1
|
Even A, Morelli G, Broix L, Scaramuzzino C, Turchetto S, Gladwyn-Ng I, Le Bail R, Shilian M, Freeman S, Magiera MM, Jijumon AS, Krusy N, Malgrange B, Brone B, Dietrich P, Dragatsis I, Janke C, Saudou F, Weil M, Nguyen L. ATAT1-enriched vesicles promote microtubule acetylation via axonal transport. SCIENCE ADVANCES 2019; 5:eaax2705. [PMID: 31897425 PMCID: PMC6920029 DOI: 10.1126/sciadv.aax2705] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/28/2019] [Indexed: 05/13/2023]
Abstract
Microtubules are polymerized dimers of α- and β-tubulin that underlie a broad range of cellular activities. Acetylation of α-tubulin by the acetyltransferase ATAT1 modulates microtubule dynamics and functions in neurons. However, it remains unclear how this enzyme acetylates microtubules over long distances in axons. Here, we show that loss of ATAT1 impairs axonal transport in neurons in vivo, and cell-free motility assays confirm a requirement of α-tubulin acetylation for proper bidirectional vesicular transport. Moreover, we demonstrate that the main cellular pool of ATAT1 is transported at the cytosolic side of neuronal vesicles that are moving along axons. Together, our data suggest that axonal transport of ATAT1-enriched vesicles is the predominant driver of α-tubulin acetylation in axons.
Collapse
|
research-article |
6 |
41 |
2
|
Chen D, Nemazanyy I, Peulen O, Shostak K, Xu X, Tang SC, Wathieu C, Turchetto S, Tielens S, Nguyen L, Close P, Desmet C, Klein S, Florin A, Büttner R, Petrellis G, Dewals B, Chariot A. Elp3-mediated codon-dependent translation promotes mTORC2 activation and regulates macrophage polarization. EMBO J 2022; 41:e109353. [PMID: 35920020 PMCID: PMC9475509 DOI: 10.15252/embj.2021109353] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022] Open
Abstract
Macrophage polarization is a process whereby macrophages acquire distinct effector states (M1 or M2) to carry out multiple and sometimes opposite functions. We show here that translational reprogramming occurs during macrophage polarization and that this relies on the Elongator complex subunit Elp3, an enzyme that modifies the wobble uridine base U34 in cytosolic tRNAs. Elp3 expression is downregulated by classical M1‐activating signals in myeloid cells, where it limits the production of pro‐inflammatory cytokines via FoxO1 phosphorylation, and attenuates experimental colitis in mice. In contrast, alternative M2‐activating signals upregulate Elp3 expression through a PI3K‐ and STAT6‐dependent signaling pathway. The metabolic reprogramming linked to M2 macrophage polarization relies on Elp3 and the translation of multiple candidates, including the mitochondrial ribosome large subunit proteins Mrpl3, Mrpl13, and Mrpl47. By promoting translation of its activator Ric8b in a codon‐dependent manner, Elp3 also regulates mTORC2 activation. Elp3 expression in myeloid cells further promotes Wnt‐driven tumor initiation in the intestine by maintaining a pool of tumor‐associated macrophages exhibiting M2 features. Collectively, our data establish a functional link between tRNA modifications, mTORC2 activation, and macrophage polarization.
Collapse
|
|
3 |
19 |
3
|
Broix L, Turchetto S, Nguyen L. Coordination between Transport and Local Translation in Neurons. Trends Cell Biol 2021; 31:372-386. [PMID: 33526339 DOI: 10.1016/j.tcb.2021.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 11/15/2022]
Abstract
The axonal microtubules (MTs) support long-distance transport of cargoes that are dispatched to distinct cellular subcompartments. Among them, mRNAs are directly transported in membraneless ribonucleoprotein (RNP) granules that, together with ribosomes, can also hitchhike on fast-moving membrane-bound organelles for accurate transport along MTs. These organelles serve as platforms for mRNA translation, thus generating axonal foci of newly synthesized proteins. Local translation along axons not only supports MT network integrity but also modulates the processivity and function of molecular motors to allow proper trafficking of cargoes along MTs. Thus, identifying the mechanisms that coordinate axonal transport with local protein synthesis will shed new light on the processes underlying axon development and maintenance, whose deregulation often contribute to neurological disorders.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
10 |
4
|
Turchetto S, Broix L, Nguyen L. Ex Vivo Recording of Axonal Transport Dynamics on Postnatal Organotypic Cortical Slices. STAR Protoc 2020; 1:100131. [PMID: 33377025 PMCID: PMC7757112 DOI: 10.1016/j.xpro.2020.100131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Axonal transport is a physiological process adopted by neurons to transport organelles, proteins, and other molecules along their axonal projections. Here, we describe a step-by-step protocol to record the dynamics of axonal transport along the projections of callosal neurons by combining the in utero electroporation technique with the preparation of postnatal organotypic cortical slices. This ex vivo protocol has been developed to investigate axonal transport in a physiological setting closely reproducing the in vivo environment. For complete details on the use and execution of this protocol, please refer to Even et al. (2019).
Descriptive method to electroporate DNA plasmids in the embryonic mouse cortex Step-by-step procedure to generate and mount organotypic brain slices Protocol to record and analyze axonal transport in callosal projection neurons Guidelines for protocol troubleshooting and overview on its limitations
Collapse
|
|
5 |
2 |
5
|
Mitra S, Turchetto S, Wahlberg L, Linderoth B, Behbahani H, Eriksdotter M. Encapsulated cell biodelivery of NGF (ECB‐NGF) for AD therapy has implications from astroglial activation and amyloid‐beta toxicity. Alzheimers Dement 2020. [DOI: 10.1002/alz.045104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
5 |
|
6
|
El-Hachem N, Leclercq M, Susaeta Ruiz M, Vanleyssem R, Shostak K, Körner PR, Capron C, Martin-Morales L, Roncarati P, Lavergne A, Blomme A, Turchetto S, Goffin E, Thandapani P, Tarassov I, Nguyen L, Pirotte B, Chariot A, Marine JC, Herfs M, Rapino F, Agami R, Close P. Valine aminoacyl-tRNA synthetase promotes therapy resistance in melanoma. Nat Cell Biol 2024; 26:1154-1164. [PMID: 38849541 PMCID: PMC11252002 DOI: 10.1038/s41556-024-01439-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/12/2024] [Indexed: 06/09/2024]
Abstract
Transfer RNA dynamics contribute to cancer development through regulation of codon-specific messenger RNA translation. Specific aminoacyl-tRNA synthetases can either promote or suppress tumourigenesis. Here we show that valine aminoacyl-tRNA synthetase (VARS) is a key player in the codon-biased translation reprogramming induced by resistance to targeted (MAPK) therapy in melanoma. The proteome rewiring in patient-derived MAPK therapy-resistant melanoma is biased towards the usage of valine and coincides with the upregulation of valine cognate tRNAs and of VARS expression and activity. Strikingly, VARS knockdown re-sensitizes MAPK-therapy-resistant patient-derived melanoma in vitro and in vivo. Mechanistically, VARS regulates the messenger RNA translation of valine-enriched transcripts, among which hydroxyacyl-CoA dehydrogenase mRNA encodes for a key enzyme in fatty acid oxidation. Resistant melanoma cultures rely on fatty acid oxidation and hydroxyacyl-CoA dehydrogenase for their survival upon MAPK treatment. Together, our data demonstrate that VARS may represent an attractive therapeutic target for the treatment of therapy-resistant melanoma.
Collapse
|
research-article |
1 |
|
7
|
Giudice C, Turchetto S, Avallone G, Affolter V, Moore P, Procoli S, Roccabianca P. Clonal Rearrangements in Feline Borderline Idiopathic Inflammatory Uveitis: Presumed Transformation into Solitary Intraocular Lymphoma. J Comp Pathol 2017. [DOI: 10.1016/j.jcpa.2016.11.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
|
8 |
|
8
|
Even A, Morelli G, Turchetto S, Shilian M, Bail RL, Laguesse S, Krusy N, Brisker A, Brandis A, Inbar S, Chariot A, Saudou F, Dietrich P, Dragatsis I, Brone B, Broix L, Rigo JM, Weil M, Nguyen L. Publisher Correction: ATP-citrate lyase promotes axonal transport across species. Nat Commun 2021; 12:6678. [PMID: 34772940 PMCID: PMC8589845 DOI: 10.1038/s41467-021-26998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
Published Erratum |
4 |
|
9
|
Turchetto S, Le Bail R, Broix L, Nguyen L. Molecular Analysis of Axonal Transport Dynamics upon Modulation of Microtubule Acetylation. Methods Mol Biol 2022; 2431:207-224. [PMID: 35412278 DOI: 10.1007/978-1-0716-1990-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Axonal transport is used by neurons to distribute mRNAs, proteins, and organelles to their peripheral compartments in order to sustain their structural and functional integrity. Cargoes are transported along the microtubule (MT) network whose post-translational modifications influence transport dynamics. Here, we describe methods to modulate MT acetylation and record its impact on axonal transport in cultured mouse cortical projection neurons as well as in motoneurons of Drosophila melanogaster third-instar larvae. Specifically, we provide a step-by step procedure to reduce the level of MT acetylation and to record and analyze the transport of dye-labeled organelles in projection neuron axons cultured in microfluidic chambers. In addition, we describe the method to record and analyze GFP-tagged mitochondria transport along the motoneuron axons of transgenic Drosophila melanogaster third-instar larvae.
Collapse
|
|
3 |
|
10
|
Tecilla M, Caniatti M, Pazzini L, Pigoli C, Gambini M, Turchetto S, Ghisleni G, Roccabianca P. Vascular Melanosis with Muscular Necrosis in the Western Mediterranean Wild Elasmobranch Fishes, Raja clavata and Raja oxyrhynchus. J Comp Pathol 2020. [DOI: 10.1016/j.jcpa.2019.10.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
5 |
|
11
|
Turchetto S, Törner K, Grassinger J, Müller T, Floren A, Aupperle-Lellbach H. Evaluation of the Occurrence of Spontaneous Tumours in Young Dogs. J Comp Pathol 2022. [DOI: 10.1016/j.jcpa.2021.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
|
3 |
|