Martinez S, Hengartner MO, Aebi M, Künzler M. Nematotoxicity of Marasmius oreades agglutinin (MOA) depends on glycolipid binding and cysteine protease activity. J Biol Chem 2011; 286:30337-30343. [PMID: 21757752 DOI: 10.1074/jbc.m111.258202] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fruiting body lectins have been proposed to act as effector proteins in the defense of fungi against parasites and predators. The Marasmius oreades agglutinin (MOA) is a Galα1,3Gal/GalNAc-specific lectin from the fairy ring mushroom that consists of an N-terminal ricin B-type lectin domain and a C-terminal dimerization domain. The latter domain shows structural similarity to catalytically active proteins, suggesting that, in addition to its carbohydrate-binding activity, MOA has an enzymatic function. Here, we demonstrate toxicity of MOA toward the model nematode Caenorhabditis elegans. This toxicity depends on binding of MOA to glycosphingolipids of the worm via its lectin domain. We show further that MOA has cysteine protease activity and demonstrate a critical role of this catalytic function in MOA-mediated nematotoxicity. The proteolytic activity of MOA was dependent on high Ca(2+) concentrations and favored by slightly alkaline pH, suggesting that these conditions trigger activation of the toxin at the target location. Our results suggest that MOA is a fungal toxin with intriguing similarities to bacterial binary toxins and has a protective function against fungivorous soil nematodes.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
36 |
3
|
Baliga NS, Björkegren JLM, Boeke JD, Boutros M, Crawford NPS, Dudley AM, Farber CR, Jones A, Levey AI, Lusis AJ, Mak HC, Nadeau JH, Noyes MB, Petretto E, Seyfried NT, Steinmetz LM, Vonesch SC. The State of Systems Genetics in 2017. Cell Syst 2019; 4:7-15. [PMID: 28125793 DOI: 10.1016/j.cels.2017.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell Systems invited 16 experts to share their views on the field of systems genetics. In questions repeated in the headings, we asked them to define systems genetics, highlight its relevance to researchers outside the field, discuss what makes a strong systems genetics paper, and paint a picture of where the field is heading in the coming years. Their responses, ordered by the journal but otherwise unedited, make it clear that deciphering genotype to phenotype relationships is a central challenge of systems genetics and will require understanding how networks and higher-order properties of biological systems underlie complex traits. In addition, our experts illuminate the applications and relevance of systems genetics to human disease, the gut microbiome, development of tools that connect the global research community, sustainability, drug discovery, patient-specific disease and network models, and personalized treatments. Finally, a table of suggested reading provides a sample of influential work in the field.
Collapse
|
Editorial |
6 |
20 |
4
|
Kaminski Strauss S, Schirman D, Jona G, Brooks AN, Kunjapur AM, Nguyen Ba AN, Flint A, Solt A, Mershin A, Dixit A, Yona AH, Csörgő B, Busby BP, Hennig BP, Pál C, Schraivogel D, Schultz D, Wernick DG, Agashe D, Levi D, Zabezhinsky D, Russ D, Sass E, Tamar E, Herz E, Levy ED, Church GM, Yelin I, Nachman I, Gerst JE, Georgeson JM, Adamala KP, Steinmetz LM, Rübsam M, Ralser M, Klutstein M, Desai MM, Walunjkar N, Yin N, Aharon Hefetz N, Jakimo N, Snitser O, Adini O, Kumar P, Soo Hoo Smith R, Zeidan R, Hazan R, Rak R, Kishony R, Johnson S, Nouriel S, Vonesch SC, Foster S, Dagan T, Wein T, Karydis T, Wannier TM, Stiles T, Olin-Sandoval V, Mueller WF, Bar-On YM, Dahan O, Pilpel Y. Evolthon: A community endeavor to evolve lab evolution. PLoS Biol 2019; 17:e3000182. [PMID: 30925180 PMCID: PMC6440615 DOI: 10.1371/journal.pbio.3000182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In experimental evolution, scientists evolve organisms in the lab, typically by challenging them to new environmental conditions. How best to evolve a desired trait? Should the challenge be applied abruptly, gradually, periodically, sporadically? Should one apply chemical mutagenesis, and do strains with high innate mutation rate evolve faster? What are ideal population sizes of evolving populations? There are endless strategies, beyond those that can be exposed by individual labs. We therefore arranged a community challenge, Evolthon, in which students and scientists from different labs were asked to evolve Escherichia coli or Saccharomyces cerevisiae for an abiotic stress—low temperature. About 30 participants from around the world explored diverse environmental and genetic regimes of evolution. After a period of evolution in each lab, all strains of each species were competed with one another. In yeast, the most successful strategies were those that used mating, underscoring the importance of sex in evolution. In bacteria, the fittest strain used a strategy based on exploration of different mutation rates. Different strategies displayed variable levels of performance and stability across additional challenges and conditions. This study therefore uncovers principles of effective experimental evolutionary regimens and might prove useful also for biotechnological developments of new strains and for understanding natural strategies in evolutionary arms races between species. Evolthon constitutes a model for community-based scientific exploration that encourages creativity and cooperation. This Community Page article describes Evolthon; a first-of-its-kind community-based effort, involving about 30 participant labs around the world, aiming to explore the best strategy for evolving microorganisms to cope with an environmental challenge.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
8 |
5
|
Vonesch SC, Li S, Szu Tu C, Hennig BP, Dobrev N, Steinmetz LM. Fast and inexpensive whole-genome sequencing library preparation from intact yeast cells. G3-GENES GENOMES GENETICS 2021; 11:6007474. [PMID: 33561223 PMCID: PMC8022960 DOI: 10.1093/g3journal/jkaa009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022]
Abstract
Through the increase in the capacity of sequencing machines massively parallel sequencing of thousands of samples in a single run is now possible. With the improved throughput and resulting drop in the price of sequencing, the cost and time for preparation of sequencing libraries have become the major bottleneck in large-scale experiments. Methods using a hyperactive variant of the Tn5 transposase efficiently generate libraries starting from cDNA or genomic DNA in a few hours and are highly scalable. For genome sequencing, however, the time and effort spent on genomic DNA isolation limit the practicability of sequencing large numbers of samples. Here, we describe a highly scalable method for preparing high-quality whole-genome sequencing libraries directly from Saccharomyces cerevisiae cultures in less than 3 h at 34 cents per sample. We skip the rate-limiting step of genomic DNA extraction by directly tagmenting lysed yeast spheroplasts and add a nucleosome release step prior to enrichment PCR to improve the evenness of genomic coverage. Resulting libraries do not show any GC bias and are comparable in quality to libraries processed from genomic DNA with a commercially available Tn5-based kit. We use our protocol to investigate CRISPR/Cas9 on- and off-target edits and reliably detect edited variants and shared polymorphisms between strains. Our protocol enables rapid preparation of unbiased and high-quality, sequencing-ready indexed libraries for hundreds of yeast strains in a single day at a low price. By adjusting individual steps of our workflow, we expect that our protocol can be adapted to other organisms.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
5 |
6
|
Dewachter L, Deckers B, Mares-Mejía I, Louwagie E, Vercauteren S, Matthay P, Brückner S, Möller AM, Narberhaus F, Vonesch SC, Versées W, Michiels J. The role of the essential GTPase ObgE in regulating lipopolysaccharide synthesis in Escherichia coli. Nat Commun 2024; 15:9684. [PMID: 39516202 PMCID: PMC11549432 DOI: 10.1038/s41467-024-53980-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
During growth, cells need to synthesize and expand their envelope, a process that requires careful regulation. Here, we show that the GTPase ObgE of E. coli contributes to the regulation of lipopolysaccharide (LPS) synthesis, an essential component of the Gram-negative outer membrane. Using a dominant-negative mutant (named 'ObgE*'), we show a direct interaction between ObgE and LpxA, which catalyzes the first step in LPS synthesis. This interaction is enhanced by the mutation in ObgE* which, when bound to GTP, leads to inhibition of LpxA, decreased LPS synthesis, and cell death. Although wild-type ObgE does not exert the same strong effects as ObgE* on LpxA or LPS synthesis, our data indicate that ObgE participates in the regulation of cell envelope synthesis in E. coli. Because ObgE also influences other cellular functions (i.e., ribosome assembly, DNA replication, etc.), it seems increasingly plausible that this GTPase coordinates several processes to finetune cell growth.
Collapse
|
research-article |
1 |
|
7
|
Liu G, Wang H, Tong B, Cui Y, Vonesch SC, Dong H, Zhang D. An Efficient CRISPR/Cas12e System for Genome Editing in Sinorhizobium meliloti. ACS Synth Biol 2023; 12:898-903. [PMID: 36795971 DOI: 10.1021/acssynbio.2c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
CRISPR/Cas systems have been widely used in the precise and traceless genetic engineering of bacteria. Sinorhizobium meliloti 320 (SM320) is a Gram-negative bacterium with a low efficiency of homologous recombination but a strong ability to produce vitamin B12. Here, a CRISPR/Cas12e-based genome engineering toolkit, CRISPR/Cas12eGET, was constructed in SM320. The expression level of CRISPR/Cas12e was tuned through promoter optimization and the use of a low copy plasmid to adjust Cas12e cutting activity to the low homologous recombination efficiency of SM320, resulting in improved transformation and precision editing efficiencies. Furthermore, the accuracy of CRISPR/Cas12eGET was improved by deleting the ku gene involved in NHEJ repair in SM320. This advance will be useful for metabolic engineering and basic research on SM320, and it further provides a platform to develop the CRISPR/Cas system in strains where the efficiency of homologous recombination is low.
Collapse
|
|
2 |
|
8
|
Roy KR, Smith JD, Li S, Vonesch SC, Nguyen M, Burnett WT, Orsley KM, Lee CS, Haber JE, St Onge RP, Steinmetz LM. Dissecting quantitative trait nucleotides by saturation genome editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.577784. [PMID: 38352467 PMCID: PMC10862795 DOI: 10.1101/2024.02.02.577784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Genome editing technologies have the potential to transform our understanding of how genetic variation gives rise to complex traits through the systematic engineering and phenotypic characterization of genetic variants. However, there has yet to be a system with sufficient efficiency, fidelity, and throughput to comprehensively identify causal variants at the genome scale. Here we explored the ability of templated CRISPR editing systems to install natural variants genome-wide in budding yeast. We optimized several approaches to enhance homology-directed repair (HDR) with donor DNA templates, including donor recruitment to target sites, single-stranded donor production by bacterial retrons, and in vivo plasmid assembly. We uncovered unique advantages of each system that we integrated into a single superior system named MAGESTIC 3.0. We used MAGESTIC 3.0 to dissect causal variants residing in 112 quantitative trait loci across 32 environmental conditions, revealing an enrichment for missense variants and loci with multiple causal variants. MAGESTIC 3.0 will facilitate the functional analysis of the genome at single-nucleotide resolution and provides a roadmap for improving template-based genome editing systems in other organisms.
Collapse
|
Preprint |
1 |
|
9
|
Vercauteren S, Fiesack S, Maroc L, Verstraeten N, Dewachter L, Michiels J, Vonesch SC. The rise and future of CRISPR-based approaches for high-throughput genomics. FEMS Microbiol Rev 2024; 48:fuae020. [PMID: 39085047 PMCID: PMC11409895 DOI: 10.1093/femsre/fuae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) has revolutionized the field of genome editing. To circumvent the permanent modifications made by traditional CRISPR techniques and facilitate the study of both essential and nonessential genes, CRISPR interference (CRISPRi) was developed. This gene-silencing technique employs a deactivated Cas effector protein and a guide RNA to block transcription initiation or elongation. Continuous improvements and a better understanding of the mechanism of CRISPRi have expanded its scope, facilitating genome-wide high-throughput screens to investigate the genetic basis of phenotypes. Additionally, emerging CRISPR-based alternatives have further expanded the possibilities for genetic screening. This review delves into the mechanism of CRISPRi, compares it with other high-throughput gene-perturbation techniques, and highlights its superior capacities for studying complex microbial traits. We also explore the evolution of CRISPRi, emphasizing enhancements that have increased its capabilities, including multiplexing, inducibility, titratability, predictable knockdown efficacy, and adaptability to nonmodel microorganisms. Beyond CRISPRi, we discuss CRISPR activation, RNA-targeting CRISPR systems, and single-nucleotide resolution perturbation techniques for their potential in genome-wide high-throughput screens in microorganisms. Collectively, this review gives a comprehensive overview of the general workflow of a genome-wide CRISPRi screen, with an extensive discussion of strengths and weaknesses, future directions, and potential alternatives.
Collapse
|
Review |
1 |
|