1
|
Naowanon W, Chueachot R, Klinsrisuk S, Amnuaypanich S. Biphasic synthesis of amine-functionalized mesoporous silica nanospheres (MSN-NH2) and its application for removal of ferrous (Fe2+) and copper (Cu2+) ions. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2016.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
7 |
26 |
2
|
Amnuaypanich S, Kongchana N. Natural rubber/poly(acrylic acid) semi-interpenetrating polymer network membranes for the pervaporation of water-ethanol mixtures. J Appl Polym Sci 2009. [DOI: 10.1002/app.30836] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
|
16 |
18 |
3
|
Rattanaumpa T, Naowanon W, Amnuaypanich S, Amnuaypanich S. Polydimethylsiloxane Sponges Incorporated with Mesoporous Silica Nanoparticles (PDMS/H-MSNs) and Their Selective Solvent Absorptions. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02946] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
6 |
13 |
4
|
Amnuaypanich S, Naowanon T, Wongthep W, Phinyocheep P. Highly water-selective mixed matrix membranes from natural rubber-blend-poly(acrylic acid) (NR-blend-PAA) incorporated with zeolite 4A for the dehydration of water-ethanol mixtures through pervaporation. J Appl Polym Sci 2012. [DOI: 10.1002/app.34722] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
|
13 |
12 |
5
|
Narkkun T, Jenwiriyakul W, Amnuaypanich S. Dehydration performance of double-network poly(vinyl alcohol) nanocomposite membranes (PVAs-DN). J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.12.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
|
8 |
12 |
6
|
Wongthep W, Srituileong S, Martwiset S, Amnuaypanich S. Grafting of poly(vinyl alcohol) on natural rubber latex particles. J Appl Polym Sci 2012. [DOI: 10.1002/app.37829] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
13 |
12 |
7
|
Amnuaypanich S, Ratpolsan P. Pervaporation membranes from natural rubber latex grafted with poly(2-hydroxyethyl methacrylate) (NR-g-PHEMA) for the separation of water-acetone mixtures. J Appl Polym Sci 2009. [DOI: 10.1002/app.30315] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
16 |
11 |
8
|
Narkkun T, Boonying P, Yuenyao C, Amnuaypanich S. Green synthesis of porous polyvinyl alcohol membranes functionalized with
l
‐arginine and their application in the removal of 4‐nitrophenol from aqueous solution. J Appl Polym Sci 2019. [DOI: 10.1002/app.47835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
|
6 |
10 |
9
|
Lorwanishpaisarn N, Sae-Oui P, Amnuaypanich S, Siriwong C. Fabrication of untreated and silane-treated carboxylated cellulose nanocrystals and their reinforcement in natural rubber biocomposites. Sci Rep 2023; 13:2517. [PMID: 36781992 PMCID: PMC9925444 DOI: 10.1038/s41598-023-29531-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
In this study, cellulose nanocrystal (CNC) was extracted from Napier grass stems and subsequently functionalized to carboxylated cellulose nanocrystal (XCNC) by using an environmentally friendly method, namely, the KMnO4/oxalic acid redox reaction. The XCNC was subsequently modified with triethoxyvinylsilane (TEVS), called VCNC, by using ultrasound irradiation. The characterization of the prepared XCNC and VCNC was performed. The needle-like shape of XCNC was observed with an average diameter and length of 11.5 and 156 nm, respectively. XCNC had a carboxyl content of about 1.21 mmol g-1. The silane treatment showed no significant effects on the diameter and length of XCNC. When incorporated into natural rubber (NR), both XCNC and VCNC showed very high reinforcement, as evidenced by the substantial increases in modulus and hardness of the biocomposites, even at very low filler loadings. However, due to the high polarity of XCNC, tensile strength was not significantly improved with increasing XCNC loading up to 2 phr, above which it decreased rapidly due to the filler agglomeration. For VCNC, the silane treatment reduced hydrophilicity and improved compatibility with NR. The highly reactive vinyl group on the VCNC's surface also takes part in sulfur vulcanization, leading to the strong covalent linkages between rubber and VCNC. Consequently, VCNC showed better reinforcement than XCNC, as evidenced by the markedly higher tensile strength and modulus, when compared at an equal filler loading. This study demonstrates the achievement in the preparation of a highly reinforcing bio-filler (VCNC) for NR from Napier grass using an environmentally friendly method and followed by a quick and simple sonochemical method.
Collapse
|
research-article |
2 |
4 |
10
|
Boonying P, Martwiset S, Amnuaypanich S. Highly catalytic activity of nickel nanoparticles generated in poly(methylmethacrylate)@poly(2-hydroxyethylmethacrylate) (PMMA@PHEMA) core–shell micelles for the reduction of 4-nitrophenol (4-NP). APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0669-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
7 |
3 |
11
|
Suwannarat S, Amnuaypanich S, Chanlek N, Amnuaypanich S. Temperature-enhanced water selectivity in polyvinyl alcohol mixed matrix membranes filled with poly(2-hydroxyethylmethacrylate)-grafted mesoporous silica nanoparticles (PVA/MSNs-g-PHEMA MMMs). Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
|
4 |
2 |
12
|
Amnuaypanich S, El-Aasser MS, Daniels ES, Silebi CA. Effects of dissolved polymer on the transport of colloidal particles through a microcapillary. J Colloid Interface Sci 2007; 311:77-88. [PMID: 17397856 DOI: 10.1016/j.jcis.2007.02.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 02/19/2007] [Accepted: 02/25/2007] [Indexed: 11/29/2022]
Abstract
The effect of water-soluble polymer on the transport of latex particles through a microcapillary was investigated. Capillary hydrodynamic fractionation (CHDF) experiments were performed using polystyrene (PS) particles and poly(ethylene oxide) (PEO) solutions as the eluant. Generally, the average particle velocities were greater than those corresponding to a polymer-free eluant. A decrease in the sample axial dispersion was also observed using the PEO solutions. In addition, increasing the polymer molecular weight resulted in lower particle residence times in the capillary tube. The enhanced particle transport arises primarily from an increase in the particle diameter resulting from the adsorption of PEO onto the PS surfaces, and, more importantly, from the migration of particles toward the capillary axis due to the normal stress of the PEO solution.
Collapse
|
|
18 |
|
13
|
Narkkun T, Jenwiriyakul W, Amnuaypanich S. Corrigendum to “Dehydration performance of double-network poly(vinyl alcohol) nanocomposite membranes (PVAs-DN)” [J. Membr. Sci. 528 (2017) 284–295]. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
8 |
|
14
|
Worajittiphon P, Santiwongsathit N, Bai SL, Daranarong D, Punyodom W, Sriyai M, Jantanasakulwong K, Rachtanapun P, Ross S, Tipduangta P, Srithep Y, Amnuaypanich S. Carboxymethyl cellulose/poly(vinyl alcohol) blended films reinforced by buckypapers of carbon nanotubes and 2D material (MoS 2): Enhancing mechanical strength, toughness, and barrier properties. Int J Biol Macromol 2023; 242:124726. [PMID: 37172702 DOI: 10.1016/j.ijbiomac.2023.124726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
Plastic waste is one cause of climate change. To solve this problem, packaging films are increasingly produced from biodegradable polymers. Eco-friendly carboxymethyl cellulose and its blends have been developed for such a solution. Herein, a unique strategy is demonstrated to improve the mechanical and barrier properties of carboxymethyl cellulose/poly(vinyl alcohol) (CMC/PVA) blended films for the packaging of nonfood dried products. The blended films were impregnated with buckypapers containing different combinations of multiwalled carbon nanotubes, two-dimensional molybdenum disulfide (2D MoS2) nanoplatelets, and helical carbon nanotubes (HCNTs). Compared to the blend, the polymer composite films exhibit significant increases in tensile strength (~105 %, from 25.53 to 52.41 MPa), Young's modulus (~297 %, from 155.48 to 617.48 MPa), and toughness (~46 %, from 6.69 to 9.75 MJ m-3). Polymer composite films containing HCNTs in buckypapers offer the highest toughness. For barrier properties, the polymer composite films are opaque. The water vapor transmission rate of the blended films decreases (~52 %, from 13.09 to 6.25 g h-1 m-2). Moreover, the maximum thermal-degradation temperature of the blend rises from 296 to 301 °C, especially for the polymer composite films with buckypapers containing MoS2 nanosheets that contribute to the barrier effect for both water vapor and thermal-decomposition gas molecules.
Collapse
|
|
2 |
|
15
|
Tunsound V, Krasian T, Daranarong D, Jantanasakulwong K, Punyodom W, Sriyai M, Somsunan R, Manokruang K, Rachtanapun P, Tipduangta P, Srithep Y, Amnuaypanich S, Dalton AB, Worajittiphon P. Ethyl cellulose composite membranes containing a 2D material (MoS 2) and helical carbon nanotubes for efficient solar steam generation and desalination. Int J Biol Macromol 2023; 244:125390. [PMID: 37330098 DOI: 10.1016/j.ijbiomac.2023.125390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
With the increasing water consumption, water evaporators have been investigated for clean water production. Herein, the fabrication of electrospun composite membrane evaporators based on ethyl cellulose (EC), with the incorporation of light-absorption enhancers 2D MoS2 and helical carbon nanotubes, for steam generation and solar desalination is described. Under natural sunlight, the maximum water evaporation rate was 2.02 kg m-2 h-1 with an evaporation efficiency of 93.2 % (1 sun) and reached 2.42 kg m-2 h-1 at 12:00 pm (1.35 sun). The composite membranes demonstrated self-floating on the air-water interface and minimal accumulation of superficial salt during the desalination process due to the hydrophobic character of EC. For concentrated saline water (21 wt% NaCl), the composite membranes maintained a relatively high evaporation rate of up to ~79 % compared to the freshwater evaporation rate. The composite membranes are robust due to the thermomechanical stability of the polymer even while operating under steam-generating conditions. Over repeated use, they exhibited excellent reusability with a relative water mass change of >90 % compared to the first evaporation cycle. Moreover, desalination of artificial seawater produced a lower cation concentration (~3-5 orders of magnitude) and thereby yielded potable water, indicating the potential for solar-driven freshwater generation.
Collapse
|
|
2 |
|
16
|
Tunsound V, Krasian T, Daranarong D, Punyodom W, Jantanasakulwong K, Ross S, Tipduangta P, Rachtanapun P, Ross G, Jantrawut P, Amnuaypanich S, Worajittiphon P. Enhanced mechanical properties and biocompatibility of bacterial cellulose composite films with inclusion of 2D MoS 2 and helical carbon nanotubes for use as antimicrobial drug carriers. Int J Biol Macromol 2023; 253:126712. [PMID: 37673164 DOI: 10.1016/j.ijbiomac.2023.126712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/08/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Bacterial cellulose (BC) is a biomaterial being investigated for a range of applications. Herein, BC films derived from nata de coco pieces are reinforced by two-dimensional molybdenum disulfide (MoS2) and helical carbon nanotubes (HCNTs) to enhance their tensile mechanical properties, and the biocompatibility of the BC composite films is demonstrated. A simple preparation is presented using a kitchen blender to disperse and blend the BC fibers and additives in a common fabrication medium, followed by vacuum filtration. The mechanical properties of the BC/MoS2/HCNTs composite films are enhanced due to the synergistic effect of MoS2 and HCNTs embedded in the BC films. The MoS2/HCNTs binary additive (1 phr) is capable of increasing the strength and Young's modulus by 148 % and 333 %, respectively, relative to the BC films. The cell cytotoxicity of the BC/MoS2/HCNTs films was assessed using an MTT assay. The composite films are biocompatible with a cell viability of L929 fibroblast cells >70 %, coupled with observations of direct cell attachment on the films. The composite films also exhibited good performance in absorbing and releasing gentamicin antibiotics to inhibit the growth of Escherichia coli and Staphylococcus aureus. The BC/MoS2/HCNTs films are thus potential BC-based candidates as biocompatible robust antibiotic carriers.
Collapse
|
|
2 |
|
17
|
Buengkitcharoen L, Amnuaypanich S, Naknonhan S, Loiha S, Patdhanagul N, Makdee A, Amnuaypanich S. Facile synthesis of robust Ag/ZnO composites by sol-gel autocombustion and ion-impregnation for the photocatalytic degradation of sucrose. Sci Rep 2023; 13:12173. [PMID: 37500746 PMCID: PMC10374612 DOI: 10.1038/s41598-023-39479-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023] Open
Abstract
Metallic Ag nanoparticles decorated on ZnO photocatalysts were prepared by facile sol-gel autocombustion followed by ion-impregnation. Electron microscopy studies revealed the presence of impregnated Ag as nanoparticles on ZnO surfaces, which affected the microstructure of ZnO particles. XRD patterns of Ag/ZnO composites confirmed the metallic phase of Ag. No peak shift for ZnO phase peaks suggests that the impregnated Ag was barely incorporated into the ZnO lattice. Consequently, DRS spectra of Ag/ZnO composites revealed the same absorption edges and Eg for pure and Ag/ZnO. The photocatalytic activity of Ag/ZnO composites for sucrose degradation under UV light was 40% higher than that of pure ZnO. Metallic Ag nanoparticles on the ZnO surface suppressed the surface defects and the recombination of photoexcited electrons and holes. The highest activity with 100% degradation of 100 ppm sucrose (1200 µg of carbon) within 105 min was achieved using ZnO with 10% w/w Ag (10% Ag/ZnO). Ag L3-edge XANES spectra of fresh and spent Ag/ZnO catalysts confirmed the stability of metallic Ag after the usage. The Ag/ZnO catalyst could be used for 5 cycles without losing photocatalytic activity. The Ag/ZnO catalyst was utilized to degrade sugar-contaminated condensate from the sugar mill. 10% Ag/ZnO revealed the highest photocatalytic performance, capable of degrading 90% of sugar in the condensate within 90 min.
Collapse
|
|
2 |
|