1
|
Abstract
Sleep-induced apnea and disordered breathing refers to intermittent, cyclical cessations or reductions of airflow, with or without obstructions of the upper airway (OSA). In the presence of an anatomically compromised, collapsible airway, the sleep-induced loss of compensatory tonic input to the upper airway dilator muscle motor neurons leads to collapse of the pharyngeal airway. In turn, the ability of the sleeping subject to compensate for this airway obstruction will determine the degree of cycling of these events. Several of the classic neurotransmitters and a growing list of neuromodulators have now been identified that contribute to neurochemical regulation of pharyngeal motor neuron activity and airway patency. Limited progress has been made in developing pharmacotherapies with acceptable specificity for the treatment of sleep-induced airway obstruction. We review three types of major long-term sequelae to severe OSA that have been assessed in humans through use of continuous positive airway pressure (CPAP) treatment and in animal models via long-term intermittent hypoxemia (IH): 1) cardiovascular. The evidence is strongest to support daytime systemic hypertension as a consequence of severe OSA, with less conclusive effects on pulmonary hypertension, stroke, coronary artery disease, and cardiac arrhythmias. The underlying mechanisms mediating hypertension include enhanced chemoreceptor sensitivity causing excessive daytime sympathetic vasoconstrictor activity, combined with overproduction of superoxide ion and inflammatory effects on resistance vessels. 2) Insulin sensitivity and homeostasis of glucose regulation are negatively impacted by both intermittent hypoxemia and sleep disruption, but whether these influences of OSA are sufficient, independent of obesity, to contribute significantly to the "metabolic syndrome" remains unsettled. 3) Neurocognitive effects include daytime sleepiness and impaired memory and concentration. These effects reflect hypoxic-induced "neural injury." We discuss future research into understanding the pathophysiology of sleep apnea as a basis for uncovering newer forms of treatment of both the ventilatory disorder and its multiple sequelae.
Collapse
|
Historical Article |
15 |
1378 |
2
|
|
Review |
6 |
342 |
3
|
Kelz MB, Sun Y, Chen J, Cheng Meng Q, Moore JT, Veasey SC, Dixon S, Thornton M, Funato H, Yanagisawa M. An essential role for orexins in emergence from general anesthesia. Proc Natl Acad Sci U S A 2008; 105:1309-14. [PMID: 18195361 PMCID: PMC2234134 DOI: 10.1073/pnas.0707146105] [Citation(s) in RCA: 249] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Indexed: 12/16/2022] Open
Abstract
The neural mechanisms through which the state of anesthesia arises and dissipates remain unknown. One common belief is that emergence from anesthesia is the inverse process of induction, brought about by elimination of anesthetic drugs from their CNS site(s) of action. Anesthetic-induced unconsciousness may result from specific interactions of anesthetics with the neural circuits regulating sleep and wakefulness. Orexinergic agonists and antagonists have the potential to alter the stability of the anesthetized state. In this report, we refine the role of the endogenous orexin system in impacting emergence from, but not entry into the anesthetized state, and in doing so, we distinguish mechanisms of induction from those of emergence. We demonstrate that isoflurane and sevoflurane, two commonly used general anesthetics, inhibit c-Fos expression in orexinergic but not adjacent melanin-concentrating hormone (MCH) neurons; suggesting that wake-active orexinergic neurons are inhibited by these anesthetics. Genetic ablation of orexinergic neurons, which causes acquired murine narcolepsy, delays emergence from anesthesia, without changing anesthetic induction. Pharmacologic studies with a selective orexin-1 receptor antagonist confirm a specific orexin effect on anesthetic emergence without an associated change in induction. We conclude that there are important differences in the neural substrates mediating induction and emergence. These findings support the concept that emergence depends, in part, on recruitment and stabilization of wake-active regions of brain.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
249 |
4
|
Beier UH, Angelin A, Akimova T, Wang L, Liu Y, Xiao H, Koike MA, Hancock SA, Bhatti TR, Han R, Jiao J, Veasey SC, Sims CA, Baur JA, Wallace DC, Hancock WW. Essential role of mitochondrial energy metabolism in Foxp3⁺ T-regulatory cell function and allograft survival. FASEB J 2015; 29:2315-26. [PMID: 25681462 PMCID: PMC4447222 DOI: 10.1096/fj.14-268409] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/22/2015] [Indexed: 12/12/2022]
Abstract
Conventional T (Tcon) cells and Foxp3(+) T-regulatory (Treg) cells are thought to have differing metabolic requirements, but little is known of mitochondrial functions within these cell populations in vivo. In murine studies, we found that activation of both Tcon and Treg cells led to myocyte enhancer factor 2 (Mef2)-induced expression of genes important to oxidative phosphorylation (OXPHOS). Inhibition of OXPHOS impaired both Tcon and Treg cell function compared to wild-type cells but disproportionally affected Treg cells. Deletion of Pgc1α or Sirt3, which are key regulators of OXPHOS, abrogated Treg-dependent suppressive function and impaired allograft survival. Mef2 is inhibited by histone/protein deacetylase-9 (Hdac9), and Hdac9 deletion increased Treg suppressive function. Hdac9(-/-) Treg showed increased expression of Pgc1α and Sirt3, and improved mitochondrial respiration, compared to wild-type Treg cells. Our data show that key OXPHOS regulators are required for optimal Treg function and Treg-dependent allograft acceptance. These findings provide a novel approach to increase Treg function and give insights into the fundamental mechanisms by which mitochondrial energy metabolism regulates immune cell functions in vivo.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
226 |
5
|
Veasey SC, Davis CW, Fenik P, Zhan G, Hsu YJ, Pratico D, Gow A. Long-term intermittent hypoxia in mice: protracted hypersomnolence with oxidative injury to sleep-wake brain regions. Sleep 2004; 27:194-201. [PMID: 15124711 DOI: 10.1093/sleep/27.2.194] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES This study was designed to test the hypothesis that long-term intermittent hypoxia (LTIH), modeling the hypoxia-reoxygenation events of sleep apnea, results in oxidative neural injury, including wake-promoting neural groups, and that this injury contributes to residual impaired maintenance of wakefulness. DESIGN Sleep times and oxidative-injury parameters were compared for mice exposed to LTIH and mice exposed to sham LTIH. SUBJECTS Adult male C57BL/6J mice were studied. INTERVENTIONS Mice were exposed to LTIH or sham LTIH in the lights-on period daily for 8 weeks. Electrophysiologic sleep-wake recordings and oxidative-injury measures were performed either immediately or 2 weeks following LTIH exposures. MEASUREMENTS AND RESULTS At both intervals, total sleep time per 24 hours in LTIH-exposed mice was increased by more than 2 hours, (P<.01). Mean sleep latency was reduced in LTIH-exposed mice relative to sham LTIH mice (8.9 +/- 1.0 minutes vs 12.7 +/- 0.5 minutes, respectively, P<.01). Oxidative injury was present 2 weeks following LTIH in wake-promoting regions of the basal forebrain and brainstem: elevated isoprostane 8,12-iso-IPF2alpha-VI, 22%, P<.05; increased protein carbonylation, 50%, P<.05, increased nitration, 200%, P<.05, and induction of antioxidant enzymes glutathione reductase and methionine sulfoxide reductase A, P<.01. CONCLUSIONS Exposure to LTIH results in an array of significant oxidative injuries in sleep-wake regions of the brain, and these biochemical changes are associated with marked hypersomnolence and increased susceptibility to short-term sleep loss. The residual forebrain redox alterations in wake-promoting brain regions may contribute to persistent sleepiness in a prevalent disorder, obstructive sleep apnea.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
216 |
6
|
Zhan G, Serrano F, Fenik P, Hsu R, Kong L, Pratico D, Klann E, Veasey SC. NADPH oxidase mediates hypersomnolence and brain oxidative injury in a murine model of sleep apnea. Am J Respir Crit Care Med 2005; 172:921-9. [PMID: 15994465 PMCID: PMC2718406 DOI: 10.1164/rccm.200504-581oc] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RATIONALE Persons with obstructive sleep apnea may have significant residual hypersomnolence, despite therapy. Long-term hypoxia/reoxygenation events in adult mice, simulating oxygenation patterns of moderate-severe sleep apnea, result in lasting hypersomnolence, oxidative injury, and proinflammatory responses in wake-active brain regions. We hypothesized that long-term intermittent hypoxia activates brain NADPH oxidase and that this enzyme serves as a critical source of superoxide in the oxidation injury and in hypersomnolence. OBJECTIVES We sought to determine whether long-term hypoxia/reoxygenation events in mice result in NADPH oxidase activation and whether NADPH oxidase is essential for the proinflammatory response and hypersomnolence. METHODS NADPH oxidase gene and protein responses were measured in wake-active brain regions in wild-type mice exposed to long-term hypoxia/reoxygenation. Sleep and oxidative and proinflammatory responses were measured in adult mice either devoid of NADPH oxidase activity (gp91phox-null mice) or in which NADPH oxidase activity was systemically inhibited with apocynin osmotic pumps throughout hypoxia/reoxygenation. MAIN RESULTS Long-term intermittent hypoxia increased NADPH oxidase gene and protein responses in wake-active brain regions. Both transgenic absence and pharmacologic inhibition of NADPH oxidase activity throughout long-term hypoxia/reoxygenation conferred resistance to not only long-term hypoxia/reoxygenation hypersomnolence but also to carbonylation, lipid peroxidation injury, and the proinflammatory response, including inducible nitric oxide synthase activity in wake-active brain regions. CONCLUSIONS Collectively, these findings strongly support a critical role for NADPH oxidase in the lasting hypersomnolence and oxidative and proinflammatory responses after hypoxia/reoxygenation patterns simulating severe obstructive sleep apnea oxygenation, highlighting the potential of inhibiting NADPH oxidase to prevent oxidation-mediated morbidities in obstructive sleep apnea.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
173 |
7
|
Zhu Y, Fenik P, Zhan G, Mazza E, Kelz M, Aston-Jones G, Veasey SC. Selective loss of catecholaminergic wake active neurons in a murine sleep apnea model. J Neurosci 2007; 27:10060-71. [PMID: 17855620 PMCID: PMC6672651 DOI: 10.1523/jneurosci.0857-07.2007] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The presence of refractory wake impairments in many individuals with severe sleep apnea led us to hypothesize that the hypoxia/reoxygenation events in sleep apnea permanently damage wake-active neurons. We now confirm that long-term exposure to hypoxia/reoxygenation in adult mice results in irreversible wake impairments. Functionality and injury were next assessed in major wake-active neural groups. Hypoxia/reoxygenation exposure for 8 weeks resulted in vacuolization in the perikarya and dendrites and markedly impaired c-fos activation response to enforced wakefulness in both noradrenergic locus ceruleus and dopaminergic ventral periaqueductal gray wake neurons. In contrast, cholinergic, histaminergic, orexinergic, and serotonergic wake neurons appeared unperturbed. Six month exposure to hypoxia/reoxygenation resulted in a 40% loss of catecholaminergic wake neurons. Having previously identified NADPH oxidase as a major contributor to wake impairments in hypoxia/reoxygenation, the role of NADPH oxidase in catecholaminergic vulnerability was next addressed. NADPH oxidase catalytic and cytosolic subunits were evident in catecholaminergic wake neurons, where hypoxia/reoxygenation resulted in translocation of p67(phox) to mitochondria, endoplasmic reticulum, and membranes. Treatment with a NADPH oxidase inhibitor, apocynin, throughout hypoxia/reoxygenation exposures conferred protection of catecholaminergic neurons. Collectively, these data show that select wake neurons, specifically the two catecholaminergic groups, can be rendered persistently impaired after long-term exposure to hypoxia/reoxygenation, modeling sleep apnea; wake impairments are irreversible; catecholaminergic neurons are lost; and neuronal NADPH oxidase contributes to this injury. It is anticipated that severe obstructive sleep apnea in humans destroys catecholaminergic wake neurons.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
137 |
8
|
Moore JT, Chen J, Han B, Meng QC, Veasey SC, Beck SG, Kelz MB. Direct activation of sleep-promoting VLPO neurons by volatile anesthetics contributes to anesthetic hypnosis. Curr Biol 2012; 22:2008-16. [PMID: 23103189 DOI: 10.1016/j.cub.2012.08.042] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/17/2012] [Accepted: 08/24/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND Despite seventeen decades of continuous clinical use, the neuronal mechanisms through which volatile anesthetics act to produce unconsciousness remain obscure. One emerging possibility is that anesthetics exert their hypnotic effects by hijacking endogenous arousal circuits. A key sleep-promoting component of this circuitry is the ventrolateral preoptic nucleus (VLPO), a hypothalamic region containing both state-independent neurons and neurons that preferentially fire during natural sleep. RESULTS Using c-Fos immunohistochemistry as a biomarker for antecedent neuronal activity, we show that isoflurane and halothane increase the number of active neurons in the VLPO, but only when mice are sedated or unconscious. Destroying VLPO neurons produces an acute resistance to isoflurane-induced hypnosis. Electrophysiological studies prove that the neurons depolarized by isoflurane belong to the subpopulation of VLPO neurons responsible for promoting natural sleep, whereas neighboring non-sleep-active VLPO neurons are unaffected by isoflurane. Finally, we show that this anesthetic-induced depolarization is not solely due to a presynaptic inhibition of wake-active neurons as previously hypothesized but rather is due to a direct postsynaptic effect on VLPO neurons themselves arising from the closing of a background potassium conductance. CONCLUSIONS Cumulatively, this work demonstrates that anesthetics are capable of directly activating endogenous sleep-promoting networks and that such actions contribute to their hypnotic properties.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
135 |
9
|
Panossian LA, Veasey SC. Daytime sleepiness in obesity: mechanisms beyond obstructive sleep apnea--a review. Sleep 2012; 35:605-15. [PMID: 22547886 DOI: 10.5665/sleep.1812] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Increasing numbers of overweight children and adults are presenting to sleep medicine clinics for evaluation and treatment of sleepiness. Sleepiness negatively affects quality of life, mental health, productivity, and safety. Thus, it is essential to comprehensively address all potential causes of sleepiness. While many obese individuals presenting with hypersomnolence will be diagnosed with obstructive sleep apnea and their sleepiness will improve with effective therapy for sleep apnea, a significant proportion of patients will continue to have hypersomnolence. Clinical studies demonstrate that obesity without sleep apnea is also associated with a higher prevalence of hypersomnolence and that bariatric surgery can markedly improve hypersomnolence before resolution of obstructive sleep apnea. High fat diet in both humans and animals is associated with hypersomnolence. This review critically examines the relationships between sleepiness, feeding, obesity, and sleep apnea and then discusses the hormonal, metabolic, and inflammatory mechanisms potentially contributing to hypersomnolence in obesity, independent of sleep apnea and other established causes of excessive daytime sleepiness.
Collapse
|
Review |
13 |
123 |
10
|
Veasey SC, Panckeri KA, Hoffman EA, Pack AI, Hendricks JC. The effects of serotonin antagonists in an animal model of sleep-disordered breathing. Am J Respir Crit Care Med 1996; 153:776-86. [PMID: 8564132 DOI: 10.1164/ajrccm.153.2.8564132] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Recent studies have shown excitatory effects of serotonin on upper airway motoneurons. This excitatory effect is normally present and arises from cells in the caudal raphe nuclei. The firing of these serotonergic neurons is reduced during sleep. To determine the importance of serotonin in the maintenance of patient airways and normal respiration in waking in obstructive sleep apnea, we studied the effects of two serotonin antagonists on upper airway dilator muscle activity, diaphragm activity, Sao2, and upper airway cross-sectional area in an animal model of sleep-disordered breathing, the English bulldog. Systemic administration of both antagonists resulted in significant reductions in the peak amplitudes of upper airway muscle respiratory bursts (range, 39 to 62% suppression; p < 0.05). Lesser reductions in diaphragm activity were noted (range, 10 to 33% suppression; p < 0.05). Oxyhemoglobin saturations also fell (p < 0.05), coinciding with suppressions in upper airway muscle activity. With reductions in dilator muscle activity, upper airway cross-sectional areas, as measured with cine CT, showed significant inspiratory collapse. These results support the hypothesis that serotonin is important in the maintenance of patent upper airways in obstructive sleep apnea.
Collapse
|
|
29 |
109 |
11
|
Zhan G, Fenik P, Pratico D, Veasey SC. Inducible nitric oxide synthase in long-term intermittent hypoxia: hypersomnolence and brain injury. Am J Respir Crit Care Med 2005; 171:1414-20. [PMID: 15750040 PMCID: PMC2718483 DOI: 10.1164/rccm.200411-1564oc] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Long-term intermittent hypoxia (LTIH) exposure in adult mice, modeling oxygenation patterns of moderate-severe obstructive sleep apnea, results in lasting hypersomnolence and is associated with nitration and oxidation injuries in many brain regions, including wake-active regions. OBJECTIVES We sought to determine if LTIH activates inducible nitric oxide synthase (iNOS) in sleep/wake regions, and if this source of NO contributes to the LTIH-induced proinflammatory gene response, oxidative injury, and wake impairments. METHODS Mice with genetic absence of iNOS activity and wild-type control animals were exposed to 6 weeks of long-term hypoxia/reoxygenation before behavioral state recordings, molecular and biochemical assays, and a pharmacologic intervention. MEASUREMENTS AND MAIN RESULTS Two weeks after recovery from hypoxia/reoxygenation exposures, wild-type mice showed increased iNOS activity in representative wake-active regions, increased sleep times, and shortened sleep latencies. Mutant mice, with higher baseline sleep times, showed no effect of long-term hypoxia/reoxygenation on sleep time latencies and were resistant to hypoxia/reoxygenation increases in lipid peroxidation and proinflammatory gene responses (tumor necrosis factor alpha and cyclooxygenase 2). Inhibition of iNOS after long-term hypoxia/reoxygenation in wild-type mice was effective in reversing the proinflammatory gene response. CONCLUSIONS These data support a critical role for iNOS activity in the development of LTIH wake impairments, lipid peroxidation, and proinflammatory responses in wake-active brain regions, and suggest a potential role for inducible NO inhibition in protection from proinflammatory responses, oxidative injury, and residual hypersomnolence in obstructive sleep apnea.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
108 |
12
|
Veasey SC, Guilleminault C, Strohl KP, Sanders MH, Ballard RD, Magalang UJ. Medical therapy for obstructive sleep apnea: a review by the Medical Therapy for Obstructive Sleep Apnea Task Force of the Standards of Practice Committee of the American Academy of Sleep Medicine. Sleep 2007; 29:1036-44. [PMID: 16944672 DOI: 10.1093/sleep/29.8.1036] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A significant number of patients with obstructive sleep apnea neither tolerate positive airway pressure (PAP) therapy nor achieve successful outcomes from either upper airway surgeries or use of an oral appliance. The purpose of this paper, therefore, was to systematically evaluate available peer-reviewed data on the effectiveness of adjunctive medical therapies and summarize findings from these studies. A review from 1985 to 2005 of the English literature reveals several practical findings. Weight loss has additional health benefits and should be routinely recommended to most overweight patients. Presently, there are no widely effective pharmacotherapies for individuals with sleep apnea, with the important exceptions of individuals with hypothyroidism or with acromegaly. Treating the underlying medical condition can have pronounced effects on the apnea/hypopnea index. Stimulant therapy leads to a small but statistically significant improvement in objective sleepiness. Nonetheless, residual sleepiness remains a significant health concern. Supplemental oxygen and positional therapy may benefit subsets of patients, but whether these therapies reduce morbidities as PAP therapy does will require rigorous randomized trials. PAP therapy has set the bar high for successful treatment of sleep apnea and its associated morbidities. Nonetheless, we should strive towards the development of universally effective pharmacotherapies for sleep apnea. To accomplish this, we require a greater knowledge of the neurochemical mechanisms underlying sleep apnea, and we must use this infrastructure of knowledge to design well-controlled, adequately powered studies that examine, not only effects on the apnea/hypopnea index, but also the effects of pharmacotherapies on all health related outcomes shown beneficial with PAP therapy.
Collapse
|
Review |
18 |
104 |
13
|
Veasey SC, Fornal CA, Metzler CW, Jacobs BL. Single-unit responses of serotonergic dorsal raphe neurons to specific motor challenges in freely moving cats. Neuroscience 1997; 79:161-9. [PMID: 9178872 DOI: 10.1016/s0306-4522(96)00673-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Serotonin has been hypothesized to play an important role in the central control of motor function. Consistent with this hypothesis, virtually all serotonergic neurons within the medullary nuclei raphe obscurus and raphe pallidus in cats are activated in response to specific motor challenges. To determine whether the response profile of serotonergic neurons in the midbrain is similar to that observed in the medulla, the single-unit activity of serotonergic dorsal raphe nucleus cells was studied during three specific motor activities: treadmill-induced locomotion, hypercarbia-induced ventilatory response and spontaneous feeding. In contrast to the results obtained for medullary raphe cells, none of the serotonergic dorsal raphe cells studied (n=26) demonstrated increased firing during treadmill-induced locomotion. A subset of serotonergic dorsal raphe cells (8/36) responded to the hypercarbic ventilatory challenge with increased firing rates that were directly related to the fraction of inspired carbon dioxide, and a non-overlapping subset of cells (6/31) was activated during feeding. All feeding-on cells demonstrated a rapid activation and de-activation coincident with feeding onset and offset, respectively. Although the proportions of serotonergic cells activated by hypercarbia or feeding in the dorsal raphe nucleus were similar to those found in the medullary raphe, there were several major distinctions in the response characteristics for the two cell groups. In contrast to the medullary serotonergic neurons, only a minority of dorsal raphe nucleus serotonergic neurons responded to a motor challenge. Overall, the above results suggest very different roles for the midbrain and medullary serotonergic neurons in response to motor activities.
Collapse
|
|
28 |
100 |
14
|
Fenik P, Veasey SC. Pharmacological characterization of serotonergic receptor activity in the hypoglossal nucleus. Am J Respir Crit Care Med 2003; 167:563-9. [PMID: 12406845 DOI: 10.1164/rccm.200202-107oc] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
State-dependent reductions in serotonin delivery to upper airway dilator motoneuron activity may contribute to sleep apnea. The functional significance of serotonin receptor subtypes implicated in excitation of dilator motor neurons was evaluated in anesthetized, paralyzed, mechanically ventilated adult rats (n = 108). The effects of antagonists selective for serotonin receptor subtypes 2A, 2C, or 7 on intrinsic hypoglossal activity and on serotonin agonist (serotonin, 5-carboxamidotryptamine maleate, and RO-600175) dose responses were characterized. All drugs were injected unilaterally into the hypoglossal nucleus. The 2A antagonist, MDL-100907, dropped intrinsic hypoglossal nerve respiratory activity by 61 +/- 6% (p < 0.001) and suppressed serotonin excitation of hypoglossal nerve activity (p < 0.05). The 2C antagonist, SB-242084, dropped hypoglossal nerve activity 17 +/- 6% (p < 0.05) and suppressed the dose-response curve for the 2C agonist. Rapid desensitization occurred with the 2C agonist only (p < 0.05). The 7 antagonist, SB-269970, had no effect on either intrinsic activity or agonist responses. We conclude that serotonin 2A is the predominant excitatory serotonin receptor subtype at hypoglossal motor neurons. The serotonin 2C excitatory effects are of lower magnitude and are associated with rapid desensitization. There is no evidence for serotonin 7 activity in the hypoglossal nucleus. This characterization of serotonin receptor subtypes in the hypoglossal nucleus provides a focus for the development of pharmacotherapies for sleep apnea.
Collapse
|
Evaluation Study |
22 |
99 |
15
|
Krymskaya VP, Snow J, Cesarone G, Khavin I, Goncharov DA, Lim PN, Veasey SC, Ihida-Stansbury K, Jones PL, Goncharova EA. mTOR is required for pulmonary arterial vascular smooth muscle cell proliferation under chronic hypoxia. FASEB J 2011; 25:1922-33. [PMID: 21368105 DOI: 10.1096/fj.10-175018] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pulmonary arterial vascular smooth muscle (PAVSM) cell proliferation is a key pathophysiological component of vascular remodeling in pulmonary arterial hypertension (PAH) for which cellular and molecular mechanisms are poorly understood. The goal of our study was to determine the role of mammalian target of rapamycin (mTOR) in PAVSM cell proliferation, a major pathological manifestation of vascular remodeling in PAH. Our data demonstrate that chronic hypoxia promoted mTOR(Ser-2481) phosphorylation, an indicator of mTOR intrinsic catalytic activity, mTORC1-specific S6 and mTORC2-specific Akt (Ser-473) phosphorylation, and proliferation of human and rat PAVSM cells that was inhibited by siRNA mTOR. PAVSM cells derived from rats exposed to chronic hypoxia (VSM-H cells) retained increased mTOR(Ser-2481), S6, Akt (Ser-473) phosphorylation, and DNA synthesis compared to cells from normoxia-exposed rats. Suppression of mTORC2 signaling with siRNA rictor, or inhibition of mTORC1 signaling with rapamycin and metformin, while having little effect on other complex activities, inhibited VSM-H and chronic hypoxia-induced human and rat PAVSM cell proliferation. Collectively, our data demonstrate that up-regulation of mTOR activity and activation of both mTORC1 and mTORC2 are required for PAVSM cell proliferation induced by in vitro and in vivo chronic hypoxia and suggest that mTOR may serve as a potential therapeutic target to inhibit vascular remodeling in PAH.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
88 |
16
|
Kapfhamer D, Valladares O, Sun Y, Nolan PM, Rux JJ, Arnold SE, Veasey SC, Bućan M. Mutations in Rab3a alter circadian period and homeostatic response to sleep loss in the mouse. Nat Genet 2002; 32:290-5. [PMID: 12244319 DOI: 10.1038/ng991] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2002] [Accepted: 07/23/2002] [Indexed: 11/09/2022]
Abstract
Rab3a is the most abundant Rab (ras-associated binding) protein in the brain and has a regulatory role in synaptic vesicle trafficking. Mice with a targeted loss-of-function mutation in Rab3a have defects in Ca(2+)-dependent synaptic transmission: the number of vesicles released in response to an action potential is greater than in wildtype mice, resulting in greater synaptic depression and the abolishment of CA3 mossy-fiber long term potentiation. The effect of these changes on behavior is unknown. In a screen for mouse mutants with abnormal rest-activity and sleep patterns, we identified a semidominant mutation, called earlybird, that shortens the circadian period of locomotor activity. Sequence analysis of Rab3a identified a point mutation in the conserved amino acid (Asp77Gly) within the GTP-binding domain of this protein in earlybird mutants, resulting in significantly reduced levels of Rab3a protein. Phenotypic assessment of earlybird mice and a null allele of Rab3a revealed anomalies in circadian period and sleep homeostasis, providing evidence that Rab3a-mediated synaptic transmission is involved in these behaviors.
Collapse
|
|
23 |
81 |
17
|
Abstract
Humans with long-standing sleep apnea show mixed responses to serotonergic therapies for obstructive sleep apnea. We hypothesize that long-term intermittent hypoxia may result in oxidative injury to upper airway motoneurons, thereby diminishing serotonergic motoneuronal excitation. Unilateral serotonin and glutamate agonist and antagonist microinjections into the hypoglossal motor nuclei in adult rats exposed to 3 weeks of intermittent hypoxia showed reduced hypoglossal nerve responsiveness (logEC50) for serotonin and N-methyl-D-aspartate. However, long-term intermittent hypoxia did not appear to alter hypoglossal response to alpha-amino-3-hydroxy-methylisoxazole-4-propionic acid injections. There was no reduction in hypoglossal motoneuron soma number or in serotonergic postsynaptic receptor mRNA copy numbers within single-cells; in contrast, there was an increase in isoprostanes in the dorsal medulla. Systemic 4-hydroxyl-2,2,6,6-tetramethylpiperidin-1-oxyl (tempol) throughout exposure to intermittent hypoxia improved the EC50 for serotonin to a larger extent than glutamate and normalized medullary isoprostanes. Protein kinase C activity within the hypoglossal nucleus was increased after long-term intermittent hypoxia. These results suggest that long-term intermittent hypoxia reduces serotonergic and N-methyl-D-aspartate excitatory output of hypoglossal nerves, and that reduced excitatory responsiveness and lipid peroxidation are largely prevented with superoxide dismutase treatment throughout hypoxia/reoxygenation. Similar alterations in neurochemical responsiveness may occur in select persons with obstructive sleep apnea.
Collapse
|
|
21 |
71 |
18
|
Veasey SC. Serotonin agonists and antagonists in obstructive sleep apnea: therapeutic potential. ACTA ACUST UNITED AC 2004; 2:21-9. [PMID: 14720019 DOI: 10.1007/bf03256636] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Obstructive sleep apnea hypopnea syndrome (OSAHS) is a prevalent disorder associated with substantial cardiovascular and neurobehavioral morbidity. Yet this is a disorder for which there are no widely effective pharmacotherapies. The pathophysiology of obstructive sleep apnea namely, normal respiration in waking with disordered breathing only in sleep, suggests that this disorder should be readily amenable to drug therapy. Over the past 10 years, we have gained tremendous insight into the neurochemical mechanisms involved in state-dependent control of respiration. It is apparent from this work that there are many potential avenues for pharmacotherapies, including several seemingly conflicting directions for serotonergic therapies. Serotonin delivery is reduced to upper airway dilator motor neurons in sleep, and this contributes, at least in part, to sleep-related reductions in dilator muscle activity and upper airway obstruction. The dilator motor neuron post-synaptic serotonin receptors are 5-HT(2A) and 5-HT(2C) subtypes, and in adults the presynaptic 5-HT receptor in motor nuclei is 5-HT(1B), an inhibitory receptor. Serotonin receptors are also found within central respiratory neuronal groups, and these receptor subtypes include 5-HT(1A) (inhibitory) and 5-HT(2) receptors. Peripherally, stimulation of 5-HT(2A), 5-HT(2C) and 5-HT(3) receptor subtypes have an inhibitory effect on respiration via action at the nodose ganglion. Many of these receptor subtypes and their signal transduction pathways may be affected by oxidative stress in obstructive sleep apnea. These alterations will make finding drug therapies for sleep apnea more challenging, but not insurmountable. Future directions are suggested for elucidating safe, well-tolerated serotonergic drugs for this disorder. Tryptophan was one of the first serotonergic drugs tested for OSAHS. This drug was withdrawn from the market as a result of reports linking tryptophan use with eosinophilic myalgia syndrome and life-threatening pulmonary hypertension. Newer drugs with serotonergic activity tested in persons with sleep-disordered breathing include buspirone, fluoxetine and paroxetine. Trials are presently being conducted to evaluate the effects of 5-HT(2A) and 5-HT(3) antagonists on OSAHS. Many of the drugs tested have not shown significant improvement in sleep apnea. However, with continued effort to elucidate the pharmacology of neurochemical control of state-dependent changes in respiratory control, the availability of pharmacological therapy for this disorder is not too far away.
Collapse
|
Review |
21 |
69 |
19
|
Veasey SC, Valladares O, Fenik P, Kapfhamer D, Sanford L, Benington J, Bucan M. An Automated System for Recording and Analysis of Sleep in Mice. Sleep 2000. [DOI: 10.1093/sleep/23.8.1c] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
|
25 |
64 |
20
|
Zhang B, Veasey SC, Wood MA, Leng LZ, Kaminski C, Leight S, Abel T, Lee VMY, Trojanowski JQ. Impaired rapid eye movement sleep in the Tg2576 APP murine model of Alzheimer's disease with injury to pedunculopontine cholinergic neurons. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:1361-9. [PMID: 16251420 PMCID: PMC1603771 DOI: 10.1016/s0002-9440(10)61223-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2005] [Indexed: 10/18/2022]
Abstract
Impaired rapid eye movement sleep (REMS) is commonly observed in Alzheimer's disease, suggesting injury to mesopontine cholinergic neurons. We sought to determine whether abnormal beta-amyloid peptides impair REMS and injure mesopontine cholinergic neurons in transgenic (hAPP695.SWE) mice (Tg2576) that model brain amyloid pathologies. Tg2576 mice and wild-type littermates were studied at 2, 6, and 12 months by using sleep recordings, contextual fear conditioning, and immunohistochemistry. At 2 months of age, REMS was indistinguishable by genotype but was reduced in Tg2576 mice at 6 and 12 months. Choline acetyltransferase-positive neurons in the pedunculopontine tegmentum of Tg2576 mice at 2 months evidenced activated caspase-3 immunoreactivity, and at 6 and 12 months the numbers of pedunculopontine tegmentum choline acetyltransferase-positive neurons were reduced in the Tg2576 mice. Other cholinergic groups involved in REMS were unperturbed. At 12 months, Tg2576 mice demonstrated increased 3-nitrotyrosine immunoreactivity in cholinergic projection sites but not in cholinergic soma. We have identified a population of selectively compromised cholinergic neurons in young Tg2576 mice that manifest early onset REMS impairment. The differential vulnerability of these cholinergic neurons to Abeta injury provides an invaluable tool with which to understand mechanisms of sleep/wake perturbations in Alzheimer's disease.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
63 |
21
|
Veasey SC, Fenik P, Panckeri K, Pack AI, Hendricks JC. The effects of trazodone with L-tryptophan on sleep-disordered breathing in the English bulldog. Am J Respir Crit Care Med 1999; 160:1659-67. [PMID: 10556137 DOI: 10.1164/ajrccm.160.5.9812007] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Obstructive sleep apnea hypopnea syndrome (OSAHS) is a prevalent disorder, for which there are no universally effective pharmacotherapeutics. We hypothesized that in OSAHS, excitatory serotoninergic influences are important for maintaining patency of the upper airway in waking, and that in sleep, reduced serotoninergic drive plays a significant role in upper airway collapse and OSAHS. The previously reported small responses in humans with OSAHS to serotoninergics may relate, in part, to study design and the drugs/doses selected. We therefore performed multitrials/dose, multidose, randomized sleep studies testing the effectiveness of a combination of serotoninergics, trazodone, and L-tryptophan, in our animal model of OSAHS, the English bulldog. Trazodone/L-tryptophan caused dose-dependent reductions in respiratory events in non-rapid-eye-movement sleep (NREMS) and rapid-eye-movement sleep (REMS). During NREMS, the respiratory disturbance index (RDI) +/- standard error was 6.3 +/- 1.4 events/h (placebo) and 0.9 +/- 0.3 (highest dose), p < 0.01. During REMS, the RDI was 31.4 +/- 6.1 events/h (placebo) and 11.5 +/- 4.3 (highest dose), p = 0.002. Trazodone/ L-tryptophan dose-dependently reduced sleep fragmentation, p = 0.03, increased sleep efficiency, p = 0.005, enhanced slow-wave sleep, p = 0.0004, and minimized sleep-related suppression of upper airway dilator activity, p < 0.02. Trazodone with L-tryptophan can treat sleep-disordered breathing (SDB) in an animal model of OSAHS; the effectiveness of this therapy may be related to increased upper airway dilator activity in sleep and/or enhanced slow-wave sleep.
Collapse
|
|
26 |
62 |
22
|
Veasey SC, Chachkes J, Fenik P, Hendricks JC. The effects of ondansetron on sleep-disordered breathing in the English bulldog. Sleep 2001; 24:155-60. [PMID: 11247051 DOI: 10.1093/sleep/24.2.155] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Serotonin and serotoninergic drugs have significant effects on respiration, at many sites throughout the nervous system, and serotonin has been implicated in the pathogenesis of obstructive sleep apnea. Thus, understanding the serotoninergic mechanisms underlying respiratory control may help discover novel pharmacotherapies for sleep-disordered breathing. Ondansetron, a serotonin (5-HT) antagonist selective for the 5-HT3 receptor subtype has recently been shown to suppress sleep-related central apneas in rats, particularly in rapid-eye-movement (REM) sleep. To evaluate the potential of ondansetron in the treatment of obstructive sleep-disordered breathing, we have performed randomized trials of two doses of ondansetron (20 and 40 mg orally) and placebo (4 studies for each of the 3 conditions) in our animal model of obstructive sleep apnea, the English Bulldog. Ondansetron significantly reduced the respiratory disturbance index (RDI) in REM sleep from 24.15+/-4.85 events/hour at placebo to 11.01+/-1.56 events/hour with high dose treatment, n=4, p<0.05. In contrast, the effects of drug on the RDI in non-rapid-eye-movement (NREM) sleep (5.23+/-1.30 events/hour, placebo; 4.31+/-1.36, with 20 mg ondansetron and 2.89+/-1.30 with 40 mg ondansetron, n=4) were not significant. Ondansetron, however, had no effect on either sleep efficiency or sleep architecture, and there were no effects on either oxyhemoglobin saturation nadirs or on the sleep time with saturations <90%. Although a trend towards reduction in the latter measure of oxygenation was seen at the higher dose of ondansetron. These data suggest a therapeutic potential for ondansetron in obstructive sleep-disordered breathing, particularly REM sleep apnea.
Collapse
|
|
24 |
55 |
23
|
Eacret D, Veasey SC, Blendy JA. Bidirectional Relationship between Opioids and Disrupted Sleep: Putative Mechanisms. Mol Pharmacol 2020; 98:445-453. [PMID: 32198209 PMCID: PMC7562980 DOI: 10.1124/mol.119.119107] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/12/2020] [Indexed: 01/18/2023] Open
Abstract
Millions of Americans suffer from opiate use disorder, and over 100 die every day from opioid overdoses. Opioid use often progresses into a vicious cycle of abuse and withdrawal, resulting in very high rates of relapse. Although the physical and psychologic symptoms of opiate withdrawal are well-documented, sleep disturbances caused by chronic opioid exposure and withdrawal are less well-understood. These substances can significantly disrupt sleep acutely and in the long term. Yet poor sleep may influence opiate use, suggesting a bidirectional feed-forward interaction between poor sleep and opioid use. The neurobiology of how opioids affect sleep and how disrupted sleep affects opioid use is not well-understood. Here, we will summarize what is known about the effects of opioids on electroencephalographic sleep in humans and in animal models. We then discuss the neurobiology interface between reward-related brain regions that mediate arousal and wakefulness as well as the effect of opioids in sleep-related brain regions and neurotransmitter systems. Finally, we summarize what is known of the mechanisms underlying opioid exposure and sleep. A critical review of such studies, as well as recommendations of studies that evaluate the impact of manipulating sleep during withdrawal, will further our understanding of the cyclical feedback between sleep and opioid use. SIGNIFICANCE STATEMENT: We review recent studies on the mechanisms linking opioids and sleep. Opioids affect sleep, and sleep affects opioid use; however, the biology underlying this relationship is not understood. This review compiles recent studies in this area that fill this gap in knowledge.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
52 |
24
|
Abstract
Sleepiness has long been recognized as a presenting symptom in obstructive sleep apnea syndrome, but persistent neurocognitive injury from sleep apnea has been appreciated only recently. Although therapy for sleep apnea markedly improves daytime symptoms, cognitive impairments may persist despite long-term therapy with continuous positive airway pressure. We know now that certain groups of neurons, typically those that are more metabolically active, are more vulnerable to injury than others. Animal models of sleep apnea oxygenation patterns have been instrumental in elucidating mechanisms of injury. The hypoxia/reoxygenation events result in oxidative, inflammatory, and endoplasmic reticulum stress responses in susceptible neural groups. With molecular pathways being fleshed out in animal models, it is time to carefully and systematically examine neural injury in humans and test the applicability of findings from animal models. To succeed, however, we cannot view sleep apnea as an isolated process. Rather, injury in sleep apnea is more likely the consequence of overlapping injuries from comorbid conditions. The progress in elucidating mechanisms of neural injury is palpable, and it now seems we indeed are closer to developing therapies to prevent and treat neural injury in obstructive sleep apnea.
Collapse
|
Review |
15 |
49 |
25
|
Zhan G, Shaheen F, Mackiewicz M, Fenik P, Veasey SC. Single cell laser dissection with molecular beacon polymerase chain reaction identifies 2A as the predominant serotonin receptor subtype in hypoglossal motoneurons. Neuroscience 2002; 113:145-54. [PMID: 12123693 DOI: 10.1016/s0306-4522(02)00137-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We hypothesize that sleep state-dependent withdrawal of serotonin (5-hydroxytryptamine, 5-HT) at upper airway (UAW) dilator motoneurons contributes significantly to sleep-related suppression of dilator muscle activity in obstructive sleep apnea. Identification of 5-HT receptor subtypes involved in postsynaptic facilitation of UAW motoneuron activity may provide pharmacotherapies for this prevalent disorder. We have adapted two assays to provide semi-quantitative measurements of mRNA copy numbers for 5-HT receptor subtypes in single UAW motoneurons. Specifically, soma of 111 hypoglossal (XII) motoneurons in 10 adult male rats were captured using a laser dissection microscope, and then used individually in single round molecular beacon polymerase chain reaction (PCR) for real-time quantitation of 5-HT(2A), 5-HT(2C), 5-HT(3), 5-HT(4), 5-HT(5A), 5-HT(5B), 5-HT(6) or 5-HT(7) receptor. Receptor mRNA copy numbers from single XII motoneurons were compared to control samples from within the XII nucleus and lateral medulla. All 20 motoneuronal soma assayed for the 5-HT(2A) receptor had measurable copy numbers (7028+/-2656 copies/cell). In contrast, copy numbers for the 5-HT(2A) receptor in XII non-motoneuronal (n=17) and lateral medulla (n=15) samples were 81+/-51 copies and 83+/-35 copies, respectively, P<0.05. Seven of 13 XII motoneurons assayed had measurable 5-HT(2C) receptor copy numbers of mRNA (287+/-112 copies/cell). XII soma had minimal 5-HT(3), 5-HT(4), 5-HT(5A), 5-HT(5B), 5-HT(6) or 5-HT(7) receptor mRNA. 5-HT(2A) receptor mRNA presence within XII motoneurons was confirmed with digoxigenin-labeled in situ hybridization. In summary, combined use of laser dissection and molecular beacon PCR revealed 5-HT(2A) receptor as the predominant 5-HT receptor mRNA in XII motoneurons, and identified small quantities of 5-HT(2C) receptor. This information will allow a more complete understanding of serotonergic control of respiratory activity.
Collapse
|
|
23 |
47 |