1
|
Söllner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE. SNAP receptors implicated in vesicle targeting and fusion. Nature 1993; 362:318-24. [PMID: 8455717 DOI: 10.1038/362318a0] [Citation(s) in RCA: 2430] [Impact Index Per Article: 75.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The N-ethylmaleimide-sensitive fusion protein (NSF) and the soluble NSF attachment proteins (SNAPs) appear to be essential components of the intracellular membrane fusion apparatus. An affinity purification procedure based on the natural binding of these proteins to their targets was used to isolate SNAP receptors (SNAREs) from bovine brain. Remarkably, the four principal proteins isolated were all proteins associated with the synapse, with one type located in the synaptic vesicle and another in the plasma membrane, suggesting a simple mechanism for vesicle docking. The existence of numerous SNARE-related proteins, each apparently specific for a single kind of vesicle or target membrane, indicates that NSF and SNAPs may be universal components of a vesicle fusion apparatus common to both constitutive and regulated fusion (including neurotransmitter release), in which the SNAREs may help to ensure vesicle-to-target specificity.
Collapse
|
|
32 |
2430 |
2
|
Söllner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 1993; 75:409-18. [PMID: 8221884 DOI: 10.1016/0092-8674(93)90376-2] [Citation(s) in RCA: 1453] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The SNARE hypothesis holds that a transport vesicle chooses its target for fusion when a soluble NSF attachment protein (SNAP) receptor on the vesicle (v-SNARE) pairs with its cognate t-SNARE at the target membrane. Three synaptosomal membrane proteins have previously been identified: syntaxin, SNAP-25 (t-SNAREs), and vesicle-associated membrane protein (VAMP) (v-SNARE); all assemble with SNAPs and NSF into 20S fusion particles. We now report that in the absence of SNAP and NSF, these three SNAREs form a stable complex that can also bind synaptotagmin. Synaptotagmin is displaced by alpha-SNAP, suggesting that these two proteins share binding sites on the SNARE complex and implying that synaptotagmin operates as a "clamp" to prevent fusion from proceeding in the absence of a signal. The alpha-SNAP-SNARE complex can bind NSF, and NSF-dependent hydrolysis of ATP dissociates the complex, separating syntaxin, SNAP-25, and VAMP. ATP hydrolysis by NSF may provide motion to initiate bilayer fusion.
Collapse
|
|
32 |
1453 |
3
|
Abstract
The AAA+ (ATPases associated with various cellular activities) family is a large and functionally diverse group of enzymes that are able to induce conformational changes in a wide range of substrate proteins. The family's defining feature is a structurally conserved ATPase domain that assembles into oligomeric rings and undergoes conformational changes during cycles of nucleotide binding and hydrolysis. Here, we review the structural organization of AAA+ proteins, the conformational changes they undergo, the range of different reactions they catalyse, and the diseases associated with their dysfunction.
Collapse
|
Review |
20 |
913 |
4
|
Thaweethai T, Jolley SE, Karlson EW, Levitan EB, Levy B, McComsey GA, McCorkell L, Nadkarni GN, Parthasarathy S, Singh U, Walker TA, Selvaggi CA, Shinnick DJ, Schulte CCM, Atchley-Challenner R, Alba GA, Alicic R, Altman N, Anglin K, Argueta U, Ashktorab H, Baslet G, Bassett IV, Bateman L, Bedi B, Bhattacharyya S, Bind MA, Blomkalns AL, Bonilla H, Bush PA, Castro M, Chan J, Charney AW, Chen P, Chibnik LB, Chu HY, Clifton RG, Costantine MM, Cribbs SK, Davila Nieves SI, Deeks SG, Duven A, Emery IF, Erdmann N, Erlandson KM, Ernst KC, Farah-Abraham R, Farner CE, Feuerriegel EM, Fleurimont J, Fonseca V, Franko N, Gainer V, Gander JC, Gardner EM, Geng LN, Gibson KS, Go M, Goldman JD, Grebe H, Greenway FL, Habli M, Hafner J, Han JE, Hanson KA, Heath J, Hernandez C, Hess R, Hodder SL, Hoffman MK, Hoover SE, Huang B, Hughes BL, Jagannathan P, John J, Jordan MR, Katz SD, Kaufman ES, Kelly JD, Kelly SW, Kemp MM, Kirwan JP, Klein JD, Knox KS, Krishnan JA, Kumar A, Laiyemo AO, Lambert AA, Lanca M, Lee-Iannotti JK, Logarbo BP, Longo MT, Luciano CA, Lutrick K, Maley JH, Marathe JG, Marconi V, Marshall GD, Martin CF, Matusov Y, Mehari A, Mendez-Figueroa H, Mermelstein R, Metz TD, Morse R, Mosier J, Mouchati C, Mullington J, Murphy SN, Neuman RB, Nikolich JZ, Ofotokun I, Ojemakinde E, Palatnik A, Palomares K, Parimon T, Parry S, Patterson JE, Patterson TF, Patzer RE, Peluso MJ, Pemu P, Pettker CM, Plunkett BA, Pogreba-Brown K, Poppas A, Quigley JG, Reddy U, Reece R, Reeder H, Reeves WB, Reiman EM, Rischard F, Rosand J, Rouse DJ, Ruff A, Saade G, Sandoval GJ, Schlater SM, Shepherd F, Sherif ZA, Simhan H, Singer NG, Skupski DW, Sowles A, Sparks JA, Sukhera FI, Taylor BS, Teunis L, Thomas RJ, Thorp JM, Thuluvath P, Ticotsky A, Tita AT, Tuttle KR, Urdaneta AE, Valdivieso D, VanWagoner TM, Vasey A, Verduzco-Gutierrez M, Wallace ZS, Ward HD, Warren DE, Weiner SJ, Welch S, Whiteheart SW, Wiley Z, Wisnivesky JP, Yee LM, Zisis S, Horwitz LI, Foulkes AS. Development of a Definition of Postacute Sequelae of SARS-CoV-2 Infection. JAMA 2023; 329:1934-1946. [PMID: 37278994 PMCID: PMC10214179 DOI: 10.1001/jama.2023.8823] [Citation(s) in RCA: 409] [Impact Index Per Article: 204.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/01/2023] [Indexed: 06/07/2023]
Abstract
Importance SARS-CoV-2 infection is associated with persistent, relapsing, or new symptoms or other health effects occurring after acute infection, termed postacute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. Characterizing PASC requires analysis of prospectively and uniformly collected data from diverse uninfected and infected individuals. Objective To develop a definition of PASC using self-reported symptoms and describe PASC frequencies across cohorts, vaccination status, and number of infections. Design, Setting, and Participants Prospective observational cohort study of adults with and without SARS-CoV-2 infection at 85 enrolling sites (hospitals, health centers, community organizations) located in 33 states plus Washington, DC, and Puerto Rico. Participants who were enrolled in the RECOVER adult cohort before April 10, 2023, completed a symptom survey 6 months or more after acute symptom onset or test date. Selection included population-based, volunteer, and convenience sampling. Exposure SARS-CoV-2 infection. Main Outcomes and Measures PASC and 44 participant-reported symptoms (with severity thresholds). Results A total of 9764 participants (89% SARS-CoV-2 infected; 71% female; 16% Hispanic/Latino; 15% non-Hispanic Black; median age, 47 years [IQR, 35-60]) met selection criteria. Adjusted odds ratios were 1.5 or greater (infected vs uninfected participants) for 37 symptoms. Symptoms contributing to PASC score included postexertional malaise, fatigue, brain fog, dizziness, gastrointestinal symptoms, palpitations, changes in sexual desire or capacity, loss of or change in smell or taste, thirst, chronic cough, chest pain, and abnormal movements. Among 2231 participants first infected on or after December 1, 2021, and enrolled within 30 days of infection, 224 (10% [95% CI, 8.8%-11%]) were PASC positive at 6 months. Conclusions and Relevance A definition of PASC was developed based on symptoms in a prospective cohort study. As a first step to providing a framework for other investigations, iterative refinement that further incorporates other clinical features is needed to support actionable definitions of PASC.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
409 |
5
|
Whiteheart SW, Rossnagel K, Buhrow SA, Brunner M, Jaenicke R, Rothman JE. N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J Biophys Biochem Cytol 1994; 126:945-54. [PMID: 8051214 PMCID: PMC2120109 DOI: 10.1083/jcb.126.4.945] [Citation(s) in RCA: 345] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The NEM-sensitive fusion protein, NSF, together with SNAPs (soluble NSF attachment proteins) and the SNAREs (SNAP receptors), is thought to be generally used for the fusion of transport vesicles to their target membranes. NSF is a homotrimer whose polypeptide subunits are made up of three distinct domains: an amino-terminal domain (N) and two homologous ATP-binding domains (D1 and D2). Mutants of NSF were produced in which either the order or composition of the three domains were altered. These mutants could not support intra-Golgi transport, but they indicated that the D2 domain was required for trimerization of the NSF subunits. Mutations of the first ATP-binding site that affected either the binding (K266A) or hydrolysis (E329Q) of ATP completely eliminated NSF activity. The hydrolysis mutant was an effective, reversible inhibitor of Golgi transport with an IC50 of 125 ng/50 microliters assay. Mutants in the second ATP-binding site (binding, K549A; hydrolysis, D604Q) had either 14 or 42% the specific activity of the wild-type protein, respectively. Using coexpression of an inactive mutant with wild-type subunits, it was possible to produce a recombinant form of trimeric NSF that contained a mixture of subunits. The mixed NSF trimers were inactive, even when only one mutant subunit was present, suggesting that NSF action requires each of the three subunits in a concerted mechanism. These studies demonstrate that the ability of the D1 domain to hydrolyze ATP is required for NSF activity and, therefore is required for membrane fusion. The D2 domain is required for trimerization, but its ability to hydrolyze ATP is not absolutely required for NSF function.
Collapse
|
research-article |
31 |
345 |
6
|
Lenzen CU, Steinmann D, Whiteheart SW, Weis WI. Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. Cell 1998; 94:525-36. [PMID: 9727495 DOI: 10.1016/s0092-8674(00)81593-7] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-ethylmaleimide-sensitive fusion protein (NSF) is a cytosolic ATPase required for many intracellular vesicle fusion reactions. NSF consists of an amino-terminal region that interacts with other components of the vesicle trafficking machinery, followed by two homologous ATP-binding cassettes, designated D1 and D2, that possess essential ATPase and hexamerization activities, respectively. The crystal structure of D2 bound to Mg2+-AMPPNP has been determined at 1.75 A resolution. The structure consists of a nucleotide-binding and a helical domain, and it is unexpectedly similar to the first two domains of the clamp-loading subunit delta' of E. coli DNA polymerase III. The structure suggests several regions responsible for coupling of ATP hydrolysis to structural changes in full-length NSF.
Collapse
|
Comparative Study |
27 |
261 |
7
|
Nair-Gupta P, Baccarini A, Tung N, Seyffer F, Florey O, Huang Y, Banerjee M, Overholtzer M, Roche PA, Tampé R, Brown BD, Amsen D, Whiteheart SW, Blander JM. TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell 2015; 158:506-21. [PMID: 25083866 DOI: 10.1016/j.cell.2014.04.054] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 01/08/2014] [Accepted: 04/23/2014] [Indexed: 11/16/2022]
Abstract
Adaptation of the endoplasmic reticulum (ER) pathway for MHC class I (MHC-I) presentation in dendritic cells enables cross-presentation of peptides derived from phagocytosed microbes, infected cells, or tumor cells to CD8 T cells. How these peptides intersect with MHC-I molecules remains poorly understood. Here, we show that MHC-I selectively accumulate within phagosomes carrying microbial components, which engage Toll-like receptor (TLR) signaling. Although cross-presentation requires Sec22b-mediated phagosomal recruitment of the peptide loading complex from the ER-Golgi intermediate compartment (ERGIC), this step is independent of TLR signaling and does not deliver MHC-I. Instead, MHC-I are recruited from an endosomal recycling compartment (ERC), which is marked by Rab11a, VAMP3/cellubrevin, and VAMP8/endobrevin and holds large reserves of MHC-I. While Rab11a activity stocks ERC stores with MHC-I, MyD88-dependent TLR signals drive IκB-kinase (IKK)2-mediated phosphorylation of phagosome-associated SNAP23. Phospho-SNAP23 stabilizes SNARE complexes orchestrating ERC-phagosome fusion, enrichment of phagosomes with ERC-derived MHC-I, and subsequent cross-presentation during infection.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
252 |
8
|
Whiteheart SW, Griff IC, Brunner M, Clary DO, Mayer T, Buhrow SA, Rothman JE. SNAP family of NSF attachment proteins includes a brain-specific isoform. Nature 1993; 362:353-5. [PMID: 8455721 DOI: 10.1038/362353a0] [Citation(s) in RCA: 234] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The soluble NSF attachment proteins (SNAPs) enable N-ethyl-maleimide-sensitive fusion protein (NSF) to bind to target membranes. Here we report the cloning and sequencing of complementary DNAs encoding alpha-, beta- and gamma-SNAPs. Two of these proteins, alpha and gamma, are found in a wide range of tissues, and act synergistically in intra-Golgi transport. The third, beta, is a brain-specific isoform of alpha-SNAP. Thus, NSF and SNAPs appear to be general components of the intracellular membrane fusion apparatus, and their action at specific sites of fusion must be controlled by SNAP receptors particular to the membranes being fused, as described in the accompanying article.
Collapse
|
|
32 |
234 |
9
|
Wilson DW, Whiteheart SW, Wiedmann M, Brunner M, Rothman JE. A multisubunit particle implicated in membrane fusion. J Cell Biol 1992; 117:531-8. [PMID: 1315316 PMCID: PMC2289450 DOI: 10.1083/jcb.117.3.531] [Citation(s) in RCA: 220] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The N-ethylmaleimide sensitive fusion protein (NSF) is required for fusion of lipid bilayers at many locations within eukaryotic cells. Binding of NSF to Golgi membranes is known to require an integral membrane receptor and one or more members of a family of related soluble NSF attachment proteins (alpha-, beta-, and gamma-SNAPs). Here we demonstrate the direct interaction of NSF, SNAPs and an integral membrane component in a detergent solubilized system. We show that NSF only binds to SNAPs in the presence of the integral receptor, resulting in the formation of a multisubunit protein complex with a sedimentation coefficient of 20S. Particle assembly reveals striking differences between members of the SNAP protein family; gamma-SNAP associates with the complex via a binding site distinct from that used by alpha- and beta-SNAPs, which are themselves equivalent, alternative subunits of the particle. Once formed, the 20S particle is subsequently able to disassemble in a process coupled to the hydrolysis of ATP. We suggest how cycles of complex assembly and disassembly could help confer specificity to the generalized NSF-dependent fusion apparatus.
Collapse
|
research-article |
33 |
220 |
10
|
Ogura T, Whiteheart SW, Wilkinson AJ. Conserved arginine residues implicated in ATP hydrolysis, nucleotide-sensing, and inter-subunit interactions in AAA and AAA+ ATPases. J Struct Biol 2004; 146:106-12. [PMID: 15095758 DOI: 10.1016/j.jsb.2003.11.008] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Arginines are a recurrent feature of the active sites and subunit interfaces of the ATPase domains of AAA and AAA+ proteins. In particular family members these residues occupy two or more, of four key sites in the vicinity of the ATP cofactor, where they transduce the chemical events of ATP binding and hydrolysis into a mechanochemical outcome. Structural and biochemical analyses have led to the proposal of molecular mechanisms in which these conserved arginines play crucial roles. Comparative studies, however, point to functional divergence for each of these conserved arginines. In this review, we will discuss what is known about these critical arginines and what can be concluded about their role in the function of AAA and AAA+ proteins.
Collapse
|
Review |
21 |
201 |
11
|
Low SH, Chapin SJ, Wimmer C, Whiteheart SW, Kömüves LG, Mostov KE, Weimbs T. The SNARE machinery is involved in apical plasma membrane trafficking in MDCK cells. J Cell Biol 1998; 141:1503-13. [PMID: 9647644 PMCID: PMC2133007 DOI: 10.1083/jcb.141.7.1503] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/1998] [Revised: 05/26/1998] [Indexed: 02/08/2023] Open
Abstract
We have investigated the controversial involvement of components of the SNARE (soluble N-ethyl maleimide-sensitive factor [NSF] attachment protein [SNAP] receptor) machinery in membrane traffic to the apical plasma membrane of polarized epithelial (MDCK) cells. Overexpression of syntaxin 3, but not of syntaxins 2 or 4, caused an inhibition of TGN to apical transport and apical recycling, and leads to an accumulation of small vesicles underneath the apical plasma membrane. All other tested transport steps were unaffected by syntaxin 3 overexpression. Botulinum neurotoxin E, which cleaves SNAP-23, and antibodies against alpha-SNAP inhibit both TGN to apical and basolateral transport in a reconstituted in vitro system. In contrast, we find no evidence for an involvement of N-ethyl maleimide-sensitive factor in TGN to apical transport, whereas basolateral transport is NSF-dependent. We conclude that syntaxin 3, SNAP-23, and alpha-SNAP are involved in apical membrane fusion. These results demonstrate that vesicle fusion with the apical plasma membrane does not use a mechanism that is entirely unrelated to other cellular membrane fusion events, but uses isoforms of components of the SNARE machinery, which suggests that they play a role in providing specificity to polarized membrane traffic.
Collapse
|
research-article |
27 |
156 |
12
|
Kondkar AA, Bray MS, Leal SM, Nagalla S, Liu DJ, Jin Y, Dong JF, Ren Q, Whiteheart SW, Shaw C, Bray PF. VAMP8/endobrevin is overexpressed in hyperreactive human platelets: suggested role for platelet microRNA. J Thromb Haemost 2010; 8:369-78. [PMID: 19943878 PMCID: PMC3312605 DOI: 10.1111/j.1538-7836.2009.03700.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Variation in platelet reactivity contributes to disorders of hemostasis and thrombosis, but the molecular mechanisms are not well understood. OBJECTIVES To discover associations between interindividual platelet variability and the responsible platelet genes, and to begin to define the molecular mechanisms altering platelet gene expression. SUBJECTS/METHODS Two hundred and eighty-eight healthy subjects were phenotyped for platelet responsiveness. Platelet RNA from subjects demonstrating hyperreactivity (n=18) and hyporeactivity (n=11) was used to screen the human transcriptome. RESULTS Distinctly different mRNA profiles were observed between subjects with differing platelet reactivity. Increased levels of mRNA for VAMP8/endobrevin, a critical v-SNARE involved in platelet granule secretion, were associated with platelet hyperreactivity (Q=0.0275). Validation studies of microarray results showed 4.8-fold higher mean VAMP8 mRNA levels in hyperreactive than hyporeactive platelets (P=0.0023). VAMP8 protein levels varied 13-fold among platelets from these normal subjects, and were 2.5-fold higher in hyperreactive platelets (P=0.05). Among our cohort of 288 subjects, a VAMP8 single-nucleotide polymorphism (rs1010) was associated with platelet reactivity in an age-dependent manner (P<0.003). MicroRNA-96 was predicted to bind to the 3'-untranslated regionof VAMP8 mRNA and was detected in platelets. Overexpression of microRNA-96 in VAMP8-expressing cell lines caused a dose-dependent decrease in VAMP8 protein and mRNA, suggesting a role in VAMP8 mRNA degradation. CONCLUSIONS These findings support a role for VAMP8/endobrevin in the heterogeneity of platelet reactivity, and suggest a role for microRNA-96 in the regulation of VAMP8 expression.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
149 |
13
|
Ren Q, Barber HK, Crawford GL, Karim ZA, Zhao C, Choi W, Wang CC, Hong W, Whiteheart SW. Endobrevin/VAMP-8 is the primary v-SNARE for the platelet release reaction. Mol Biol Cell 2006; 18:24-33. [PMID: 17065550 PMCID: PMC1751319 DOI: 10.1091/mbc.e06-09-0785] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Platelet secretion is critical to hemostasis. Release of granular cargo is mediated by soluble NSF attachment protein receptors (SNAREs), but despite consensus on t-SNAREs usage, it is unclear which Vesicle Associated Membrane Protein (VAMPs: synaptobrevin/VAMP-2, cellubrevin/VAMP-3, TI-VAMP/VAMP-7, and endobrevin/VAMP-8) is required. We demonstrate that VAMP-8 is required for release from dense core granules, alpha granules, and lysosomes. Platelets from VAMP-8-/- mice have a significant defect in agonist-induced secretion, though signaling, morphology, and cargo levels appear normal. In contrast, VAMP-2+/-, VAMP-3-/-, and VAMP-2+/-/VAMP-3-/- platelets showed no defect. Consistently, tetanus toxin had no effect on secretion from permeabilized mouse VAMP-3-/- platelets or human platelets, despite cleavage of VAMP-2 and/or -3. Tetanus toxin does block the residual release from permeabilized VAMP-8-/- platelets, suggesting a secondary role for VAMP-2 and/or -3. These data imply a ranked redundancy of v-SNARE usage in platelets and suggest that VAMP-8-/- mice will be a useful in vivo model to study platelet exocytosis in hemostasis and vascular inflammation.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
122 |
14
|
DeBello WM, O'Connor V, Dresbach T, Whiteheart SW, Wang SS, Schweizer FE, Betz H, Rothman JE, Augustine GJ. SNAP-mediated protein-protein interactions essential for neurotransmitter release. Nature 1995; 373:626-30. [PMID: 7854421 DOI: 10.1038/373626a0] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The constitutive fusion of transport vesicles with intracellular membranes requires soluble proteins called SNAPs. Certain presynaptic proteins implicated in synaptic vesicle exocytosis also bind SNAPs, suggesting that SNAPs participate in the calcium-regulated membrane fusion events mediating neurotransmitter release. Here we show that injection of recombinant SNAPs into the giant synapse of squid enhances transmitter release. Conversely, injection of peptides designed to mimic the sites at which SNAP interacts with its binding partners inhibits transmitter release downstream of synaptic vesicle docking. A SNAP-dependent protein complex must therefore mediate transmitter release, showing that transmitter release shares a common molecular mechanism with constitutive membrane fusion.
Collapse
|
|
30 |
122 |
15
|
Nagiec EE, Bernstein A, Whiteheart SW. Each domain of the N-ethylmaleimide-sensitive fusion protein contributes to its transport activity. J Biol Chem 1995; 270:29182-8. [PMID: 7493945 DOI: 10.1074/jbc.270.49.29182] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
N-Ethylmaleimide-sensitive fusion protein (NSF) has been shown to be involved in numerous intracellular transport events. In an effort to understand the basic mechanism of NSF in vesicle-target membrane fusion events, we have examined the role that each of its three domains play in how NSF interacts with the SNAP.SNARE complex. Mutagenesis of the first ATP-binding domain (D1, amino acids 206-477) demonstrates that nucleotide binding by this domain is required for 20 S particle assembly. A second mutation, which permits ATP binding but not hydrolysis, yields a protein that can form 20 S particle but fails to mediate its disassembly. Similar mutations of the second ATP-binding domain (D2, amino acids 478-744) result in trimeric molecules that behave like wild type NSF. Domain rearrangement mutants were used to further probe the functional role of each domain. The amino-terminal domain (N, amino acids 1-205) is absolutely required for binding of NSF to the SNAP.SNARE complex, because the truncated mutant, D1D2, is unable to form 20 S particle. When tested as an isolated recombinant protein, the N domain is not sufficient for binding to the SNAP.SNARE complex, but when adjacent to the D1 domain or in a trimeric molecule, the N domain does mediate binding to the SNAP.SNARE complex. Monomeric N-D1 and trimeric N-D2 could both participate in particle formation. Only the N-D1 mutant was able to facilitate MgATP-dependent release from the SNAP.SNARE complex. These data demonstrate that NSF binding to the SNAP.SNARE complex is mediated by the N domain and that both ATP binding and hydrolysis by the D1 domain are essential for 20 S particle dynamics. The intramolecular interactions outlined suggest a mechanism by which NSF may use ATP hydrolysis to facilitate the vesicle fusion process.
Collapse
|
|
30 |
117 |
16
|
Hepp R, Puri N, Hohenstein AC, Crawford GL, Whiteheart SW, Roche PA. Phosphorylation of SNAP-23 Regulates Exocytosis from Mast Cells. J Biol Chem 2005; 280:6610-20. [PMID: 15611044 DOI: 10.1074/jbc.m412126200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulated exocytosis is a process in which a physiological trigger initiates the translocation, docking, and fusion of secretory granules with the plasma membrane. A class of proteins termed SNAREs (including SNAP-23, syntaxins, and VAMPs) are known regulators of secretory granule/plasma membrane fusion events. We have investigated the molecular mechanisms of regulated exocytosis in mast cells and find that SNAP-23 is phosphorylated when rat basophilic leukemia mast cells are triggered to degranulate. The kinetics of SNAP-23 phosphorylation mirror the kinetics of exocytosis. We have identified amino acid residues Ser(95) and Ser(120) as the major phosphorylation sites in SNAP-23 in rodent mast cells. Quantitative analysis revealed that approximately 10% of SNAP-23 was phosphorylated when mast cell degranulation was induced. These same residues were phosphorylated when mouse platelet degranulation was induced with thrombin, demonstrating that phosphorylation of SNAP-23 Ser(95) and Ser(120) is not restricted to mast cells. Although triggering exocytosis did not alter the absolute amount of SNAP-23 bound to SNAREs, after stimulation essentially all of the SNAP-23 bound to the plasma membrane SNARE syntaxin 4 and the vesicle SNARE VAMP-2 was phosphorylated. Regulated exocytosis studies revealed that overexpression of SNAP-23 phosphorylation mutants inhibited exocytosis from rat basophilic leukemia mast cells, demonstrating that phosphorylation of SNAP-23 on Ser(120) and Ser(95) modulates regulated exocytosis by mast cells.
Collapse
|
|
20 |
100 |
17
|
Whiteheart SW, Schraw T, Matveeva EA. N-ethylmaleimide sensitive factor (NSF) structure and function. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 207:71-112. [PMID: 11352269 DOI: 10.1016/s0074-7696(01)07003-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Our understanding of the molecular mechanisms of membrane trafficking advanced at a rapid rate during the 1990s. As one of the initial protein components of the trafficking machinery to be identified, N-ethylmaleimide sensitive factor (NSF) has served as a reference point in many of these recent studies. This hexameric ATPase is essential for most of the membrane-trafficking events in a cell. Initially, due to its ATPase activity, NSF was thought to be the motor that drove membrane fusion. Subsequent studies have shown that NSF actually plays the role of a chaperone by activating SNAP receptor proteins (SNAREs) so that they can participate in membrane fusion. In this review we will examine the initial characterization of NSF, its role in membrane fusion events, and what new structural information can tell us about NSF's mechanism of action.
Collapse
|
|
24 |
96 |
18
|
Zhao C, Slevin JT, Whiteheart SW. Cellular functions of NSF: not just SNAPs and SNAREs. FEBS Lett 2007; 581:2140-9. [PMID: 17397838 PMCID: PMC1948069 DOI: 10.1016/j.febslet.2007.03.032] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 03/07/2007] [Indexed: 12/26/2022]
Abstract
N-ethylmaleimide sensitive factor (NSF) is an ATPases associated with various cellular activities protein (AAA), broadly required for intracellular membrane fusion. NSF functions as a SNAP receptor (SNARE) chaperone which binds, through soluble NSF attachment proteins (SNAPs), to SNARE complexes and utilizes the energy of ATP hydrolysis to disassemble them thus facilitating SNARE recycling. While this is a major function of NSF, it does seem to interact with other proteins, such as the AMPA receptor subunit, GluR2, and beta2-AR and is thought to affect their trafficking patterns. New data suggest that NSF may be regulated by transient post-translational modifications such as phosphorylation and nitrosylation. These new aspects of NSF function as well as its role in SNARE complex dynamics will be discussed.
Collapse
|
Review |
18 |
89 |
19
|
Lemons PP, Chen D, Whiteheart SW. Molecular mechanisms of platelet exocytosis: requirements for alpha-granule release. Biochem Biophys Res Commun 2000; 267:875-80. [PMID: 10673384 DOI: 10.1006/bbrc.1999.2039] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Platelets function by secreting components necessary for primary clot formation. This report describes an in vitro assay that measures alpha-granule secretion. Using permeabilized platelets, it is possible to recreate Ca(2+)-stimulated release of platelet factor 4 (PF4) that is ATP- and temperature-dependent. Though other divalent cations can replace Ca(2+) (i.e., Sr(2+), Mn(2+), Zn(2+)), there is no effect of Ba(2+). Analysis by electron microscopy indicates that the in vitro assay also mimics the cytoskeletal rearrangements and granule centralization that occurs upon platelet activation in vivo. Antibody inhibition studies show that PF4 release requires the general membrane fusion protein N-ethylmaleimide-sensitive factor (NSF) and well as the target membrane SNAP receptors (t-SNAREs), syntaxin 2, 4, and SNAP-23. As shown by electron microscopy, the anti-t-SNARE antibodies block granule to target membrane fusion. This finding is unique in that it is the first report of a role for two syntaxins in the same exocytosis event.
Collapse
|
|
25 |
79 |
20
|
May AP, Misura KM, Whiteheart SW, Weis WI. Crystal structure of the amino-terminal domain of N-ethylmaleimide-sensitive fusion protein. Nat Cell Biol 1999; 1:175-82. [PMID: 10559905 DOI: 10.1038/11097] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cytosolic ATPase N-ethylmaleimide-sensitive fusion protein (NSF) disassembles complexes of membrane-bound proteins known as SNAREs, an activity essential for vesicular trafficking. The amino-terminal domain of NSF (NSF-N) is required for the interaction of NSF with the SNARE complex through the adaptor protein alpha-SNAP. The crystal structure of NSF-N reveals two subdomains linked by a single stretch of polypeptide. A polar interface between the two subdomains indicates that they can move with respect to one another during the catalytic cycle of NSF. Structure-based sequence alignments indicate that in addition to NSF orthologues, the p97 family of ATPases contain an amino-terminal domain of similar structure.
Collapse
|
|
26 |
77 |
21
|
Banerjee M, Huang Y, Joshi S, Popa GJ, Mendenhall MD, Wang QJ, Garvy BA, Myint T, Whiteheart SW. Platelets Endocytose Viral Particles and Are Activated via TLR (Toll-Like Receptor) Signaling. Arterioscler Thromb Vasc Biol 2020; 40:1635-1650. [PMID: 32434410 PMCID: PMC7316618 DOI: 10.1161/atvbaha.120.314180] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Thrombocytopenia is associated with many viral infections suggesting virions interact with and affect platelets. Consistently, viral particles are seen inside platelets, and platelet activation markers are detected in viremic patients. In this article, we sought mechanistic insights into these virion/platelet interactions by examining how platelets endocytose, traffic, and are activated by a model virion. Approach and Results: Using fluorescently tagged HIV-1 pseudovirions, 3-dimensional structured illumination microscopy, and transgenic mouse models, we probed the interactions between platelets and virions. Mouse platelets used known endocytic machinery, that is, dynamin, VAMP (vesicle-associated membrane protein)-3, and Arf6 (ADP-ribosylation factor 6), to take up and traffic HIV-1 pseudovirions. Endocytosed HIV-1 pseudovirions trafficked through early (Rab4+) and late endosomes (Rab7+), and then to an LC3+ (microtubule-associated protein 1A/1B-light chain 3) compartment. Incubation with virions induced IRAK4 (interleukin 1 receptor-associated kinase 4), Akt (protein kinase B), and IKK (IκB kinase) activation, granule secretion, and platelet-leukocyte aggregate formation. This activation required TLRs (Toll-like receptors) and MyD88 (myeloid differentiation primary response protein 88) but was less extensive and slower than activation with thrombin. In vivo, HIV-1 pseudovirions injection led to virion uptake and platelet activation, as measured by IKK activation, platelet-leukocyte aggregate formation, and mild thrombocytopenia. All were decreased in VAMP-3-/- and, megakaryocyte/platelet-specific, Arf6-/- mice. Similar platelet activation profiles (increased platelet-leukocyte aggregates, plasma platelet factor 4, and phospho-IκBα) were detected in newly diagnosed and antiretroviral therapy-controlled HIV-1+ patients. CONCLUSIONS Collectively, our data provide mechanistic insights into the cell biology of how platelets endocytose and process virions. We propose a mechanism by which platelets sample the circulation and respond to potential pathogens that they take up.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
76 |
22
|
May AP, Whiteheart SW, Weis WI. Unraveling the mechanism of the vesicle transport ATPase NSF, the N-ethylmaleimide-sensitive factor. J Biol Chem 2001; 276:21991-4. [PMID: 11301340 DOI: 10.1074/jbc.r100013200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
Review |
24 |
75 |
23
|
Mackenzie IR, Baker M, West G, Woulfe J, Qadi N, Gass J, Cannon A, Adamson J, Feldman H, Lindholm C, Melquist S, Pettman R, Sadovnick AD, Dwosh E, Whiteheart SW, Hutton M, Pickering-Brown SM. A family with tau-negative frontotemporal dementia and neuronal intranuclear inclusions linked to chromosome 17. ACTA ACUST UNITED AC 2006; 129:853-67. [PMID: 16401619 DOI: 10.1093/brain/awh724] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Over 30 different mutations have now been identified in MAPt that cause frontotemporal dementia (FTD). However, there are several families with FTD that show definite linkage to the region on chromosome 17 that contains MAPt, in which no mutation(s) has been identified. Although these families could have a complex mutation of the MAPt locus that has evaded detection it is also possible that another gene in this region is associated with FTD. This possibility is supported by neuropathological findings in these families, which consist of neuronal inclusions that are immunoreactive for ubiquitin (ub-ir) but not for tau. In addition to neuronal cytoplasmic inclusions, several chromosome 17-linked families are reported to have ub-ir neuronal intranuclear inclusions (NII); a finding which is uncommon in sporadic FTD. Here, we describe detailed clinical and neuropathological findings in a new large, multigenerational family with autosomal dominant FTD and autopsy proven tau-negative, ub-ir neuronal cytoplasmic and intranuclear inclusions. We have demonstrated that this family is linked to a 19.06 cM region of chromosome 17q21 with a maximum multipoint LOD score of 3.911 containing MAPt. By combining the results of our genetic analysis with those previously published for other families with similar pathology, we have further refined the minimal region to a 3.53 cM region of chromosome 17q21. We did not identify point mutations in MAPt by direct sequencing or any gross MAPt gene alterations using fluorescent in situ hybridization. In addition, tau protein extracted from members of this family was unremarkable in size and quantity as assessed by western blotting. Neuropathological characterization of the ub-ir NII in this family shows that they are positive for promyelocytic leukaemia protein (PML) and SUMO-1 that suggests that these inclusions form in the nuclear body and suggests a possible mechanism of neurodegeneration in tau-negative FTD linked to chromosome 17q21.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
73 |
24
|
Matveeva EA, He P, Whiteheart SW. N-Ethylmaleimide-sensitive fusion protein contains high and low affinity ATP-binding sites that are functionally distinct. J Biol Chem 1997; 272:26413-8. [PMID: 9334216 DOI: 10.1074/jbc.272.42.26413] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
N-Ethylmaleimide-sensitive factor (NSF) has been shown to be involved in numerous intracellular membrane fusion events of both the regulated and constitutive secretory pathways. Sequence analysis indicates that the NSF subunit contains two nucleotide-binding sites, both with the classical Walker A and B motifs. In this report, we examine the nucleotide binding properties of NSF. The homotrimer contains three high affinity ATP-binding sites with Kd = 30-40 nM for ATP and Kd = 2 microM for ADP. This class of binding sites did not bind AMP, adenine, or GTP. A second class of lower affinity nucleotide binding sites with a Kd = 15-20 microM was also detected. Using various mutant forms of NSF, the high affinity nucleotide-binding sites were localized to the D2 domains and the low affinity sites were localized to the D1 domains. Functionally it is these lower affinity sites in D1 that are crucial for NSF activity. Nucleotide concentration greatly affected the ability of NSF to interact with alpha-SNAP.SNARE (soluble NSF attachment protein-SNAP receptor) complex, suggesting that only when the D1 domain ATP-binding sites are occupied does NSF bind to the alpha-SNAP.SNARE complex.
Collapse
|
|
28 |
68 |
25
|
Abstract
The proteins NSF and SNAPs are known to participate in several intracellular fusion events, but their exact functions in the fusion process are unclear. Molecular studies have now shown that the ability of NSF to hydrolyse ATP is essential for membrane fusion and that this activity is regulated by SNAPs. This article reviews recent work on NSF and SNAPs, and speculates about how they interact with each other and SNAREs to promote membrane fusion.
Collapse
|
|
30 |
62 |