1
|
Gonçalves GD, Semprebon SC, Biazi BI, Mantovani MS, Fernandes GSA. Bisphenol A reduces testosterone production in TM3 Leydig cells independently of its effects on cell death and mitochondrial membrane potential. Reprod Toxicol 2018; 76:26-34. [DOI: 10.1016/j.reprotox.2017.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 12/29/2022]
|
|
7 |
24 |
2
|
Semprebon SC, Marques LA, D'Epiro GFR, de Camargo EA, da Silva GN, Niwa AM, Macedo Junior F, Mantovani MS. Antiproliferative activity of goniothalamin enantiomers involves DNA damage, cell cycle arrest and apoptosis induction in MCF-7 and HB4a cells. Toxicol In Vitro 2015; 30:250-63. [PMID: 26522230 DOI: 10.1016/j.tiv.2015.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/20/2015] [Accepted: 10/12/2015] [Indexed: 12/21/2022]
Abstract
(R)-goniothalamin (R-GNT) is a styryl lactone that exhibits antiproliferative property against several tumor cell lines. (S)-goniothalamin (S-GNT) is the synthetic enantiomer of R-GNT, and their biological properties are poorly understood. The aim of this study was to evaluate the antiproliferative mechanisms of (R)-goniothalamin and (S)-goniothalamin in MCF-7 breast cancer cells and HB4a epithelial mammary cells. To determine the mechanisms of cell growth inhibition, we analyzed the ability of R-GNT and S-GNT to induce DNA damage, cell cycle arrest and apoptosis. Moreover, the gene expression of cell cycle components, including cyclin, CDKs and CKIs, as well as of genes involved in apoptosis and the DNA damage response were evaluated. The natural enantiomer R-GNT proved more effective in both cell lines than did the synthetic enantiomer S-GNT, inhibiting cell proliferation via cell cycle arrest and apoptosis induction, likely in response to DNA damage. The cell cycle inhibition caused by R-GNT was mediated through the upregulation of CIP/KIP cyclin-kinase inhibitors and through the downregulation of cyclins and CDKs. S-GNT, in turn, was able to cause G0/G1 cell cycle arrest and DNA damage in MCF-7 cells and apoptosis induction only in HB4a cells. Therefore, goniothalamin presents potent antiproliferative activity to breast cancer cells MCF-7. However, exposure to goniothalamin brings some undesirable effects to non-tumor cells HB4a, including genotoxicity and apoptosis induction.
Collapse
|
Journal Article |
10 |
15 |
3
|
Felicidade I, Sartori D, Coort SLM, Semprebon SC, Niwa AM, D'Epiro GFR, Biazi BI, Marques LA, Evelo CT, Mantovani MS, Ribeiro LR. Role of 1α,25-Dihydroxyvitamin D3 in Adipogenesis of SGBS Cells: New Insights into Human Preadipocyte Proliferation. Cell Physiol Biochem 2018; 48:397-408. [PMID: 30016791 DOI: 10.1159/000491770] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/04/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Compared with non-obese individuals, obese individuals commonly store more vitamin D in adipose tissue. VDR expression in adipose tissue can influence adipogenesis and is therefore a target pathway deserving further study. This study aims to assess the role of 1,25(OH)2D3 in human preadipocyte proliferation and differentiation. METHODS RTCA, MTT, and trypan blue assays were used to assess the effects of 1,25(OH)2D3 on the viability, proliferation, and adipogenic differentiation of SGBS cells. Cell cycle and apoptosis analyses were performed with flow cytometry, triglycerides were quantified, and RT-qPCR was used to assess gene expression. RESULTS We confirmed that the SGBS cell model is suitable for studying adipogenesis and demonstrated that the differentiation protocol induces cell maturation, thereby increasing the lipid content of cells independently of treatment. 1,25(OH)2D3 treatment had different effects according to the cell stage, indicating different modes of action driving proliferation and differentiation. In preadipocytes, 1,25(OH)2D3 induced G1 growth arrest at both tested concentrations without altering CDKN1A gene expression. Treatment with 100 nM 1,25(OH)2D3 also decreased MTT absorbance and the lipid concentration. Moreover, increased normalized cell index values and decreased metabolic activity were not induced by proliferation or apoptosis. Exposure to 100 nM 1,25(OH)2D3 induced VDR, CEBPA, and CEBPB expression, even in the preadipocyte stage. During adipogenesis, 1,25(OH)2D3 had limited effects on processes such as VDR and PPARG gene expression, but it upregulated CEBPA expression. CONCLUSIONS We demonstrated for the first time that 1,25(OH)2D3 induces changes in preadipocytes, including VDR expression and growth arrest, and increases the lipid content in adipocytes treated for 16 days. Preadipocytes are important cells in adipose tissue homeostasis, and understanding the role of 1,25(OH)2D3 in adipogenesis is a crucial step in ensuring adequate vitamin D supplementation, especially for obese individuals.
Collapse
|
Journal Article |
7 |
14 |
4
|
Corveloni AC, Semprebon SC, Baranoski A, Biazi BI, Zanetti TA, Mantovani MS. Carnosic acid exhibits antiproliferative and proapoptotic effects in tumoral NCI-H460 and nontumoral IMR-90 lung cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:412-421. [PMID: 32456600 DOI: 10.1080/15287394.2020.1767741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carnosic acid (CA) is a phenolic diterpene with many important biological activities including antimicrobial, antioxidant, anti-inflammatory properties, and anti-proliferative properties. The aim of the present study was to investigate cytotoxic activity, cell cycle, apoptotic, and molecular effects attributed to CA in non-tumoral IMR-90 (human fetal lung fibroblasts), as well as tumoral NCI-H460 (human non-small-cell lung cancer) cell lines. Cell proliferation was evaluated by Real-Time Cell Analysis system, while apoptosis and cell cycle were assessed using flow cytometry. RT-qPCR was used to estimate the relative expression of genes involved in cell cycle regulation, DNA damage and repair, and apoptosis induction. CA inhibited proliferation of IMR-90 and NCI-H460 cells via cell cycle arrest at G0/G1 and G2/M phases, according to the treatment concentration. The mRNA levels of genes encoding cyclins A2, B1, and B2 were downregulated in response to CA treatment of IMR-90 cells. Apoptosis was induced and proapoptotic gene PUMA was upregulated in both cell lines. mRNA levels of genes ATR, CCND1, CHK1, CHK2, MYC, GADD45A, H2AFX, MTOR, TP53, and BCL2, CASP3 were not markedly changed following CA treatments. Although CA exerted antiproliferative activity against NCI-H460 tumor cells, this phytochemical induced toxic effects in non-tumoral cells, and thus needs to be considered carefully prior to pharmacological use therapeutically.
Collapse
|
|
5 |
13 |
5
|
Semprebon SC, de Fátima Â, Lepri SR, Sartori D, Ribeiro LR, Mantovani MS. (S)-Goniothalamin induces DNA damage, apoptosis, and decrease in BIRC5 messenger RNA levels in NCI-H460 cells. Hum Exp Toxicol 2013; 33:3-13. [PMID: 23749456 DOI: 10.1177/0960327113491506] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
(R)-Goniothalamin (R-GNT) is a secondary metabolite isolated from the plants of the genus Goniothalamus. This molecule has attracted the attention of researchers because of its selective cytotoxicity against tumor cells and its ability to induce apoptosis. (S)-Goniothalamin (S-GNT) is a synthetic enantiomer of R-GNT, and its mechanism of action is largely unknown. In this study, we investigated the activity of S-GNT in a human non-small cell lung cancer NCI-H460 cells. We observed that the cells exposed to this compound exhibited cytotoxicity in a concentration-dependent manner. Based on the data obtained through the assessment of apoptosis induction in situ and the comet assay, we suggest that this cytotoxicity occurs due to the potential ability of this molecule to induce DNA damage with the consequent induction of cell death via apoptosis. A significant reduction in the messenger RNA levels of baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) gene that encodes the survivin protein was found. This novel finding may explain the inhibition of cell proliferation and induction of apoptosis in tumor cells caused by this compound.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
13 |
6
|
Niwa AM, D Epiro GFR, Marques LA, Semprebon SC, Sartori D, Ribeiro LR, Mantovani MS. Salinomycin efficiency assessment in non-tumor (HB4a) and tumor (MCF-7) human breast cells. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:557-71. [PMID: 26932586 DOI: 10.1007/s00210-016-1225-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/24/2016] [Indexed: 01/15/2023]
Abstract
The search for anticancer drugs has led researchers to study salinomycin, an ionophore antibiotic that selectively destroys cancer stem cells. In this study, salinomycin was assessed in two human cell lines, a breast adenocarcinoma (MCF-7) and a non-tumor breast cell line (HB4a), to verify its selective action against tumor cells. Real-time assessment of cell proliferation showed that HB4a cells are more resistant to salinomycin than MCF-7 tumor cell line, and these data were confirmed in a cytotoxicity assay. The half maximal inhibitory concentration (IC50) values show the increased sensitivity of MCF-7 cells to salinomycin. In the comet assay, only MCF-7 cells showed the induction of DNA damage. Flow cytometric analysis showed that cell death by apoptosis/necrosis was only induced in the MCF-7 cells. The increased expression of GADD45A and CDKN1A genes was observed in all cell lines. Decreased expression of CCNA2 and CCNB1 genes occurred only in tumor cells, suggesting G2/M cell cycle arrest. Consequently, cell death was activated in tumor cells through strong inhibition of the antiapoptotic genes BCL-2, BCL-XL, and BIRC5 genes in MCF-7 cells. These data demonstrate the selectivity of salinomycin in killing human mammary tumor cells. The cell death observed only in MCF-7 tumor cells was confirmed by gene expression analysis, where there was downregulation of antiapoptotic genes. These data contribute to clarifying the mechanism of action of salinomycin as a promising antitumor drug and, for the first time, we observed the higher resistance of HB4a non-tumor breast cells to salinomycin.
Collapse
|
Journal Article |
9 |
10 |
7
|
Zanetti TA, Biazi BI, Baranoski A, D'Epiro GFR, Corveloni AC, Semprebon SC, Coatti GC, Mantovani MS. Response of HepG2/C3A cells supplemented with sodium selenite to hydrogen peroxide-induced oxidative stress. J Trace Elem Med Biol 2018; 50:209-215. [PMID: 30262281 DOI: 10.1016/j.jtemb.2018.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/20/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
Abstract
Oxidative stress (OS) is involved in the onset of various pathological processes, and sodium selenite (Na2SeO3) is known to have antioxidant activity. This study evaluated the cellular response of human HepG2/C3A cells supplemented with Na2SeO3 when exposed to hydrogen peroxide (H2O2)-induced OS. We analyzed cytotoxicity, cell proliferation, and genotoxicity in comparison with molecular data of mRNA and protein expression. The MTT and comet assays revealed that Na2SeO3 conferred cytoprotective and anti-genotoxic effects. In contrast, RTCA (Real-Time Cell Analysis) and flow cytometry analysis revealed that Na2SeO3 did not inhibit H2O2-induced anti-proliferative effects or cell cycle arrest (G2/M). Cells exposed simultaneously to Na2SeO3 and H2O2 showed overexpression of GPX1 mRNA, indicating that Na2SeO3 influenced the cellular antioxidant system. Furthermore, downregulation of CAT mRNA and SOD1 and PRX2 proteins induced by H2O2, was minimal after the Na2SeO3+H2O2 treatment. Although normalization of CCN2B mRNA expression by Na2SeO3 was observed after the Na2SeO3+H2O2 treatment, this was not observed for other genes such as CDKN1A, CDKN1C, and CDKN2B, which are related to cell cycle control, nor for GADD45A, which is involved in the cellular response to DNA damage. Furthermore, both CDKN1B and CDKN1C expression were downregulated in HepG2/C3A cells treated with Na2SeO3 only. Our results indicate that cellular response to Na2SeO3 involved the modulation of the antioxidant system. Na2SeO3 was unable completely recover HepG2/C3A cells from H2O2-induced oxidative damage, as evidenced by analysis of cell proliferation kinetics, cell cycle assay, and expression of key genes involved in cell cycle progression and response to DNA damage.
Collapse
|
|
7 |
9 |
8
|
D´Epiro GFR, Semprebon SC, Niwa AM, Marcarini JC, Mantovani MS. Roles of chlorophyllin in cell proliferation and the expression of apoptotic and cell cycle genes in HB4a non-tumor breast cells. Toxicol Mech Methods 2016; 26:348-54. [DOI: 10.3109/15376516.2016.1172692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
|
9 |
6 |
9
|
Baranoski A, Tempesta Oliveira M, Semprebon SC, Niwa AM, Ribeiro LR, Mantovani MS. Effects of sulfated and non-sulfated β-glucan extracted from Agaricus brasiliensis in breast adenocarcinoma cells – MCF-7. Toxicol Mech Methods 2015; 25:672-9. [DOI: 10.3109/15376516.2015.1043762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
|
10 |
3 |
10
|
Niwa AM, Semprebon SC, D'Epiro GFR, Marques LA, Zanetti TA, Mantovani MS. Salinomycin induces cell cycle arrest and apoptosis and modulates hepatic cytochrome P450 mRNA expression in HepG2/C3a cells. Toxicol Mech Methods 2021; 32:341-351. [PMID: 34806536 DOI: 10.1080/15376516.2021.2008570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Salinomycin (SAL) is a monocarboxylic polyether ionophore antibiotic isolated from Streptomyces albus. It exhibits an effective antitumor potential against numerous human cancer cells. This study aimed to assess the antiproliferative effects of SAL in human hepatocellular carcinoma HepG2/C3a cell line. We investigated the effects of SAL on cell growth, DNA damage induction, cell cycle changes and apoptosis; and relative changes in expression of cell cycle-related, apoptosis-related, and CYP450 genes. SAL induced cell cycle arrest in the G2/M phase, upregulation of CDKN1A and GADD45A and downregulation of cyclin genes including CCNB1 and CCNA2. SAL effectively suppressed mRNA levels of CTNNB1 gene, an important oncogene that promotes tumorigenesis. The decrease of HepG2/C3A cells' survival can also be due to downregulation of antiapoptotic BCL-2 expression, thus promoting the induction of apoptosis by SAL. This study also demonstrated the ability of SAL in modulating hepatic cytochrome P450 (CYP) mRNA expression, such that SAL caused the upregulation of CYP1A members and CYP3A5; and downregulation of CYP3A4. Taken together, these data contribute to the understanding of the mechanism of action of SAL, highlighting that metabolizing enzymes modulated by SAL can interfere with chemotherapy treatment and it must be considered in associated treatments.
Collapse
|
|
4 |
|
11
|
Lopes TBF, Aguiar RCM, de Souza RF, Nascimento CC, Dionísio JF, Mantovani MS, Semprebon SC, da Rosa R. Influence of temperature variation on gene expression and cocoon production in Bombyx mori Linnaeus, 1758 (Lepidoptera: Bombycidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101111. [PMID: 37516100 DOI: 10.1016/j.cbd.2023.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Silkworms (Bombyx mori) are lepidopterans of economic importance for global silk production. However, factors that directly affect the yield and quality of silkworm cocoon production, such as diseases and temperature fluctuations, cause great economic losses. Knowing how they respond to rearing temperature during the most critical stage of their life cycle (i.e., fifth instar) could provide information on their adaptation and improve silk production. In the current work, we analyzed transcriptional data from two groups of B. mori that were reared at 26 °C and 34 °C throughout the fifth instar. The silkworms and cocoons were weighed. In total, 3115 transcripts were differentially expressed (DE; including 1696 down-regulated and 1419 up-regulated) among the 29,157 sequences found by transcriptome assembly. We emphasize the genes associated with immunological response, transcription factors, silk biosynthesis, and heat shock proteins, among the DE transcripts in response to the temperature conditions. Silkworms reared at 34 °C presented a reduced mean body weight (-0.944 g in comparison to the 26 °C group), which had a direct impact on the weight of cocoons formed and the silk conversion rate. These changes were statistically significant when compared to silkworms reared at 26 °C. Mortality rates (6 and 9 %, at 26 °C and 34 °C, respectively) were similar to those obtained in breeding fields. The findings provide information on the biological processes involved in the temperature response mechanism of silkworms, as well as information that may be used in future climatization processes at rearing facilities and in breeding for improved thermotolerance.
Collapse
|
|
2 |
|
12
|
de Oliveira Silva N, de Lima LVA, de Oliveira LM, da Silva MF, de Aguiar AP, Semprebon SC, Favaron PO, Lepri SR, Felicidade I, Mantovani MS. Cellular and molecular antiproliferative effects in 2D monolayer and 3D-cultivated HT-29 cells treated with zerumbone. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1561-1573. [PMID: 37672080 DOI: 10.1007/s00210-023-02701-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
Zerumbone (ZER) is a phytochemical isolated from plants of the Zingiberaceae family. Numerous studies have demonstrated its diverse pharmacological properties, particularly its potent antitumorigenic activity. This study aimed to assess the antiproliferative effects of ZER on HT-29 cells cultivated in both two-dimensional (2D) monolayer and three-dimensional (3D) spheroid culture systems. The evaluation of growth (size), cell death, and cell cycle arrest in 3D spheroid HT-29 cells was correlated with mRNA expression data. Treatment of 2D cells revealed that ZER exhibited cytotoxicity at concentrations above 30 µM, and an IC50 of 83.54 µM (24-h post-ZER treatment) effectively suppressed cell migration. In the 3D model, ZER induced an increase in spheroid volume over a 72-h period attributed to disaggregation and reconfiguration of characteristic zones. Analysis of cell death demonstrated a significant rise in apoptotic cells after 24 h of ZER treatment, along with cell cycle arrest in the G1 phase. Furthermore, ZER treatment resulted in alterations in mRNA expression, affecting key signaling pathways involved in cell death (BCL2 and BBC3), endoplasmic reticulum stress (ERN1), DNA damage (GADD45A), cell cycle regulation (CDKN1A, NFKB1, MYC, and TP53), and autophagy (BECN1 and SQSTM1). These findings suggested that ZER holds promise as a potential candidate for the development of novel anticancer agents that can modulate crucial cell signaling pathways. Additionally, the use of the 3D culture system proved to be a valuable tool in our investigation.
Collapse
|
|
1 |
|
13
|
Baranoski A, Semprebon SC, Biazi BI, Zanetti TA, Corveloni AC, Areal Marques L, Lepri SR, Coatti GC, Mantovani MS. Piperlongumine inhibits antioxidant enzymes, increases ROS levels, induces DNA damage and G2/M cell cycle arrest in breast cell lines. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:294-309. [PMID: 38279841 DOI: 10.1080/15287394.2024.2308801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Piperlongumine (PLN) is a biologically active alkaloid/amide derived from Piper longum, with known promising anticancer activity. The aim of this study was to compare the antiproliferative activity of PLN in human breast MCF-7 adenocarcinoma cell line with effects in HB4a normal mammary epithelial non-tumor cell line. The parameters examined were cell growth, viability, reactive oxygen species (ROS) levels and DNA damage, as well as the effects on the modulating targets responsible through regulation of these pathways. PLN increased ROS levels and expression of the SOD1 antioxidant enzyme. PLN inhibited the expression of the antioxidant enzymes catalase, TRx1, and PRx2. The ability of PLN to inhibit antioxidant enzyme expression was associated with the oxidative stress response. PLN induced genotoxicity in both cell lines and upregulated the levels of GADD45A mRNA and p21 protein. The DNA damage response ATR protein was downregulated in both cell lines and contributed to an enhanced PLN genotoxicity. In HB4a cells, Chk1 protein, and mRNA levels were also decreased. In response to elevated ROS levels and DNA damage induction, the cells were arrested at the G2/M phase, probably in an attempt to promote cell survival. Although cell viability was reduced in both cell lines, only HB4a cells underwent apoptotic cell death, whereas other types of cellular death may be involved in MCF-7 cells. Taken together, these data provide insight into the anticancer mechanisms attributed to PLN effects, which acts as an inhibitor of DNA damage response (DDR) proteins and antioxidant enzymes.
Collapse
|
|
1 |
|
14
|
da Silva MF, de Lima LVA, de Oliveira LM, Semprebon SC, Silva NDO, de Aguiar AP, Mantovani MS. Regulation of cytokinesis and necroptosis pathways by diosgenin inhibits the proliferation of NCI-H460 lung cancer cells. Life Sci 2023; 330:122033. [PMID: 37598976 DOI: 10.1016/j.lfs.2023.122033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Aim Overcoming resistance to apoptosis and antimitotic chemotherapy is crucial for effective treatment of lung cancer. Diosgenin (DG), a promising phytochemical, can regulate various molecular pathways implicated in tumor formation and progression. However, the precise biological activity of DG in lung cancer remains unclear. This study aimed to investigate the antiproliferative activity of DG in NCI-H460 lung carcinoma cells to explore the underlying antimitotic mechanisms and alternative cell death pathways. MATERIALS AND METHODS In a 2D culture system, we analyzed cell viability, multinucleated cell frequency, cell concentration, cell cycle changes, cell death induction, intracellular reactive oxygen species (ROS) production, and nuclear DNA damage, particularly in relation to target gene expression. We also evaluated the antiproliferative activity of DG in a 3D culture system of spheroids, assessing volume changes, cell death induction, and inhibition of proliferation recovery and clonogenic growth. KEY FINDINGS DG reduced cell viability and concentration while increasing the frequency of cells with multiple nuclei, particularly binucleated cells resulting from daughter cell fusion. This effect was associated with genes involved in cytokinesis regulation (RAB35, OCRL, BIRC5, and AURKB). Additionally, DG-induced cell death was linked to necroptosis, as evidenced by increased intracellular ROS production and RIPK3, MLKL, TRAF2, and HSPA5 gene expression. In tumor spheroids, DG increased spheroid volume, induced cell death, and inhibited proliferation recovery and clonogenic growth. SIGNIFICANCE Our study provides new insights into the biological activities of DG in lung cancer cells, contributing to the development of novel oncological therapies.
Collapse
|
|
2 |
|