1
|
Chitanga S, Marcotty T, Namangala B, Van den Bossche P, Van Den Abbeele J, Delespaux V. High prevalence of drug resistance in animal trypanosomes without a history of drug exposure. PLoS Negl Trop Dis 2011; 5:e1454. [PMID: 22206039 PMCID: PMC3243716 DOI: 10.1371/journal.pntd.0001454] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/12/2011] [Indexed: 11/30/2022] Open
Abstract
Background Trypanosomosis caused by Trypanosoma congolense is a major constraint to animal health in sub-Saharan Africa. Unfortunately, the treatment of the disease is impaired by the spread of drug resistance. Resistance to diminazene aceturate (DA) in T. congolense is linked to a mutation modifying the functioning of a P2-type purine-transporter responsible for the uptake of the drug. Our objective was to verify if the mutation was linked or not to drug pressure. Methodology/Principal Findings Thirty-four T. congolense isolates sampled from tsetse or wildlife were screened for the DA-resistance linked mutation using DpnII-PCR-RFLP. The results showed 1 sensitive, 12 resistant and 21 mixed DpnII-PCR-RFLP profiles. This suggests that the mutation is present on at least one allele of each of the 33 isolates. For twelve of the isolates, a standard screening method in mice was used by (i) microscopic examination, (ii) trypanosome-specific 18S-PCR after 2 months of observation and (iii) weekly trypanosome-specific 18S-PCR for 8 weeks. The results showed that all mice remained microscopically trypanosome-positive after treatment with 5 mg/kg DA. With 10 and 20 mg/kg, 8.3% (n = 72) and 0% (n = 72) of the mice became parasitologically positive after treatment. However, in these latter groups the trypanosome-specific 18S-PCR indicated a higher degree of trypanosome-positivity, i.e., with a unique test, 51.4% (n = 72) and 38.9% (n = 72) and with the weekly tests 79.2% (n = 24) and 66.7% (n = 24) for 10 and 20 mg/kg respectively. Conclusion/Significance The widespread presence of the DA-resistance linked mutation in T. congolense isolated from wildlife suggests that this mutation is favourable to parasite survival and/or its dissemination in the host population independent from the presence of drug. After treatment with DA, those T. congolense isolates cause persisting low parasitaemias even after complete elimination of the drug and with little impact on the host's health. Trypanosomosis is responsible for the death of 3 million heads of cattle yearly, with 50 million animals at risk in sub-Saharan Africa. DA, a commonly used drug against the disease, was marketed decades ago. Drug resistance is reported in 21 African countries. A common argument about the origin of drug resistance is the selection by the drug of rare individuals that are naturally resistant and the propagation of those individuals in the population because of the competitive advantage they have when exposed to drug. When the drug pressure decreases, the wild-type individuals regain their supremacy. The principal objective of this study was thus to estimate the prevalence of trypanosomes resistant to DA in a population that was never exposed to the drug. Our results showing a high prevalence of drug resistance in environments free of any drug pressure is thought provoking and suggests that ceasing the use of DA will not allow for a return to a DA-sensitive population of trypanosomes. Drug resistance in animal trypanosomes thus present a pattern different from what is observed with Plasmodium sp. (causative agent of malaria) where a complete stoppage in the use of the chloroquine allows for a return to drug sensitivity.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
56 |
2
|
Delespaux V, Chitanga S, Geysen D, Goethals A, van den Bossche P, Geerts S. SSCP analysis of the P2 purine transporter TcoAT1 gene of Trypanosoma congolense leads to a simple PCR-RFLP test allowing the rapid identification of diminazene resistant stocks. Acta Trop 2006; 100:96-102. [PMID: 17083909 DOI: 10.1016/j.actatropica.2006.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 09/19/2006] [Accepted: 10/04/2006] [Indexed: 10/24/2022]
Abstract
Analyses were made on a Trypanosoma congolense contig coding a putative P2-like nucleoside transporter (the contig was named in this study TcoAT1). The sequence includes a start and stop codon and presents a high similarity with the gene TbAT1 of T. brucei (Smallest Sum Probability 2.8e-136). To investigate a possible link between point mutations and diminazene aceturate (DA) resistance in mice, the TcoAT1 putative genes of 26 T. congolense strains, characterised for DA sensitivity in the single dose mouse test, were screened by means of the Single Strand Conformation Polymorphism technique (SSCP). Results showed that the SSCP profiles of 23 out of 26 (88.5%) T. congolense strains were confirmed by the sensitivity test in mice with the commonly accepted criterion for sensitivity to diminazene being a CD80 of 20mg/kg in the mouse test. The remaining T. congolense strains showed a resistant SSCP profile and relapsed in mice after treatment at doses lower than 20mg/kg indicating that the SSCP is more sensitive than the single dose mouse test for the detection of resistance to diminazene. However, none of the strains used in this study showed a sensitive SSCP profile while they were resistant in the single dose mouse test. The sequencing of the TcoAT1 gene of two sensitive, two intermediate and two resistant strains allowed the set up of a PCR-RFLP test for the discrimination between sensitive and resistant strains confirming the SSCP results for the 26 strains of this study.
Collapse
|
Evaluation Study |
19 |
30 |
3
|
Simulundu E, Sinkala Y, Chambaro HM, Chinyemba A, Banda F, Mooya LE, Ndebe J, Chitanga S, Makungu C, Munthali G, Fandamu P, Takada A, Mweene AS. Genetic characterisation of African swine fever virus from 2017 outbreaks in Zambia: Identification of p72 genotype II variants in domestic pigs. ACTA ACUST UNITED AC 2018; 85:e1-e5. [PMID: 30035596 PMCID: PMC6238689 DOI: 10.4102/ojvr.v85i1.1562] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 11/01/2022]
Abstract
African swine fever (ASF) is a contagious haemorrhagic disease associated with causing heavy economic losses to the swine industry in many African countries. In 2017, Zambia experienced ASF outbreaks in Mbala District (Northern province) and for the first time in Isoka and Chinsali districts (Muchinga province). Meanwhile, another outbreak was observed in Chipata District (Eastern province). Genetic analysis of part of the B646L gene, E183L gene, CP204L gene and the central variable region of the B602L gene of ASF virus (ASFV) associated with the outbreaks in Mbala and Chipata districts was conducted. The results revealed that the ASFV detected in Mbala District was highly similar to that of the Georgia 2007/1 isolate across all the genome regions analysed. In contrast, while showing close relationship with the Georgia 2007/1 virus in the B646L gene, the ASFV detected in Chipata District showed remarkable genetic variation in the rest of the genes analysed. These results suggest that the Georgia 2007/1-like virus could be more diverse than what was previously thought, underscoring the need of continued surveillance and monitoring of ASFVs within the south-eastern African region to better understand their epidemiology and the relationships between outbreaks and their possible origin.
Collapse
|
Journal Article |
7 |
19 |
4
|
Simulundu E, Mupeta F, Chanda-Kapata P, Saasa N, Changula K, Muleya W, Chitanga S, Mwanza M, Simusika P, Chambaro H, Mubemba B, Kajihara M, Chanda D, Mulenga L, Fwoloshi S, Shibemba AL, Kapaya F, Zulu P, Musonda K, Monze M, Sinyange N, Mazaba ML, Kapin'a M, Chipimo PJ, Hamoonga R, Simwaba D, Ngosa W, Morales AN, Kayeyi N, Tembo J, Bates M, Orba Y, Sawa H, Takada A, Nalubamba KS, Malama K, Mukonka V, Zumla A, Kapata N. First COVID-19 case in Zambia - Comparative phylogenomic analyses of SARS-CoV-2 detected in African countries. Int J Infect Dis 2020; 102:455-459. [PMID: 33035675 PMCID: PMC7537667 DOI: 10.1016/j.ijid.2020.09.1480] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/19/2022] Open
Abstract
Since its first discovery in December 2019 in Wuhan, China, COVID-19, caused by the novel coronavirus SARS-CoV-2, has spread rapidly worldwide. While African countries were relatively spared initially, the initial low incidence of COVID-19 cases was not sustained for long due to continuing travel links between China, Europe and Africa. In preparation, Zambia had applied a multisectoral national epidemic disease surveillance and response system resulting in the identification of the first case within 48 h of the individual entering the country by air travel from a trip to France. Contact tracing showed that SARS-CoV-2 infection was contained within the patient’s household, with no further spread to attending health care workers or community members. Phylogenomic analysis of the patient’s SARS-CoV-2 strain showed that it belonged to lineage B.1.1., sharing the last common ancestor with SARS-CoV-2 strains recovered from South Africa. At the African continental level, our analysis showed that B.1 and B.1.1 lineages appear to be predominant in Africa. Whole genome sequence analysis should be part of all surveillance and case detection activities in order to monitor the origin and evolution of SARS-CoV-2 lineages across Africa.
Collapse
|
Journal Article |
5 |
18 |
5
|
Chitanga S, Simulundu E, Simuunza MC, Changula K, Qiu Y, Kajihara M, Nakao R, Syakalima M, Takada A, Mweene AS, Mukaratirwa S, Hang'ombe BM. First molecular detection and genetic characterization of Coxiella burnetii in Zambian dogs and rodents. Parasit Vectors 2018; 11:40. [PMID: 29343277 PMCID: PMC5773031 DOI: 10.1186/s13071-018-2629-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/08/2018] [Indexed: 11/24/2022] Open
Abstract
Coxiella burnetii, the causative agent of Q fever, is a zoonotic pathogen associated with sylvatic or domestic transmission cycles, with rodents being suspected to link the two transmission cycles. Infection and subsequent disease in humans has historically been associated with contact with infected livestock, especially sheep. However, recently there have been reports of Q fever outbreaks associated with contact with infected rodents and dogs. Studies exploring the potential role of these animal hosts in the epidemiology of Q fever in many developing countries in Africa are very limited. This study aimed to determine the potential role of rodents and dogs in the epidemiological cycle of C. burnetti in Zambia. Using pathogen-specific polymerase chain reaction assays targeting the 16S rRNA gene, C. burnetii was detected for the first time in 45% of rodents (9/20), in one shrew and in 10% of domestic dogs (15/150) screened in Zambia. Phylogenetic characterization of six samples based on the isocitrate synthase gene revealed that the strains were similar to a group of isolates from chronic human Q fever patients, goats and rodents reported in multiple continents. Considering the close proximity of domestic dogs and rodents to humans, especially in resource-limited communities, the presence of C. burnetii in these animals could be of significant public health importance. It is thus important to determine the burden of Q fever in humans in such resource-limited communities where there is close contact between humans, rodents and dogs.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
17 |
6
|
Mukaratirwa S, Chipunza J, Chitanga S, Chimonyo M, Bhebhe E. Canine cutaneous neoplasms: prevalence and influence of age, sex and site on the presence and potential malignancy of cutaneous neoplasms in dogs from Zimbabwe. J S Afr Vet Assoc 2005; 76:59-62. [PMID: 16108522 DOI: 10.4102/jsava.v76i2.398] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Histopathological examination was performed on cutaneous biopsies from 900 dogs with skin lesions from Zimbabwe, collected from 1996 to 2000. Clinical data were collected from medical records. Sixty per cent (540/900) of the cases were tumours and 40% (360/900) were non-neoplastic inflammatory or degenerative diseases. Thirty different histological types of tumour were diagnosed. The prevalence of epithelial, mesenchymal, lymphohistiocytic and melanocytic tumours was 39.4%, 44.4%, 7.4% and 8.7%, respectively. The 10 most common tumours, comprising 73.7% of all cutaneous neoplasms, were mast cell tumours, squamous cell carcinomas, perianal gland adenomas, lymphomas, benign melanomas, haemangiosarcomas, sebaceous gland adenomas, fibrosarcomas, lipomas and malignant melanomas. The prevalence of various neoplasms, age of affected dogs and sites of occurrence were similar to surveys in other countries, except that in Zimbabwe there was a greater prevalence of lymphomas and of tumours associated with increased exposure to ultraviolet light (squamous cell carcinomas, haemangiosarcomas and melanomas). For all classes of tumours the sex of the dog did not have any significant influence on the likelihood of developing a tumour. For a dog diagnosed with a tumour located on the trunk, the tumour was significantly more likely to be an epithelial tumour than a non-epithelial tumour The occurrence of melanocytic tumours on the trunk was significantly lower than at other sites. Lymphohistiocytic tumours were 10 times more likely to occur at multiple locations as opposed to single locations.
Collapse
|
Journal Article |
20 |
17 |
7
|
Vlahakis PA, Chitanga S, Simuunza MC, Simulundu E, Qiu Y, Changula K, Chambaro HM, Kajihara M, Nakao R, Takada A, Mweene AS. Molecular detection and characterization of zoonotic Anaplasma species in domestic dogs in Lusaka, Zambia. Ticks Tick Borne Dis 2018; 9:39-43. [DOI: 10.1016/j.ttbdis.2017.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/18/2017] [Accepted: 10/13/2017] [Indexed: 01/17/2023]
|
|
7 |
14 |
8
|
Mukaratirwa S, Chitanga S, Chimatira T, Makuleke C, Sayi ST, Bhebhe E. Combination therapy using intratumoral bacillus Calmette-Guerin (BCG) and vincristine in dogs with transmissible venereal tumours: therapeutic efficacy and histological changes. J S Afr Vet Assoc 2009; 80:92-6. [PMID: 19831270 DOI: 10.4102/jsava.v80i2.178] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Therapeutic efficacy and histological changes after bacillus Calmette-Guerin (BCG), vincristine and BCG/vincristine combination therapy of canine transmissible venereal tumours (CTVT) were studied. Twenty dogs with naturally occurring CTVT in the progression stage were divided into 4 groups and treated with intratumoral BCG, vincristine, BCG/vincristine combination therapy or intratumoral buffered saline (control group). Tumour sizes were determined weekly and tumour response to therapy was assessed. Tumour biopsies were taken weekly to evaluate histological changes. Complete tumour regression was observed in all the dogs treated with BCG, vincristine and BCG/vincristine combination therapy. BCG/vincristine combination therapy had a statistically significantly shorter regression time than BCG or vincristine therapy. No tumour regression was observed in the control group. Intratumoral BCG treatment resulted in the appearance of macrophages and increased numbers of tumour infiltrating lymphocytes (TILs) followed by tumour cell apoptosis and necrosis. Treatment with vincristine resulted in increased tumour cell apoptosis, reduction in the mitotic index and a decrease in the number of TILs. Tumours from dogs on BCG/vincristine combination were characterised by reduction in the mitotic index, and appearance of numerous TILs and macrophages followed by marked tumour cell apoptosis and necrosis. This study indicates that combined BCG and vincristine therapy is more effective than vincristine in treating CTVT, suggesting that the clinical course of this disease may be altered by immunochemotherapy.
Collapse
|
Journal Article |
16 |
13 |
9
|
Mukaratirwa S, Chiwome T, Chitanga S, Bhebhe E. Canine Transmissible Venereal Tumour: Asessment of Mast Cell Numbers as Indicators of the Growth Phase. Vet Res Commun 2006; 30:613-21. [PMID: 16838203 DOI: 10.1007/s11259-006-3309-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2005] [Indexed: 11/27/2022]
Abstract
Mast cells are immune cells that are involved mainly in type 1 hypersensitivity reactions, and they have been implicated in tumour angiogenesis. In this study we assessed the presence of mast cell numbers and microvessel density during the progression and regression stages of natural spontaneous canine transmissible venereal tumours (CTVT). Mast cells were demonstrated by histochemical staining with toluidine blue, alcian blue and safranin O. Microvessel counts were demonstrated by immunohistochemical labelling with an antibody against the endothelial cell marker factor VIII. Mitotic cells, apoptotic cells and tumour infiltrating lymphocytes were counted from haematoxylin-eosin-stained sections. Tumour fibrosis was evaluated on Masson's trichome-stained sections. The results showed that progressing tumours had significantly higher mast cell counts and microvessel counts at the invasive edges of the tumours than did regressing tumours. In both the progressing and regressing tumours, microvessel counts were significantly positively correlated with mast cell counts. Regressing tumours had significantly higher mast cell counts of the whole tumour than progressing tumours. The results also showed that progressing tumours had significantly higher mitotic rate than regressing tumours, and fibrosis and apoptosis were significantly higher in regressing tumours than progressing tumours. There were no significant differences between the biochemical and haematological values of dogs with progressing and regressing tumours. These results suggests that mast cells play a role in CTVT progression probably by promoting vascularization at the invasion front during the progression phase, and that mast cell count could be used as one of the histological factors to indicate growth stage of CTVT.
Collapse
|
|
19 |
13 |
10
|
Chitanga S, Chibesa K, Sichibalo K, Mubemba B, Nalubamba KS, Muleya W, Changula K, Simulundu E. Molecular Detection and Characterization of Rickettsia Species in Ixodid Ticks Collected From Cattle in Southern Zambia. Front Vet Sci 2021; 8:684487. [PMID: 34164457 PMCID: PMC8215536 DOI: 10.3389/fvets.2021.684487] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
Tick-borne zoonotic pathogens are increasingly becoming important across the world. In sub-Saharan Africa, tick-borne pathogens identified include viruses, bacteria and protozoa, with Rickettsia being the most frequently reported. This study was conducted to screen and identify Rickettsia species in ticks (Family Ixodidae) infesting livestock in selected districts of southern Zambia. A total of 236 ticks from three different genera (Amblyomma, Hyalomma, and Rhipicephalus) were collected over 14 months (May 2018-July 2019) and were subsequently screened for the presence of Rickettsia pathogens based on PCR amplification targeting the outer membrane protein B (ompB). An overall Rickettsia prevalence of 18.6% (44/236) was recorded. Multi-locus sequencing and phylogenetic characterization based on the ompB, ompA, 16S rRNA and citrate synthase (gltA) genes revealed the presence of Rickettsia africae (R. africae), R. aeschlimannii-like species and unidentified Rickettsia species. While R. aeschlimannii-like species are being reported for the first time in Zambia, R. africae has been reported previously, with our results showing a wider distribution of the bacteria in the country. Our study reveals the potential risk of human infection by zoonotic Rickettsia species and highlights the need for increased awareness of these infections in Zambia's public health systems.
Collapse
|
research-article |
4 |
13 |
11
|
Simulundu E, Ndashe K, Chambaro HM, Squarre D, Reilly PM, Chitanga S, Changula K, Mukubesa AN, Ndebe J, Tembo J, Kapata N, Bates M, Sinkala Y, Hang'ombe BM, Nalubamba KS, Kajihara M, Sasaki M, Orba Y, Takada A, Sawa H. West Nile Virus in Farmed Crocodiles, Zambia, 2019. Emerg Infect Dis 2021; 26:811-814. [PMID: 32187004 PMCID: PMC7101096 DOI: 10.3201/eid2604.190954] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We detected West Nile virus (WNV) nucleic acid in crocodiles (Crocodylus niloticus) in Zambia. Phylogenetically, the virus belonged to lineage 1a, which is predominant in the Northern Hemisphere. These data provide evidence that WNV is circulating in crocodiles in Africa and increases the risk for animal and human transmission.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
12 |
12
|
Mubemba B, Mburu MM, Changula K, Muleya W, Moonga LC, Chambaro HM, Kajihara M, Qiu Y, Orba Y, Hayashida K, Sutcliffe CG, Norris DE, Thuma PE, Ndubani P, Chitanga S, Sawa H, Takada A, Simulundu E. Current knowledge of vector-borne zoonotic pathogens in Zambia: A clarion call to scaling-up "One Health" research in the wake of emerging and re-emerging infectious diseases. PLoS Negl Trop Dis 2022; 16:e0010193. [PMID: 35120135 PMCID: PMC8849493 DOI: 10.1371/journal.pntd.0010193] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/16/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Background Although vector-borne zoonotic diseases are a major public health threat globally, they are usually neglected, especially among resource-constrained countries, including those in sub-Saharan Africa. This scoping review examined the current knowledge and identified research gaps of vector-borne zoonotic pathogens in Zambia. Methods and findings Major scientific databases (Web of Science, PubMed, Scopus, Google Scholar, CABI, Scientific Information Database (SID)) were searched for articles describing vector-borne (mosquitoes, ticks, fleas and tsetse flies) zoonotic pathogens in Zambia. Several mosquito-borne arboviruses have been reported including Yellow fever, Ntaya, Mayaro, Dengue, Zika, West Nile, Chikungunya, Sindbis, and Rift Valley fever viruses. Flea-borne zoonotic pathogens reported include Yersinia pestis and Rickettsia felis. Trypanosoma sp. was the only tsetse fly-borne pathogen identified. Further, tick-borne zoonotic pathogens reported included Crimean-Congo Haemorrhagic fever virus, Rickettsia sp., Anaplasma sp., Ehrlichia sp., Borrelia sp., and Coxiella burnetii. Conclusions This study revealed the presence of many vector-borne zoonotic pathogens circulating in vectors and animals in Zambia. Though reports of human clinical cases were limited, several serological studies provided considerable evidence of zoonotic transmission of vector-borne pathogens in humans. However, the disease burden in humans attributable to vector-borne zoonotic infections could not be ascertained from the available reports and this precludes the formulation of national policies that could help in the control and mitigation of the impact of these diseases in Zambia. Therefore, there is an urgent need to scale-up “One Health” research in emerging and re-emerging infectious diseases to enable the country to prepare for future epidemics, including pandemics. Despite vector-borne zoonoses being a major public health threat globally, they are often overlooked, particularly among resource-constrained countries in sub-Saharan Africa, including Zambia. Therefore, we reviewed the current knowledge and identified research gaps of vector-borne zoonotic pathogens in Zambia. We focussed on mosquito-, tick-, flea- and tsetse fly-borne zoonotic pathogens reported in the country. Although we found evidence of circulation of several vector-borne zoonotic pathogens among vectors, animals and humans, clinical cases in humans were rarely reported. This suggests sparse capacity for diagnosis of vector-borne pathogens in healthcare facilities in the country and possibly limited awareness and knowledge of the local epidemiology of these infectious agents. Establishment of facility-based surveillance of vector-borne zoonoses in health facilities could provide valuable insights on morbidity, disease severity, and mortalities associated with infections as well as immune responses. In addition, there is also need for increased genomic surveillance of vector-borne pathogens in vectors and animals and humans for a better understanding of the molecular epidemiology of these diseases in Zambia. Furthermore, vector ecology studies aimed at understanding the drivers of vector abundance, pathogen host range (i.e., including the range of vectors and reservoirs), parasite-host interactions and factors influencing frequency of human-vector contacts should be prioritized. The study revealed the need for Zambia to scale-up One Health research in emerging and re-emerging infectious diseases to enable the country to be better prepared for future epidemics, including pandemics.
Collapse
|
Review |
3 |
12 |
13
|
Chitanga S, Gaff H, Mukaratirwa S. Tick-borne pathogens of potential zoonotic importance in the southern African Region. J S Afr Vet Assoc 2014; 85:1084. [PMID: 25685942 DOI: 10.4102/jsava.v85i1.1084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 07/04/2014] [Accepted: 03/07/2014] [Indexed: 11/01/2022] Open
Abstract
The aim of this communication is to provide preliminary information on the tick-borne pathogens of potential zoonotic importance present in southern Africa, mainly focusing on their geographical distribution and host range, and to identify research gaps. The following tick-borne zoonoses have been reported to occur in southern Africa based mainly on case reports: Crimean-Congo haemorrhagic fever caused by Crimean-Congo haemorrhagic fever virus; ehrlichiosis caused by Ehrlichia ruminantium, Ehrlichia canis and Anaplasma phagocytophilum; babesiosis caused by Babesia microti; relapsing fever caused by Borrelia duttonii and rickettsioses caused by Rickettsia africae, Rickettsia aeschlimannii and Rickettsia conorii. The epidemiological factors influencing their occurrence are briefly reviewed.
Collapse
|
Journal Article |
11 |
11 |
14
|
Kapiya J, Nalubamba KS, Kaimoyo E, Changula K, Chidumayo N, Saasa N, Simuunza MC, Takada A, Mweene AS, Chitanga S, Simulundu E. First genetic detection and characterization of canine parvovirus from diarrheic dogs in Zambia. Arch Virol 2018; 164:303-307. [PMID: 30311077 DOI: 10.1007/s00705-018-4068-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022]
Abstract
Although canine parvovirus (CPV) causes severe gastroenteritis in dogs globally, information on the molecular epidemiology of the virus is lacking in many African countries. Here, 32 fecal samples collected from diarrheic dogs in Zambia were tested for CPV infection using molecular assays. CPV was detected in 23 samples (71.9%). Genetic characterization revealed the predominance of CPV-2c (91.3%). This finding differs from previous reports in Africa, which indicated that CPV-2a and CPV-2b were most prevalent. Phylogenetically, most Zambian CPVs formed a distinct cluster. This is the first report on the molecular characterization of CPV in Zambia.
Collapse
|
Journal Article |
7 |
8 |
15
|
Velu RM, Kwenda G, Libonda L, Chisenga CC, Flavien BN, Chilyabanyama ON, Simunyandi M, Bosomprah S, Sande NC, Changula K, Muleya W, Mburu MM, Mubemba B, Chitanga S, Tembo J, Bates M, Kapata N, Orba Y, Kajihara M, Takada A, Sawa H, Chilengi R, Simulundu E. Mosquito-Borne Viral Pathogens Detected in Zambia: A Systematic Review. Pathogens 2021; 10:pathogens10081007. [PMID: 34451471 PMCID: PMC8401848 DOI: 10.3390/pathogens10081007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Emerging and re-emerging mosquito-borne viral diseases are a threat to global health. This systematic review aimed to investigate the available evidence of mosquito-borne viral pathogens reported in Zambia. A search of literature was conducted in PubMed and Google Scholar for articles published from 1 January 1930 to 30 June 2020 using a combination of keywords. Eight mosquito-borne viruses belonging to three families, Togaviridae, Flaviviridae and Phenuiviridae were reported. Three viruses (Chikungunya virus, Mayaro virus, Mwinilunga virus) were reported among the togaviruses whilst four (dengue virus, West Nile virus, yellow fever virus, Zika virus) were among the flavivirus and only one virus, Rift Valley fever virus, was reported in the Phenuiviridae family. The majority of these mosquito-borne viruses were reported in Western and North-Western provinces. Aedes and Culex species were the main mosquito-borne viral vectors reported. Farming, fishing, movement of people and rain patterns were among factors associated with mosquito-borne viral infection in Zambia. Better diagnostic methods, such as the use of molecular tools, to detect the viruses in potential vectors, humans, and animals, including the recognition of arboviral risk zones and how the viruses circulate, are important for improved surveillance and design of effective prevention and control measures.
Collapse
|
Review |
4 |
5 |
16
|
Phiri MM, Kaimoyo E, Changula K, Silwamba I, Chambaro HM, Kapila P, Kajihara M, Simuunza M, Muma JB, Pandey GS, Takada A, Mweene AS, Chitanga S, Simulundu E. Molecular detection and characterization of genotype 1 bovine leukemia virus from beef cattle in the traditional sector in Zambia. Arch Virol 2019; 164:2531-2536. [PMID: 31300890 DOI: 10.1007/s00705-019-04350-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/29/2019] [Indexed: 11/28/2022]
Abstract
Whilst bovine leukemia virus (BLV) causes considerable economic losses to the dairy industry worldwide, information on its molecular epidemiology and economic impact in beef cattle is limited. Here, blood from 880 animals from Zambia's major cattle-rearing provinces was screened for BLV by nested PCR. Positive pools were sequenced and phylogenetically analyzed. The estimated pooled prevalence was 2.1%. All strains belonged to genotype 1 and formed a distinct phylogenetic cluster. The study suggests circulation of genotype 1 BLV in beef cattle in these regions. This is the first report on molecular detection and characterization of BLV from beef cattle in Africa.
Collapse
|
Journal Article |
6 |
4 |
17
|
Simulundu E, Mbambara S, Chambaro HM, Sichibalo K, Kajihara M, Nalubamba KS, Sawa H, Takada A, Changula K, Chitanga S. Prevalence and genetic diversity of Shibuyunji virus, a novel tick-borne phlebovirus identified in Zambia. Arch Virol 2021; 166:915-919. [PMID: 33475831 DOI: 10.1007/s00705-020-04924-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/04/2020] [Indexed: 11/27/2022]
Abstract
Tick-borne pathogens are an emerging public health threat worldwide. However, information on tick-borne viruses is scanty in sub-Saharan Africa. Here, by RT-PCR, 363 ticks (Amblyomma, Hyalomma and Rhipicephalus) in the Namwala and Livingstone districts of Zambia were screened for tick-borne phleboviruses (TBPVs). TBPVs (L gene) were detected in 19 (5.2%) Rhipicephalus ticks in Namwala. All the detected TBPVs were Shibuyunji viruses. Phylogenetically, they were closely related to American dog tick phlebovirus. This study highlights the possible role of Rhipicephalus ticks as the main host of Shibuyunji virus and suggests that these viruses may be present outside the area where they were initially discovered.
Collapse
|
Journal Article |
4 |
3 |
18
|
Chitanga S, Namangala B, De Deken R, Marcotty T. Shifting from wild to domestic hosts: the effect on the transmission of Trypanosoma congolense to tsetse flies. Acta Trop 2013; 125:32-6. [PMID: 23000543 DOI: 10.1016/j.actatropica.2012.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 07/24/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
Abstract
The epidemiology and impact of animal African trypanosomosis are influenced by the transmissibility and the pathogenicity of the circulating trypanosome strains in a particular biotope. The transmissibility of 22 Trypanosoma congolense strains isolated from domestic and wild animals was evaluated in a total of 1213 flies. Multivariate mixed models were used to compare infection and maturation rates in function of trypanosome origin (domestic or sylvatic) and pathogenicity. Both trypanosome pathogenicity and origin significantly affected the ability to establish a midgut infection in tsetse flies but not the maturation rates. The interaction between pathogenicity and origin was not significant. Since being pathogenic and having a domestic origin both increased transmissibility, dominant lowly pathogenic trypanosomes from domestic environments and highly pathogenic trypanosomes from sylvatic environments presented similar levels of transmissibility: 12% and 15%, respectively. Blood meals with parasite concentration ranging from 0.05 to 50trypanosomes/μl blood for 3 strains of T. congolense were provided to different batches of tsetse flies to evaluate the relationship between the parasite load in blood meals and the likelihood for a fly to become infected. A linear relationship between parasite load and transmissibility was observed at low parasitaemia and a plateau was observed for meals containing more than 5trypanosomes/μl. Maximum transmission was reached with 12.5trypanosomes/μl blood. About 50% of the flies were refractory to T. congolense, whatever their concentration in the blood meal. The results suggest that the dose-transmissibility relationship presents a similar profile for different T. congolense isolates.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
3 |
19
|
Kainga H, Chatanga E, Phonera MC, Kothowa JP, Dzimbiri P, Kamwendo G, Mulavu M, Khumalo CS, Changula K, Chambaro H, Harima H, Kajihara M, Mkandawire K, Chikungwa P, Chulu J, Njunga G, Chitanga S, Mubemba B, Sasaki M, Orba Y, Qiu Y, Yamagishi J, Simulundu E, Takada A, Namangala B, Sawa H, Muleya W. Current status and molecular epidemiology of rabies virus from different hosts and regions in Malawi. Arch Virol 2023; 168:61. [PMID: 36631547 PMCID: PMC9834359 DOI: 10.1007/s00705-022-05635-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/21/2022] [Indexed: 01/13/2023]
Abstract
Although rabies is endemic in Malawi, there have been no studies in which rabies virus was systematically investigated and characterized in multiple animal hosts in that country. In order to provide molecular epidemiological data on rabies virus in Malawi, 683 suspected rabies case reports from 2008 to 2021 were examined, and 46 (dog = 40, cow = 5, and cat = 1) viable rabies-positive brain samples archived at the Central Veterinary Laboratory (CVL), Lilongwe, Malawi, were analyzed genetically. The results showed an increase in the submission of brain samples from 2008 to 2010, with the highest number of submissions observed in 2020. Of the 683 case reports analyzed for the period under review, 38.1% (260/683) (CI: 34.44 - 41.84) were confirmed by direct fluorescent antibody test. Among the confirmed cases, 65.4% (170/260) (CI: 59.23 - 71.09) were canine rabies. Further, phylogenetic analysis revealed that sequences from different animal hosts clustered together within the Africa 1b lineage, suggesting that the strains circulating in livestock are similar to those in domestic dogs. This finding supports the hypothesis that canine rabies is spilling over to livestock and emphasizes the need for further studies to provide data for effective control of rabies in Malawi.
Collapse
|
research-article |
2 |
2 |
20
|
Munjita SM, Moonga G, Mukubesa AN, Ndebe J, Mubemba B, Vanaerschot M, Tato C, Tembo J, Kapata N, Chitanga S, Changula K, Kajihara M, Muleya W, Takada A, Fichet-Calvet E, Zumla A, Sawa H, Bates M, Munsaka S, Simulundu E. Luna Virus and Helminths in Wild Mastomys natalensis in Two Contrasting Habitats in Zambia: Risk Factors and Evidence of Virus Dissemination in Semen. Pathogens 2022; 11:1345. [PMID: 36422597 PMCID: PMC9697851 DOI: 10.3390/pathogens11111345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 03/29/2025] Open
Abstract
Transmission dynamics and the maintenance of mammarenaviruses in nature are poorly understood. Using metagenomic next-generation sequencing (mNGS) and RT-PCR, we investigated the presence of mammarenaviruses and co-infecting helminths in various tissues of 182 Mastomys natalensis rodents and 68 other small mammals in riverine and non-riverine habitats in Zambia. The Luna virus (LUAV) genome was the only mammarenavirus detected (7.7%; 14/182) from M. natalensis. Only one rodent from the non-riverine habitat was positive, while all six foetuses from one pregnant rodent carried LUAV. LUAV-specific mNGS reads were 24-fold higher in semen than in other tissues from males. Phylogenetically, the viruses were closely related to each other within the LUAV clade. Helminth infections were found in 11.5% (21/182) of M. natalensis. LUAV-helminth co-infections were observed in 50% (7/14) of virus-positive rodents. Juvenility (OR = 9.4; p = 0.018; 95% CI: 1.47-59.84), nematodes (OR = 15.5; p = 0.001; 95% CI: 3.11-76.70), cestodes (OR = 10.8; p = 0.025; 95% CI: 1.35-86.77), and being male (OR = 4.6; p = 0.036; 95% CI: 1.10-18.90) were associated with increased odds of LUAV RNA detection. The role of possible sexual and/or congenital transmission in the epidemiology of LUAV infections in rodents requires further study, along with the implications of possible helminth co-infection.
Collapse
|
research-article |
3 |
2 |
21
|
Munsaka G, Hayashida K, Mubemba B, Simulundu E, Mulunda N, Pule R, Sianongo S, Makuluni M, Muleya W, Changula K, Chitanga S, Mutengo M. Molecular subtyping of Blastocystis sp. detected in patients at a large tertiary referral hospital in Lusaka, Zambia. FRONTIERS IN PARASITOLOGY 2022; 1:1033485. [PMID: 39816464 PMCID: PMC11731786 DOI: 10.3389/fpara.2022.1033485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/11/2022] [Indexed: 01/18/2025]
Abstract
Background Blastocystis sp. is a common enteric eukaryote of humans whose pathogenicity is still debatable. However, a number of reported Blastocystis colonization associated with enteric disease exist. In Zambia, presence of the pathogen has previously been reported in children. However, the molecular epidemiology of Blastocystis colonization remains unclarified in Zambia. Methods and results Archived stool samples submitted for routine parasitological diagnosis at Zambia's largest tertiary referral hospital positive for Blastocystis sp. by microscopic examination were selected for the study. Subtyping of the Blastocystis was done based on polymerase chain reactions (PCR) amplification, sequencing and subsequent phylogenetic analysis of the 18S small subunit (SSU) rDNA gene. Four subtypes, ST1 (allele 4), ST2 (allele 12), ST3 (allele 34, 36, 37, 38, 39) and ST6 (allele 122), were identified by molecular procedures in the study, with some Zambian sequences showing close relationships with those detected in non-human primates and common rats. Conclusions The study revealed the circulation of multiple Blastocystis subtypes ST1, 20% (9/45), ST2, 15% (7/45), ST3 24.4% (11/45), and ST6, 2.2% (1/45) in the study population. The close clustering of some Zambian sequences with those detected from animals suggests the possibility of the presence of both anthroponotic and zoonotic transmission cycles in the country. Further studies in animal populations are recommended for a better understanding of the epidemiology of Blastocystis and for implementation of effective evidence-based control strategies.
Collapse
|
research-article |
3 |
2 |
22
|
Robertson LJ, Chitanga S, Mukaratirwa S. Food and waterborne parasites in Africa - threats and opportunities. Food Waterborne Parasitol 2020; 20:e00093. [PMID: 33145446 PMCID: PMC7591344 DOI: 10.1016/j.fawpar.2020.e00093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/27/2023] Open
Abstract
This Special Issue (SI) was conceptualized on the basis that success in tackling foodborne and waterborne parasites (FBP and WBP) will contribute to achievement of seven of the United Nation's Sustainable Development Goals (SDGs). We chose to take a closer look at research on FBP and WBP in Africa, given that attaining these SDGs may be particularly challenging there. In this SI we present 7 articles that provide particular insights into FBP and WBP from different regions in Africa. The articles take different approaches. Three papers are reviews addressing "occurrence" (either widely, in terms of parasite and/or geography, or with focus on a specific parasite genus at a more regional level); all 3 articles emphasise the importance of a "One Health" approach regarding control and prevention of FBP and WBP, and the need for further research to fulfil the information gaps identified. Two articles then report on investigations regarding the knowledge and understanding of different communities in Africa regarding various FBP and WBP. These articles highlight lack of awareness among communities at risk, and also, perhaps of greater relevance, gaps in the knowledge of health workers regarding some FBP and WBP of public health importance. The final two articles are research articles regarding prevalence and occurrence of specific WBP, both as infections and in the environment. This SI, while limited in depth and scope, provides insights into some of the current challenges associated with FBP and WBP in Africa that might result in a lack of success regarding attainment of the previously mentioned seven SDGs. We anticipate significant advances in research on FBP and WBP in Africa, and hope that a future SI on the same topic may present a more positive picture regarding the current status and research achievements.
Collapse
|
research-article |
5 |
1 |
23
|
Banda B, Siwila J, Mukubesa AN, Chitanga S, Kaonga P, Changula K, Simulundu E, Saasa N, Kelly P. Cryptosporidiosis is predominantly an urban, anthroponotic infectious disease among Zambian children. Trans R Soc Trop Med Hyg 2021; 116:270-277. [PMID: 34388242 DOI: 10.1093/trstmh/trab121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/15/2021] [Accepted: 07/22/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cryptosporidium species are leading causes of diarrhoea in children and immunocompromised individuals. This study aimed to characterise Cryptosporidium species from children in rural and urban settings of Zambia. METHODS Stool samples collected from 490 children aged <5 y with diarrhoea were assessed for Cryptosporidium oocysts microscopically. A structured questionnaire was used to collect demographic and socioeconomic characteristics. Positive samples were subjected to PCR and gp60 sequence analysis. RESULTS The overall prevalence was 10% (50/490, 95% CI 7.8 to 13.2) with a peak in March, the late rainy season. Children who came from households where boiling water was not practised (OR=2.5, 95% CI 1.29 to 5.17; p=0.007) or who had experienced recurrent episodes of diarrhoea (OR=9.31, 95% CI 3.02 to 28.73; p=0.001) were more likely to have Cryptosporidium infection. Genotyping of 16 positive samples (14 from urban and 2 from rural sources) revealed Cryptosporidium hominis (14/16) and Cryptosporidium parvum (2/16). The Cryptosporidium hominis subtypes identified were Ia, Ib and Ie with subtype families IeAIIG3 (1), IbA9G3R2 (2), IaA31R3 (3), IbA9G3 (5), IaA27R3 (1), IaA30R3 (1) and Ia (1). Subtypes IbA9G3 and Ia were identified in children from a rural area. Cryptosporidium parvum subtypes were IIcA5G3R2 (1) and IIcA5G3a (1). CONCLUSIONS All isolates successfully genotyped were C. hominis or anthroponotic C. parvum, suggesting that anthroponotic transmission dominates in Lusaka and the surrounding countryside.
Collapse
|
Journal Article |
4 |
1 |
24
|
Khumalo CS, Mulavu M, Changula K, Mubemba B, Bubala N, Martin AC, Ng'ombwa IB, Nalubamba KS, Chitanga S, Muleya W, Simulundu E. Molecular detection and phylogenetic characterization of Rickettsia in ticks collected from leopard tortoise ( Geochelone pardalis) in rural Zambia. SCIENCE IN ONE HEALTH 2024; 3:100074. [PMID: 39262844 PMCID: PMC11388670 DOI: 10.1016/j.soh.2024.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/03/2024] [Indexed: 09/13/2024]
Abstract
In sub-Saharan Africa, limited studies have investigated zoonotic pathogens that may be harboured by ticks infesting reptiles such as tortoises. Here, we report the presence of pathogenic Rickettsia in ticks (Amblyomma marmoreum) collected from the leopard tortoise (Geochelone pardalis) in rural Zambia. Using polymerase chain reaction, 56% (49/87) of ticks were positive for the Rickettsia outer membrane protein (ompB) gene. Multi-locus sequence and phylogenetic analysis based on the ompB, ompA, and citrate synthase (gltA) genes showed that the ticks carried R. africae, and other Rickettsia spp. closely related to R . raoultii, R . massiliae, R . tamurae and R . monacensis. Given the proximity between humans, livestock, and wildlife in these habitats, there exists a considerable risk of transmission of zoonotic Rickettsia to human populations in this rural setting. These results call for heightened awareness and further research into the dynamics of tick-borne diseases in regions where humans and animals coexist, particularly in the context of tortoise-associated ticks as vectors. Understanding and addressing these potential disease vectors is crucial for effective public health measures and the prevention of Rickettsia zoonoses.
Collapse
|
|
1 |
|
25
|
Katowa B, Kalonda A, Mubemba B, Matoba J, Shempela DM, Sikalima J, Kabungo B, Changula K, Chitanga S, Kasonde M, Kapona O, Kapata N, Musonda K, Monze M, Tembo J, Bates M, Zumla A, Sutcliffe CG, Kajihara M, Yamagishi J, Takada A, Sawa H, Chilengi R, Mukonka V, Muleya W, Simulundu E. Genomic Surveillance of SARS-CoV-2 in the Southern Province of Zambia: Detection and Characterization of Alpha, Beta, Delta, and Omicron Variants of Concern. Viruses 2022; 14:1865. [PMID: 36146671 PMCID: PMC9504048 DOI: 10.3390/v14091865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) have significantly impacted the global epidemiology of the pandemic. From December 2020 to April 2022, we conducted genomic surveillance of SARS-CoV-2 in the Southern Province of Zambia, a region that shares international borders with Botswana, Namibia, and Zimbabwe and is a major tourist destination. Genetic analysis of 40 SARS-CoV-2 whole genomes revealed the circulation of Alpha (B.1.1.7), Beta (B.1.351), Delta (AY.116), and multiple Omicron subvariants with the BA.1 subvariant being predominant. Whereas Beta, Delta, and Omicron variants were associated with the second, third, and fourth pandemic waves, respectively, the Alpha variant was not associated with any wave in the country. Phylogenetic analysis showed evidence of local transmission and possible multiple introductions of SARS-CoV-2 VOCs in Zambia from different European and African countries. Across the 40 genomes analysed, a total of 292 mutations were observed, including 182 missense mutations, 66 synonymous mutations, 23 deletions, 9 insertions, 1 stop codon, and 11 mutations in the non-coding region. This study stresses the need for the continued monitoring of SARS-CoV-2 circulation in Zambia, particularly in strategically positioned regions such as the Southern Province which could be at increased risk of introduction of novel VOCs.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
|