1
|
Réale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ. Integrating animal temperament within ecology and evolution. Biol Rev Camb Philos Soc 2007; 82:291-318. [PMID: 17437562 DOI: 10.1111/j.1469-185x.2007.00010.x] [Citation(s) in RCA: 2157] [Impact Index Per Article: 119.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Temperament describes the idea that individual behavioural differences are repeatable over time and across situations. This common phenomenon covers numerous traits, such as aggressiveness, avoidance of novelty, willingness to take risks, exploration, and sociality. The study of temperament is central to animal psychology, behavioural genetics, pharmacology, and animal husbandry, but relatively few studies have examined the ecology and evolution of temperament traits. This situation is surprising, given that temperament is likely to exert an important influence on many aspects of animal ecology and evolution, and that individual variation in temperament appears to be pervasive amongst animal species. Possible explanations for this neglect of temperament include a perceived irrelevance, an insufficient understanding of the link between temperament traits and fitness, and a lack of coherence in terminology with similar traits often given different names, or different traits given the same name. We propose that temperament can and should be studied within an evolutionary ecology framework and provide a terminology that could be used as a working tool for ecological studies of temperament. Our terminology includes five major temperament trait categories: shyness-boldness, exploration-avoidance, activity, sociability and aggressiveness. This terminology does not make inferences regarding underlying dispositions or psychological processes, which may have restrained ecologists and evolutionary biologists from working on these traits. We present extensive literature reviews that demonstrate that temperament traits are heritable, and linked to fitness and to several other traits of importance to ecology and evolution. Furthermore, we describe ecologically relevant measurement methods and point to several ecological and evolutionary topics that would benefit from considering temperament, such as phenotypic plasticity, conservation biology, population sampling, and invasion biology.
Collapse
|
|
18 |
2157 |
2
|
Reader SM, Laland KN. Social intelligence, innovation, and enhanced brain size in primates. Proc Natl Acad Sci U S A 2002; 99:4436-41. [PMID: 11891325 PMCID: PMC123666 DOI: 10.1073/pnas.062041299] [Citation(s) in RCA: 605] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2001] [Accepted: 01/24/2002] [Indexed: 11/18/2022] Open
Abstract
Despite considerable current interest in the evolution of intelligence, the intuitively appealing notion that brain volume and "intelligence" are linked remains untested. Here, we use ecologically relevant measures of cognitive ability, the reported incidence of behavioral innovation, social learning, and tool use, to show that brain size and cognitive capacity are indeed correlated. A comparative analysis of 533 instances of innovation, 445 observations of social learning, and 607 episodes of tool use established that social learning, innovation, and tool use frequencies are positively correlated with species' relative and absolute "executive" brain volumes, after controlling for phylogeny and research effort. Moreover, innovation and social learning frequencies covary across species, in conflict with the view that there is an evolutionary tradeoff between reliance on individual experience and social cues. These findings provide an empirical link between behavioral innovation, social learning capacities, and brain size in mammals. The ability to learn from others, invent new behaviors, and use tools may have played pivotal roles in primate brain evolution.
Collapse
|
research-article |
23 |
605 |
3
|
MacLean EL, Hare B, Nunn CL, Addessi E, Amici F, Anderson RC, Aureli F, Baker JM, Bania AE, Barnard AM, Boogert NJ, Brannon EM, Bray EE, Bray J, Brent LJN, Burkart JM, Call J, Cantlon JF, Cheke LG, Clayton NS, Delgado MM, DiVincenti LJ, Fujita K, Herrmann E, Hiramatsu C, Jacobs LF, Jordan KE, Laude JR, Leimgruber KL, Messer EJE, Moura ACDA, Ostojić L, Picard A, Platt ML, Plotnik JM, Range F, Reader SM, Reddy RB, Sandel AA, Santos LR, Schumann K, Seed AM, Sewall KB, Shaw RC, Slocombe KE, Su Y, Takimoto A, Tan J, Tao R, van Schaik CP, Virányi Z, Visalberghi E, Wade JC, Watanabe A, Widness J, Young JK, Zentall TR, Zhao Y. The evolution of self-control. Proc Natl Acad Sci U S A 2014; 111:E2140-8. [PMID: 24753565 PMCID: PMC4034204 DOI: 10.1073/pnas.1323533111] [Citation(s) in RCA: 438] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
438 |
4
|
Lefebvre L, Reader SM, Sol D. Brains, Innovations and Evolution in Birds and Primates. BRAIN, BEHAVIOR AND EVOLUTION 2004; 63:233-46. [PMID: 15084816 DOI: 10.1159/000076784] [Citation(s) in RCA: 402] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several comparative research programs have focused on the cognitive, life history and ecological traits that account for variation in brain size. We review one of these programs, a program that uses the reported frequency of behavioral innovation as an operational measure of cognition. In both birds and primates, innovation rate is positively correlated with the relative size of association areas in the brain, the hyperstriatum ventrale and neostriatum in birds and the isocortex and striatum in primates. Innovation rate is also positively correlated with the taxonomic distribution of tool use, as well as interspecific differences in learning. Some features of cognition have thus evolved in a remarkably similar way in primates and at least six phyletically-independent avian lineages. In birds, innovation rate is associated with the ability of species to deal with seasonal changes in the environment and to establish themselves in new regions, and it also appears to be related to the rate at which lineages diversify. Innovation rate provides a useful tool to quantify inter-taxon differences in cognition and to test classic hypotheses regarding the evolution of the brain.
Collapse
|
|
21 |
402 |
5
|
Reader SM, Hager Y, Laland KN. The evolution of primate general and cultural intelligence. Philos Trans R Soc Lond B Biol Sci 2011; 366:1017-27. [PMID: 21357224 DOI: 10.1098/rstb.2010.0342] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
There are consistent individual differences in human intelligence, attributable to a single 'general intelligence' factor, g. The evolutionary basis of g and its links to social learning and culture remain controversial. Conflicting hypotheses regard primate cognition as divided into specialized, independently evolving modules versus a single general process. To assess how processes underlying culture relate to one another and other cognitive capacities, we compiled ecologically relevant cognitive measures from multiple domains, namely reported incidences of behavioural innovation, social learning, tool use, extractive foraging and tactical deception, in 62 primate species. All exhibited strong positive associations in principal component and factor analyses, after statistically controlling for multiple potential confounds. This highly correlated composite of cognitive traits suggests social, technical and ecological abilities have coevolved in primates, indicative of an across-species general intelligence that includes elements of cultural intelligence. Our composite species-level measure of general intelligence, 'primate g(S)', covaried with both brain volume and captive learning performance measures. Our findings question the independence of cognitive traits and do not support 'massive modularity' in primate cognition, nor an exclusively social model of primate intelligence. High general intelligence has independently evolved at least four times, with convergent evolution in capuchins, baboons, macaques and great apes.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
260 |
6
|
Sol D, Bacher S, Reader SM, Lefebvre L. Brain Size Predicts the Success of Mammal Species Introduced into Novel Environments. Am Nat 2008; 172 Suppl 1:S63-71. [PMID: 18554145 DOI: 10.1086/588304] [Citation(s) in RCA: 259] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
|
17 |
259 |
7
|
|
|
24 |
190 |
8
|
Boogert NJ, Reader SM, Laland KN. The relation between social rank, neophobia and individual learning in starlings. Anim Behav 2006. [DOI: 10.1016/j.anbehav.2006.02.021] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
19 |
174 |
9
|
Milham MP, Ai L, Koo B, Xu T, Amiez C, Balezeau F, Baxter MG, Blezer ELA, Brochier T, Chen A, Croxson PL, Damatac CG, Dehaene S, Everling S, Fair DA, Fleysher L, Freiwald W, Froudist-Walsh S, Griffiths TD, Guedj C, Hadj-Bouziane F, Ben Hamed S, Harel N, Hiba B, Jarraya B, Jung B, Kastner S, Klink PC, Kwok SC, Laland KN, Leopold DA, Lindenfors P, Mars RB, Menon RS, Messinger A, Meunier M, Mok K, Morrison JH, Nacef J, Nagy J, Rios MO, Petkov CI, Pinsk M, Poirier C, Procyk E, Rajimehr R, Reader SM, Roelfsema PR, Rudko DA, Rushworth MFS, Russ BE, Sallet J, Schmid MC, Schwiedrzik CM, Seidlitz J, Sein J, Shmuel A, Sullivan EL, Ungerleider L, Thiele A, Todorov OS, Tsao D, Wang Z, Wilson CRE, Yacoub E, Ye FQ, Zarco W, Zhou YD, Margulies DS, Schroeder CE. An Open Resource for Non-human Primate Imaging. Neuron 2018; 100:61-74.e2. [PMID: 30269990 PMCID: PMC6231397 DOI: 10.1016/j.neuron.2018.08.039] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/02/2018] [Accepted: 08/30/2018] [Indexed: 01/11/2023]
Abstract
Non-human primate neuroimaging is a rapidly growing area of research that promises to transform and scale translational and cross-species comparative neuroscience. Unfortunately, the technological and methodological advances of the past two decades have outpaced the accrual of data, which is particularly challenging given the relatively few centers that have the necessary facilities and capabilities. The PRIMatE Data Exchange (PRIME-DE) addresses this challenge by aggregating independently acquired non-human primate magnetic resonance imaging (MRI) datasets and openly sharing them via the International Neuroimaging Data-sharing Initiative (INDI). Here, we present the rationale, design, and procedures for the PRIME-DE consortium, as well as the initial release, consisting of 25 independent data collections aggregated across 22 sites (total = 217 non-human primates). We also outline the unique pitfalls and challenges that should be considered in the analysis of non-human primate MRI datasets, including providing automated quality assessment of the contributed datasets.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
155 |
10
|
Abstract
When novel behaviour patterns spread through animal populations, typically one animal will initiate the diffusion. It is not known whether such 'innovators' are particularly creative individuals, individuals exposed to the appropriate environmental contingencies, or individuals in a particular motivational state. We describe three experiments that investigated the factors influencing foraging innovation in the guppy Poecilia reticulata. We exposed small laboratory populations of fish to novel foraging tasks, which involved exploration and problem solving to locate a novel food source. Experiments 1 and 2 found that (1) females were more likely to innovate than males, (2) food-deprived fish were more likely to innovate than nonfood-deprived subjects, and (3) smaller fish were more likely to innovate than larger fish. We suggest that the sex difference may reflect parental investment asymmetries in males and females. Experiment 3 found that past innovators were more likely to innovate than past noninnovators. Collectively, the results suggest that differences in foraging innovation in guppies are best accounted for by differences in motivational state, but, in addition, guppies may vary in their predisposition to innovate. Copyright 1999 The Association for the Study of Animal Behaviour.
Collapse
|
|
26 |
151 |
11
|
Abstract
Chitosan is a partially deacetylated polymer of N-acetyl glucosamine. It is essentially a natural, water-soluble, derivative of cellulose with unique properties. Chitosan is usually prepared from chitin (2 acetamido-2-deoxy beta-1,4-D-glucan) and chitin has been found in a wide range of natural sources (crustaceans, fungi, insects, annelids, molluscs, coelenterata etc.) However chitosan is only manufactured from crustaceans (crab and crayfish) primarily because a large amount of the crustacean exoskeleton is available as a by product of food processing. Squid pens (a waste byproduct of New Zealand squid processing) are a novel, renewable source of chitin and chitosan. Squid pens are currently regarded as waste and so the raw material is relatively cheap. This study was intended to assess the functional properties of squid pen chitosan. Chitosan was extracted from squid pens and assessed for composition, rheology, flocculation, film formation and antimicrobial properties. Crustacean chitosans were also assessed for comparison. Squid chitosan was colourless, had a low ash content and had significantly improved thickening and suspending properties. The flocculation capacity of squid chitosan was low in comparison with the crustacean sourced chitosans. However it should be possible to increase the flocculation capacity of squid pen chitosan by decreasing the degree of acetylation. Films made with squid chitosan were more elastic than crustacean chitosan with improved functional properties. This high quality chitosan could prove particularly suitable for medical/analytical applications.
Collapse
|
|
28 |
138 |
12
|
Schwarzacher T, Anamthawat-Jónsson K, Harrison GE, Islam AK, Jia JZ, King IP, Leitch AR, Miller TE, Reader SM, Rogers WJ, Shi M, Heslop-Harrison JS. Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1992; 84:778-86. [PMID: 24201474 DOI: 10.1007/bf00227384] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/1991] [Accepted: 02/26/1992] [Indexed: 05/24/2023]
Abstract
Genomic in situ hybridization was used to identify alien chromatin in chromosome spreads of wheat, Triticum aestivum L., lines incorporating chromosomes from Leymus multicaulis (Kar. and Kir.) Tzvelev and Thinopyrum bessarabicum (Savul. and Rayss) Löve, and chromosome arms from Hordeum chilense Roem. and Schult, H. vulgare L. and Secale cereale L. Total genomic DNA from the introgressed alien species was used as a probe, together with excess amounts of unlabelled blocking DNA from wheat, for DNA:DNA in-situ hybridization. The method labelled the alien chromatin yellow-green, while the wheat chromosomes showed only the orange-red fluorescence of the DNA counterstain. Nuclei were screened from seedling root-tips (including those from half-grains) and anther wall tissue. The genomic probing method identified alien chromosomes and chromosome arms and allowed counting in nuclei at all stages of the cell cycle, so complete metaphases were not needed. At prophase or interphase, two labelled domains were visible in most nuclei from disomic lines, while only one labelled domain was visible in monosomic lines. At metaphase, direct visualization of the morphology of the alien chromosome or chromosome segment was possible and allowed identification of the relationship of the alien chromatin to the wheat chromosomes. The genomic in-situ hybridization method is fast, sensitive, accurate and informative. Hence it is likely to be of great value for both cytogenetic analysis and in plant breeding programmes.
Collapse
|
|
33 |
126 |
13
|
Abstract
The way in which novel learned behaviour patterns spread through animal populations remains poorly understood, despite extensive field research and the recognition that such processes play an important role in the behavioural development, social interactions and evolution of many animal species. We conducted a series of controlled diffusions of foraging information in replicate experimental populations of the guppy, Poecilia reticulata. We presented novel foraging tasks over 15 trials to mixed-sex groups, made up of food-deprived and nonfood-deprived adults (experiment 1) or small, young fish and old, large adults (experiment 2). In these diffusions, knowledge of a route to a feeder could spread through the group by subjects learning from others, discovering the route for themselves, or, most likely, by some combination of these social and asocial learning processes. We found a striking sex difference, with novel foraging information spreading at a significantly faster rate through subgroups of females than of males. Females both discovered the goal and learned the route more quickly than males. Food-deprived individuals were faster at completing the tasks over the 15 trials than nonfood-deprived guppies, and there was a significant interaction between sex and size, with a sex difference in adults but not young individuals. There was also an interaction between sex and hunger level, with food deprivation having a stronger effect on male than female performance. We suggest that information may diffuse in a similar nonrandom or 'directed' manner through many natural populations of animals. Copyright 2000 The Association for the Study of Animal Behaviour.
Collapse
|
|
25 |
111 |
14
|
Aragón-Alcaide L, Miller T, Schwarzacher T, Reader S, Moore G. A cereal centromeric sequence. Chromosoma 1996; 105:261-8. [PMID: 8939818 DOI: 10.1007/bf02524643] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We report the identification of a family of sequences located by in situ hybridisation to the centromeres of all the Triticeae chromosomes studied, including the supernumerary and midget chromosomes, the centromeres of all maize chromosomes and the heterochromatic regions of rice chromosomes. This family of sequences (CCS1), together with the cereal genome alignments, will allow the evolution of the cereal centromeres and their sites to be studied. The family of sequences also shows homology to the CENP-B box. The centromeres of the cereal species and the proteins that interact with them can now be characterised.
Collapse
|
|
29 |
109 |
15
|
Reader SM. Causes of Individual Differences in Animal Exploration and Search. Top Cogn Sci 2015; 7:451-68. [DOI: 10.1111/tops.12148] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 10/08/2013] [Accepted: 02/01/2014] [Indexed: 01/06/2023]
|
|
10 |
98 |
16
|
Martínez-Pérez E, Shaw P, Reader S, Aragón-Alcaide L, Miller T, Moore G. Homologous chromosome pairing in wheat. J Cell Sci 1999; 112 ( Pt 11):1761-9. [PMID: 10318768 DOI: 10.1242/jcs.112.11.1761] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bread wheat is a hexaploid (AABBDD, 2n=6x=42) containing three related ancestral genomes, each having 7 chromosomes, giving 42 chromosomes in diploid cells. During meiosis true homologues are correctly associated in wild-type wheat, but a degree of association of related chromosomes (homoeologues) occurs in a mutant (ph1b). We show that the centromeres are associated in non-homologous pairs in all floral tissues studied, both in wild-type wheat and the ph1b mutant. The non-homologous centromere associations then become homologous premeiotically in wild-type wheat in both meiocytes and the tapetal cells, but not in the mutant. In wild-type wheat, the homologues are colocalised along their length at this stage, but the telomeres remain distinct. A single telomere cluster (bouquet) is formed in the meiocytes only by the onset of leptotene. The sub-telomeric regions of the homologues associate as the telomere cluster forms. The homologous associations at the telomeres and centromeres are maintained through meiotic prophase, although, during leptotene, the two homologues and also the sister chromatids within each homologue are separate along the rest of their length. As meiosis progresses, first the sister chromatids and then the homologues associate intimately. In wild-type wheat, first the centromere grouping, then the bouquet disperse by the end of zygotene.
Collapse
|
|
26 |
96 |
17
|
Abstract
AbstractThis paper reviews behavioural, neurological and cognitive correlates of innovation at the individual, population and species level, focusing on birds and primates. Innovation, new or modified learned behaviour not previously found in the population, is the first stage in many instances of cultural transmission and may play an important role in the lives of animals with generalist or opportunistic lifestyles. Within-species, innovation is associated with low neophobia, high neophilia, and with high social learning propensities. Indices of innovatory propensities can be calculated for taxonomic groups by counting the frequency of reports of innovation in published literature. These innovation rate data provide a useful comparative measure for studies of behavioural flexibility and cognition. Innovation rate is positively correlated with the relative size of association areas in the brain, namely the hyperstriatum ventrale and neostriatum in birds, and the neocortex and striatum in primates. Innovation rate is also positively correlated with the reported variety of tool use, as well as interspecific differences in learning. Current evidence thus suggests similar patterns of cognitive evolution in primates and birds.
Collapse
|
|
22 |
93 |
18
|
Roberts MA, Reader SM, Dalgliesh C, Miller TE, Foote TN, Fish LJ, Snape JW, Moore G. Induction and characterization of Ph1 wheat mutants. Genetics 1999; 153:1909-18. [PMID: 10581295 PMCID: PMC1460846 DOI: 10.1093/genetics/153.4.1909] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cloning of genes for complex traits in polyploid plants that possess large genomes, such as hexaploid wheat, requires an efficient strategy. We present here one such strategy focusing on the homologous pairing suppressor (Ph1) locus of wheat. This locus has been shown to affect both premeiotic and meiotic processes, possibly suggesting a complex control. The strategy combined the identification of lines carrying specific deletions using multiplex PCR screening of fast-neutron irradiated wheat populations with the approach of physically mapping the region in the rice genome equivalent to the deletion to reveal its gene content. As a result, we have located the Ph1 factor controlling the euploid-like level of homologous chromosome pairing to the region between two loci (Xrgc846 and Xpsr150A). These loci are located within 400 kb of each other in the rice genome. By sequencing this region of the rice genome, it should now be possible to define the nature of this factor.
Collapse
|
research-article |
26 |
92 |
19
|
Witcombe JR, Hollington PA, Howarth CJ, Reader S, Steele KA. Breeding for abiotic stresses for sustainable agriculture. Philos Trans R Soc Lond B Biol Sci 2008; 363:703-16. [PMID: 17761467 PMCID: PMC2610105 DOI: 10.1098/rstb.2007.2179] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Using cereal crops as examples, we review the breeding for tolerance to the abiotic stresses of low nitrogen, drought, salinity and aluminium toxicity. All are already important abiotic stress factors that cause large and widespread yield reductions. Drought will increase in importance with climate change, the area of irrigated land that is salinized continues to increase, and the cost of inorganic N is set to rise. There is good potential for directly breeding for adaptation to low N while retaining an ability to respond to high N conditions. Breeding for drought and salinity tolerance have proven to be difficult, and the complex mechanisms of tolerance are reviewed. Marker-assisted selection for component traits of drought in rice and pearl millet and salinity tolerance in wheat has produced some positive results and the pyramiding of stable quantitative trait locuses controlling component traits may provide a solution. New genomic technologies promise to make progress for breeding tolerance to these two stresses through a more fundamental understanding of underlying processes and identification of the genes responsible. In wheat, there is a great potential of breeding genetic resistance for salinity and aluminium tolerance through the contributions of wild relatives.
Collapse
|
Review |
17 |
91 |
20
|
Abstract
Many mammals have brains substantially larger than expected for their body size, but the reasons for this remain ambiguous. Enlarged brains are metabolically expensive and require elongated developmental periods, and so natural selection should have favoured their evolution only if they provide counterbalancing advantages. One possible advantage is facilitating the construction of behavioural responses to unusual, novel or complex socio-ecological challenges. This buffer effect should increase survival rates and favour a longer reproductive life, thereby compensating for the costs of delayed reproduction. Here, using a global database of 493 species, we provide evidence showing that mammals with enlarged brains (relative to their body size) live longer and have a longer reproductive lifespan. Our analysis supports and extends previous findings, accounting for the possible confounding effects of other life history traits, ecological and dietary factors, and phylogenetic autocorrelation. Thus, these findings provide support for the hypothesis that mammals counterbalance the costs of affording large brains with a longer reproductive life.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
88 |
21
|
Aragón-Alcaide L, Reader S, Beven A, Shaw P, Miller T, Moore G. Association of homologous chromosomes during floral development. Curr Biol 1997; 7:905-8. [PMID: 9382806 DOI: 10.1016/s0960-9822(06)00383-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Reduction in chromosome number and genetic recombination during meiosis require the prior association of homologous chromosomes, and this has been assumed to be a central event in meiosis. Various studies have suggested, however, that while the reduction division of meiosis is a universally conserved process, the pre-meiotic association of homologues differs among organisms. In the fruit fly Drosophila melanogaster, some somatic tissues also show association of homologues [1,2]. In the budding yeast Saccharomyces cerevisiae, there is some evidence for homologue association during the interphase before meiotic division [3,4], and it has been argued that such associations lead directly to meiotic homologue pairing during prophase I [5]. The available evidence for mammals suggests that homologous chromosomes do not associate in germ cells prior to meiotic prophase [6]. To study the occurrence of homologue pairing in wheat, we have used vibratome tissue sections of wheat florets to determine the location of homologous chromosomes, centromeres and telomeres in different cell types of developing anthers. Fluorescence in situ hybridization followed by confocal microscopy demonstrated that homologous chromosomes associate pre-meiotically in meiocytes (germ-line cells). Surprisingly, association of homologues was observed simultaneously in all the surrounding somatic tapetum cells. Homologues failed to associate at equivalent stages in a homologue recognition mutant. These results demonstrate that the factors responsible for the recognition and association of homologues in wheat act before the onset of meiotic prophase. The observation of homologue association in somatic tapetum cells demonstrates that this process and meiotic division are separable.
Collapse
|
|
28 |
80 |
22
|
Milham M, Petkov CI, Margulies DS, Schroeder CE, Basso MA, Belin P, Fair DA, Fox A, Kastner S, Mars RB, Messinger A, Poirier C, Vanduffel W, Van Essen DC, Alvand A, Becker Y, Ben Hamed S, Benn A, Bodin C, Boretius S, Cagna B, Coulon O, El-Gohary SH, Evrard H, Forkel SJ, Friedrich P, Froudist-Walsh S, Garza-Villarreal EA, Gao Y, Gozzi A, Grigis A, Hartig R, Hayashi T, Heuer K, Howells H, Ardesch DJ, Jarraya B, Jarrett W, Jedema HP, Kagan I, Kelly C, Kennedy H, Klink PC, Kwok SC, Leech R, Liu X, Madan C, Madushanka W, Majka P, Mallon AM, Marche K, Meguerditchian A, Menon RS, Merchant H, Mitchell A, Nenning KH, Nikolaidis A, Ortiz-Rios M, Pagani M, Pareek V, Prescott M, Procyk E, Rajimehr R, Rautu IS, Raz A, Roe AW, Rossi-Pool R, Roumazeilles L, Sakai T, Sallet J, García-Saldivar P, Sato C, Sawiak S, Schiffer M, Schwiedrzik CM, Seidlitz J, Sein J, Shen ZM, Shmuel A, Silva AC, Simone L, Sirmpilatze N, Sliwa J, Smallwood J, Tasserie J, Thiebaut de Schotten M, Toro R, Trapeau R, Uhrig L, Vezoli J, Wang Z, Wells S, Williams B, Xu T, Xu AG, Yacoub E, Zhan M, Ai L, Amiez C, Balezeau F, et alMilham M, Petkov CI, Margulies DS, Schroeder CE, Basso MA, Belin P, Fair DA, Fox A, Kastner S, Mars RB, Messinger A, Poirier C, Vanduffel W, Van Essen DC, Alvand A, Becker Y, Ben Hamed S, Benn A, Bodin C, Boretius S, Cagna B, Coulon O, El-Gohary SH, Evrard H, Forkel SJ, Friedrich P, Froudist-Walsh S, Garza-Villarreal EA, Gao Y, Gozzi A, Grigis A, Hartig R, Hayashi T, Heuer K, Howells H, Ardesch DJ, Jarraya B, Jarrett W, Jedema HP, Kagan I, Kelly C, Kennedy H, Klink PC, Kwok SC, Leech R, Liu X, Madan C, Madushanka W, Majka P, Mallon AM, Marche K, Meguerditchian A, Menon RS, Merchant H, Mitchell A, Nenning KH, Nikolaidis A, Ortiz-Rios M, Pagani M, Pareek V, Prescott M, Procyk E, Rajimehr R, Rautu IS, Raz A, Roe AW, Rossi-Pool R, Roumazeilles L, Sakai T, Sallet J, García-Saldivar P, Sato C, Sawiak S, Schiffer M, Schwiedrzik CM, Seidlitz J, Sein J, Shen ZM, Shmuel A, Silva AC, Simone L, Sirmpilatze N, Sliwa J, Smallwood J, Tasserie J, Thiebaut de Schotten M, Toro R, Trapeau R, Uhrig L, Vezoli J, Wang Z, Wells S, Williams B, Xu T, Xu AG, Yacoub E, Zhan M, Ai L, Amiez C, Balezeau F, Baxter MG, Blezer EL, Brochier T, Chen A, Croxson PL, Damatac CG, Dehaene S, Everling S, Fleysher L, Freiwald W, Griffiths TD, Guedj C, Hadj-Bouziane F, Harel N, Hiba B, Jung B, Koo B, Laland KN, Leopold DA, Lindenfors P, Meunier M, Mok K, Morrison JH, Nacef J, Nagy J, Pinsk M, Reader SM, Roelfsema PR, Rudko DA, Rushworth MF, Russ BE, Schmid MC, Sullivan EL, Thiele A, Todorov OS, Tsao D, Ungerleider L, Wilson CR, Ye FQ, Zarco W, Zhou YD. Accelerating the Evolution of Nonhuman Primate Neuroimaging. Neuron 2020; 105:600-603. [PMID: 32078795 PMCID: PMC7610430 DOI: 10.1016/j.neuron.2019.12.023] [Show More Authors] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 11/17/2022]
Abstract
Nonhuman primate neuroimaging is on the cusp of a transformation, much in the same way its human counterpart was in 2010, when the Human Connectome Project was launched to accelerate progress. Inspired by an open data-sharing initiative, the global community recently met and, in this article, breaks through obstacles to define its ambitions.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
75 |
23
|
|
research-article |
29 |
70 |
24
|
Navarrete AF, Reader SM, Street SE, Whalen A, Laland KN. The coevolution of innovation and technical intelligence in primates. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150186. [PMID: 26926276 PMCID: PMC4780528 DOI: 10.1098/rstb.2015.0186] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2015] [Indexed: 01/04/2023] Open
Abstract
In birds and primates, the frequency of behavioural innovation has been shown to covary with absolute and relative brain size, leading to the suggestion that large brains allow animals to innovate, and/or that selection for innovativeness, together with social learning, may have driven brain enlargement. We examined the relationship between primate brain size and both technical (i.e. tool using) and non-technical innovation, deploying a combination of phylogenetically informed regression and exploratory causal graph analyses. Regression analyses revealed that absolute and relative brain size correlated positively with technical innovation, and exhibited consistently weaker, but still positive, relationships with non-technical innovation. These findings mirror similar results in birds. Our exploratory causal graph analyses suggested that technical innovation shares strong direct relationships with brain size, body size, social learning rate and social group size, whereas non-technical innovation did not exhibit a direct relationship with brain size. Nonetheless, non-technical innovation was linked to brain size indirectly via diet and life-history variables. Our findings support 'technical intelligence' hypotheses in linking technical innovation to encephalization in the restricted set of primate lineages where technical innovation has been reported. Our findings also provide support for a broad co-evolving complex of brain, behaviour, life-history, social and dietary variables, providing secondary support for social and ecological intelligence hypotheses. The ability to gain access to difficult-to-extract, but potentially nutrient-rich, resources through tool use may have conferred on some primates adaptive advantages, leading to selection for brain circuitry that underlies technical proficiency.
Collapse
|
research-article |
9 |
69 |
25
|
Reader S, Moutardier V, Denizeau F. Tributyltin triggers apoptosis in trout hepatocytes: the role of Ca2+, protein kinase C and proteases. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1448:473-85. [PMID: 9990299 DOI: 10.1016/s0167-4889(98)00166-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The purpose of the present study was to study the mechanisms involved in the induction of apoptosis and by tributyltin (TBT) in rainbow trout hepatocytes, and to examine the role of intracellular Ca2+, protein kinase C (PKC) and proteases in the apoptotic process. The intracellular Ca2+ chelator BAPTA-AM has a suppressive effect on TBT-mediated apoptosis. However, exposure to the ionophore A23187 is not sufficient to induce apoptosis in trout hepatocytes. The results obtained also show that TBT stimulates PKC gamma and delta translocation from cytosol to the plasma membrane in trout hepatocytes after 30 min of exposure. However, PKC gamma translocation is down-regulated after 90 min of treatment. The addition of protein kinase inhibitors (staurosporine and H-7) not only fails to inhibit apoptosis induced by TBT, but also leads to enhancement of DNA fragmentation. These inhibitors also afford a remarkable protection against the loss of plasma membrane integrity caused by TBT exposure. PMA, a direct activator of PKC, fails to stimulate DNA fragmentation. In addition, Z-VAD.FMK is an extremely potent inhibitor of TBT-induced apoptosis in trout hepatocytes, indicating that the activation of ICE-like proteases is a key event in this process. The cysteine protease inhibitor N-ethylmaleimide also prevented TBT-induced DNA fragmentation. Taken together, these data allow for the first time to suggest a mechanistic model of TBT-induced apoptosis. We propose that TBT could trigger apoptosis through a step involving Ca2+ efflux from the endoplasmic reticulum or other intracellular pools and by mechanisms involving cysteine proteases, such as calpains, as well as the phosphorylation status of apoptotic proteins such as Bcl-2 homologues.
Collapse
|
|
26 |
62 |