1
|
Zhou S, Luo R, Gong G, Wang Y, Gesang Z, Wang K, Xu Z, Suolang S. Characterization of Metagenome-Assembled Genomes and Carbohydrate-Degrading Genes in the Gut Microbiota of Tibetan Pig. Front Microbiol 2020; 11:595066. [PMID: 33424798 PMCID: PMC7785962 DOI: 10.3389/fmicb.2020.595066] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/27/2020] [Indexed: 01/15/2023] Open
Abstract
Tibetan pig is an important domestic mammal, providing products of high nutritional value for millions of people living in the Qinghai-Tibet Plateau. The genomes of mammalian gut microbiota encode a large number of carbohydrate-active enzymes, which are essential for the digestion of complex polysaccharides through fermentation. However, the current understanding of microbial degradation of dietary carbohydrates in the Tibetan pig gut is limited. In this study, we produced approximately 145 gigabases of metagenomic sequence data for the fecal samples from 11 Tibetan pigs. De novo assembly and binning recovered 322 metagenome-assembled genomes taxonomically assigned to 11 bacterial phyla and two archaeal phyla. Of these genomes, 191 represented the uncultivated microbes derived from novel prokaryotic taxa. Twenty-three genomes were identified as metagenomic biomarkers that were significantly abundant in the gut ecosystem of Tibetan pigs compared to the other low-altitude relatives. Further, over 13,000 carbohydrate-degrading genes were identified, and these genes were more abundant in some of the genomes within the five principal phyla: Firmicutes, Bacteroidetes, Spirochaetota, Verrucomicrobiota, and Fibrobacterota. Particularly, three genomes representing the uncultivated Verrucomicrobiota encode the most abundant degradative enzymes in the fecal microbiota of Tibetan pigs. These findings should substantially increase the phylogenetic diversity of specific taxonomic clades in the microbial tree of life and provide an expanded repertoire of biomass-degrading genes for future application to microbial production of industrial enzymes.
Collapse
|
Journal Article |
5 |
37 |
2
|
Gong G, Zhou S, Luo R, Gesang Z, Suolang S. Metagenomic insights into the diversity of carbohydrate-degrading enzymes in the yak fecal microbial community. BMC Microbiol 2020; 20:302. [PMID: 33036549 PMCID: PMC7547465 DOI: 10.1186/s12866-020-01993-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Yaks are able to utilize the gastrointestinal microbiota to digest plant materials. Although the cellulolytic bacteria in the yak rumen have been reported, there is still limited information on the diversity of the major microorganisms and putative carbohydrate-metabolizing enzymes for the degradation of complex lignocellulosic biomass in its gut ecosystem. RESULTS Here, this study aimed to decode biomass-degrading genes and genomes in the yak fecal microbiota using deep metagenome sequencing. A comprehensive catalog comprising 4.5 million microbial genes from the yak feces were established based on metagenomic assemblies from 92 Gb sequencing data. We identified a full spectrum of genes encoding carbohydrate-active enzymes, three-quarters of which were assigned to highly diversified enzyme families involved in the breakdown of complex dietary carbohydrates, including 120 families of glycoside hydrolases, 25 families of polysaccharide lyases, and 15 families of carbohydrate esterases. Inference of taxonomic assignments to the carbohydrate-degrading genes revealed the major microbial contributors were Bacteroidaceae, Ruminococcaceae, Rikenellaceae, Clostridiaceae, and Prevotellaceae. Furthermore, 68 prokaryotic genomes were reconstructed and the genes encoding glycoside hydrolases involved in plant-derived polysaccharide degradation were identified in these uncultured genomes, many of which were novel species with lignocellulolytic capability. CONCLUSIONS Our findings shed light on a great diversity of carbohydrate-degrading enzymes in the yak gut microbial community and uncultured species, which provides a useful genetic resource for future studies on the discovery of novel enzymes for industrial applications.
Collapse
|
research-article |
5 |
23 |
3
|
Li P, Wu D, Liu K, Suolang S, He T, Liu X, Wu C, Wang Y, Lin D. Investigation of antimicrobial resistance in Escherichia coli and enterococci isolated from Tibetan pigs. PLoS One 2014; 9:e95623. [PMID: 24748326 PMCID: PMC3991701 DOI: 10.1371/journal.pone.0095623] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/28/2014] [Indexed: 11/29/2022] Open
Abstract
Objectives This study investigated the antimicrobial resistance of Escherichia coli and enterococci isolated from free-ranging Tibetan pigs in Tibet, China, and analyzed the influence of free-ranging husbandry on antimicrobial resistance. Methods A total of 232 fecal samples were collected from Tibetan pigs, and the disk diffusion method was used to examine their antimicrobial resistance. Broth microdilution and agar dilution methods were used to determine minimum inhibitory concentrations for antimicrobial agents for which disks were not commercially available. Results A total of 129 E. coli isolates and 84 Enterococcus isolates were recovered from the fecal samples. All E. coli isolates were susceptible to amoxicillin/clavulanic acid, and 40.4% were resistant to tetracycline. A small number of isolates were resistant to florfenicol (27.9%), ampicillin (27.9%), sulfamethoxazole/trimethoprim (19.4%), nalidixic acid (19.4%), streptomycin (16.2%) and ceftiofur (10.9%), and very low resistance rates to ciprofloxacin (7.8%), gentamicin (6.9%), and spectinomycin (2.3%) were observed in E. coli. All Enterococcus isolates, including E. faecium, E. faecalis, E. hirae, and E. mundtii, were susceptible to amoxicillin/clavulanic acid and vancomycin, but showed high frequencies of resistance to oxacillin (92.8%), clindamycin (82.1%), tetracycline (64.3%), and erythromycin (48.8%). Resistance rates to florfenicol (17.9%), penicillin (6.0%), ciprofloxacin (3.6%), levofloxacin (1.2%), and ampicillin (1.2%) were low. Only one high-level streptomycin resistant E. faecium isolate and one high-level gentamicin resistant E. faecium isolate were observed. Approximately 20% and 70% of E. coli and Enterococcus isolates, respectively, were defined as multidrug-resistant. Conclusions In this study, E. coli and Enterococcus isolated from free-ranging Tibetan pigs showed relatively lower resistance rates than those in other areas of China, where more intensive farming practices are used. These results also revealed that free-range husbandry and absence of antibiotic use could decrease the occurrence of antimicrobial resistance to some extent.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
21 |
4
|
Ming F, Cheng Y, Ren C, Suolang S, Zhou H. Development of a DAS-ELISA for detection of H9N2 avian influenza virus. J Virol Methods 2018; 263:38-43. [PMID: 30355516 DOI: 10.1016/j.jviromet.2018.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 11/17/2022]
Abstract
H9N2 avian influenza virus is threatening animals and public health systems. Effective diagnosis is imperative to control the disease. Thus, we developed a panel of monoclonal antibodies (Mabs) against the H9N2 avian influenza virus (AIV) and implemented a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) to detect the H9 viral antigen. Hybridomas 4D10 and 5G2 were screened to secrete immunoglobulin G (IgG) and IgA, respectively. Antibody 4D10 was used as the capture antibodies and HRP labeled 5G2 as the detector antibody. The specificity of the optimized DAS-ELISA was evaluated by using AIV subtypes H1, H3, H5, H9 and H10. Specimens containing AIV H9 subtype yielded a specific and strong signal above the background, whereas specimens containing all other subtypes yielded background signals. The detection limit of the DAS-ELISA is 10-2.3 TCID50 (50% Tissue culture infective doses). Negative-positive threshold was 0.211 (OD630). In comparison with virus isolation the sensitivity and specificity of DAS-ELISA were found to be 98.9% and 98.1% respectively. Taken together, the newly developed Mab-based DAS-ELISA offers an attractive alternative to other diagnostic approaches for the specific detection of H9 subtype AIV.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
7 |
5
|
Zhang H, Xie C, Li D, Xiong D, Liu H, Suolang S, Shang P. Haematological and blood biochemical characteristics of Glyptosternum maculatum (Siluriformes: Sisoridae) in Xizang (Tibet). FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:797-801. [PMID: 19757131 DOI: 10.1007/s10695-009-9354-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 08/17/2009] [Indexed: 05/28/2023]
Abstract
This study investigated the haematological and blood biochemical characteristics of Glyptosternum maculatum. The haematological and biochemical parameters were measured in 30 adult fish collected from Nyingchi Reach of Yarlung Zangbo River in Tibet. The red blood cell count (RBC), haemoglobin concentration (Hb), haematocrit (Hct), erythrocyte osmotic fragility (maxEof and minEof), the erythrocyte sedimentation rate, mean cell volume (MCV), mean cellular haemoglobin content (MCH), and mean cell haemoglobin concentration (MCHC) were determined. Compared with other Siluriformes fishes, G. maculatum showed similar mean values for Hct, Hb, MCH, and MCHC and had slightly lower RBC and higher MCV. The biochemical parameters were assayed including alanine aminotransferase, aspartate aminotransferase (AST), alkaline phosphatase, total protein, albumin, globulin, albumin/globulin ratio, total bilirubin, direct bilirubin, urea, creatinine, glucose, total cholesterol, and triglyceride. The result showed that the value of AST in G. maculatum was obviously higher than that in Rhamdia quelen as well as in Silurus merdionalis.
Collapse
|
|
15 |
4 |
6
|
Lu X, Gong G, Zhang Q, Yang S, Wu H, Zhao M, Wang X, Shen Q, Ji L, Liu Y, Wang Y, Liu J, Suolang S, Ma X, Shan T, Zhang W. Metagenomic analysis reveals high diversity of gut viromes in yaks (Bos grunniens) from the Qinghai-Tibet Plateau. Commun Biol 2024; 7:1097. [PMID: 39242698 PMCID: PMC11379701 DOI: 10.1038/s42003-024-06798-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
The Qinghai-Tibet Plateau (QTP), renowned for its exceptional biological diversity, is home to numerous endemic species. However, research on the virology of vulnerable vertebrates like yaks remains limited. In this study, our objective was to use metagenomics to provide a comprehensive understanding of the diversity and evolution of the gut virome in yak populations across different regions of the QTP. Our findings revealed a remarkably diverse array of viruses in the gut of yaks, including those associated with vertebrates and bacteriophages. Notably, some vertebrate-associated viruses, such as astrovirus and picornavirus, showed significant sequence identity across diverse yak populations. Additionally, we observed differences in the functional profiles of genes carried by the yak gut virome across different regions. Moreover, the virus-bacterium symbiotic network that we discovered holds potential significance in maintaining the health of yaks. Overall, this research expands our understanding of the viral communities in the gut of yaks and highlights the importance of further investigating the interactions between viruses and their hosts. These data will be beneficial for revealing the crucial role that viruses play in the yak gut ecology in future studies.
Collapse
|
research-article |
1 |
3 |
7
|
Wu Q, Li J, Wang W, Zhou J, Wang D, Fan B, Zhang X, Sun D, Gong G, Suolang S, Li B. Next-Generation Sequencing Reveals Four Novel Viruses Associated with Calf Diarrhea. Viruses 2021; 13:v13101907. [PMID: 34696337 PMCID: PMC8537473 DOI: 10.3390/v13101907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/31/2022] Open
Abstract
Calf diarrhea is one of the common diseases involved in the process of calf feeding. In this study, a sample of calf diarrhea that tested positive for bovine coronavirus and bovine astrovirus was subjected to high-throughput sequencing. The reassembly revealed the complete genomes of bovine norovirus, bovine astrovirus, bovine kobuvirus, and the S gene of bovine coronavirus. Phylogenetic analysis showed that the ORF2 region of bovine astrovirus had the lowest similarity with other strains and gathered in the Mamastrovirus unclassified genogroup, suggesting a new serotype/genotype could appear. Compared with the most closely related strain, there are six amino acid mutation sites in the S gene of bovine coronavirus, most of which are located in the S1 subunit region. The bovine norovirus identified in our study was BNoV-GIII 2, based on the VP1 sequences. The bovine kobuvirus is distributed in the Aichi virus B genus; the P1 gene shows as highly variable, while the 3D gene is highly conserved. These findings enriched our knowledge of the viruses in the role of calf diarrhea, and help to develop an effective strategy for disease prevention and control.
Collapse
|
|
4 |
3 |
8
|
Zhu J, Xiao Q, Wen L, Yin L, Zhang F, Li T, Banma Z, He K, Suolang S. First detection and complete genome analysis of porcine circovirus-like virus P1 and porcine circovirus-2 in yak in China. Vet Med Sci 2022; 8:2553-2561. [PMID: 36049138 PMCID: PMC9677406 DOI: 10.1002/vms3.911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
Porcine circovirus-like virus P1, like porcine circovirus type 2 (PCV2), is a potential pathogen of post-weaning multisystemic wasting syndrome in swine. Yaks are a valuable species and an iconic symbol of the Tibet Plateau which is the highest and largest plateau in the world. In this study, a total of 105 yak diarrheal samples, collected from 13 farms in Linzhi in the Tibet Plateau from January 2019 to December 2021, that were screened for P1 and PCV2 by polymerase chain reaction, 10.48% (n = 11) were positive for P1, 4.76% (n = 5) for PCV2, and 5.71% (n = 6) were positive for coinfection of P1 and PCV2. In addition, the whole genomes of eight P1 strains and eight PCV2 strains were sequenced. Alignment of deduced amino acid sequences of P1 ORF1 and PCV2 ORF2 gene revealed that ON012566 had one unique amino acid mutation at residues 137 (T to P). This mutation has important implication for the study of virus virulence, tissue tropism, and immune response. Phylogenetic analysis shows that the yak-origin P1 strains in this study with cattle-origin P1 reference strains were grouped into one cluster. The yak-origin PCV2 (ON012566) and a buffalo-origin PCV2 (KM116514) reference strain clustered in the same branch in the PCV2b regions. Meanwhile, the remaining PCV2 strains and buffalo-origin PCV2 reference strain (ON012565) clustered in the PCV2d regions. To summarize, to our knowledge, this is the first report on the molecular prevalence and genome characteristics of P1 and PCV2 in yaks in the world and will contribute to further study of the molecular epidemiology, source, and evolution of P1 and PCV2 strains.
Collapse
|
Case Reports |
3 |
1 |
9
|
Li D, Zhang K, Xue X, Bai Z, Yang L, Qi J, Suolang S. An Epidemiological Study on Salmonella in Tibetan Yaks from the Qinghai-Tibet Plateau Area in China. Animals (Basel) 2024; 14:3697. [PMID: 39765601 PMCID: PMC11672581 DOI: 10.3390/ani14243697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Salmonella is an important foodborne pathogen that can cause a range of illnesses in humans; it has also been a key focus for monitoring in the field of public health, including gastroenteritis, sepsis, and arthritis, and can also cause a decline in egg production in poultry and diarrhea and abortion in livestock, leading to death in severe cases, resulting in huge economic losses. This study aimed to investigate the isolation rate, antimicrobial resistance, serotypes, and genetic diversity of Salmonella isolated from yak feces in various regions on the Qinghai-Tibet Plateau. A total of 1222 samples of yak dung were collected from major cities in the Qinghai-Tibet Plateau area, and the sensitivity of the isolated bacteria to 10 major classes of antibiotics was determined using the K-B paper disk diffusion method for drug susceptibility. Meanwhile, the serotypes of the isolated bacteria were analyzed using the plate agglutination test for serum antigens, and their carriage of drug resistance and virulence genes was determined using PCR and gel electrophoresis experiments. The isolated bacteria were also classified using MLST (Multi-Locus Sequence Typing). The overall isolation rate for Salmonella was 18.25% (223/1222), and the results of the antibiotic susceptibility tests showed that 98.65% (220/223) of the isolated bacteria were resistant to multiple antibiotics. In the 223 isolates of Salmonella, eight classes of 20 different resistance genes, 30 serotypes, and 15 different types of virulence genes were detected. The MLST analysis identified 45 distinct sequence types (STs), including five clonal complexes, of which ST34, ST11, and ST19 were the most common. These findings contribute valuable information about strain resources, genetic profiles, and typing data for Salmonella in the Qinghai-Tibet Plateau area, facilitating improved bacterial surveillance, identification, and control in yak populations. They also provide certain data supplements for animal Salmonella infections globally, filling research gaps.
Collapse
|
research-article |
1 |
|
10
|
Ren C, Chen T, Zhang S, Gao Q, Zou J, Li P, Wang B, Zhao Y, OuYang A, Suolang S, Zhou H. PLK3 facilitates replication of swine influenza virus by phosphorylating viral NP protein. Emerg Microbes Infect 2023; 12:2275606. [PMID: 37874309 PMCID: PMC10768867 DOI: 10.1080/22221751.2023.2275606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Swine H1N1/2009 influenza is a highly infectious respiratory disease in pigs, which poses a great threat to pig production and human health. In this study, we investigated the global expression profiling of swine-encoded genes in response to swine H1N1/2009 influenza A virus (SIV-H1N1/2009) in newborn pig trachea (NPTr) cells. In total, 166 genes were found to be differentially expressed (DE) according to the gene microarray. After analyzing the DE genes which might affect the SIV-H1N1/2009 replication, we focused on polo-like kinase 3 (PLK3). PLK3 is a member of the PLK family, which is a highly conserved serine/threonine kinase in eukaryotes and well known for its role in the regulation of cell cycle and cell division. We validated that the expression of PLK3 was upregulated after SIV-H1N1/2009 infection. Additionally, PLK3 was found to interact with viral nucleoprotein (NP), significantly increased NP phosphorylation and oligomerization, and promoted viral ribonucleoprotein assembly and replication. Furthermore, we identified serine 482 (S482) as the phosphorylated residue on NP by PLK3. The phosphorylation of S482 regulated NP oligomerization, viral polymerase activity and growth. Our findings provide further insights for understanding the replication of influenza A virus.
Collapse
|
research-article |
2 |
|
11
|
Wang Z, Shi P, Wang S, Lin Z, Wang Z, Zhang C, Zhao L, Suolang S, Zou J, Zhou H. Generation of canine neutralizing antibodies against canine parvovirus by single B cell antibody technology. Arch Virol 2024; 169:225. [PMID: 39424661 DOI: 10.1007/s00705-024-06156-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/27/2024] [Indexed: 10/21/2024]
Abstract
Canine parvovirus (CPV) is a significant threat to canines and is widely distributed worldwide. While vaccination is currently the most effective preventive measure, existing vaccines are not able to offer comprehensive and dependable protection against CPV infection. Hence, there is a need to explore alternative or complementary strategies to tackle this problem. In this study, we present an approach for the efficient screening of canine antibodies targeting CPV using a single B cell antibody technique. We sorted single IgM- IgG+ CPV+ B cells from canine peripheral blood mononuclear cells using fluorescence-activated cell sorting (FACS) and obtained the variable region genes of heavy and light chains (VH and VL) by nested PCR amplification. Canine monoclonal antibodies were expressed in HEK293 cells, and a total of 60 antibodies were obtained, five of which demonstrated neutralizing activity against CPV. Those findings demonstrate the effectiveness of the method for obtaining canine monoclonal antibodies, which in turn aids in the identification and screening of neutralizing antibodies against various canine pathogens.
Collapse
|
|
1 |
|
12
|
Wang Z, Shi P, Li Y, Wang S, Zhou Y, Zhang C, Zhao L, Suolang S, Zou J, Zhou H. An engineered canine-mouse chimeric neutralizing antibody provides therapeutic effects against canine parvovirus infection. Vet Microbiol 2025; 306:110572. [PMID: 40449098 DOI: 10.1016/j.vetmic.2025.110572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 05/19/2025] [Accepted: 05/25/2025] [Indexed: 06/02/2025]
Abstract
Canine parvovirus (CPV) is a highly contagious and severe infectious disease that can lead to hemorrhagic enteritis and even acute death in dogs. Despite mouse monoclonal antibodies (mAbs) have been employed in clinical treatment, their application in non-murine species is restricted due to immune rejection. In this study, we screened a mouse mAb (5E7) with high neutralizing activity against CPV using hybridoma technology. Subsequently, the variable regions of the heavy (VH) and light (VL) chains of 5E7 were amplified by PCR and fused with the constant regions of canine IgG antibody to produce canine-mouse chimeric antibody (CM-5E7). The chimeric antibody was successfully expressed in HEK293 cells and exhibited high neutralizing activity against multiple CPV subtypes in vitro. Furthermore, CM-5E7 exhibited effective therapeutic potential in dogs subjected to lethal dose CPV-2c challenge in vivo. Overall, CM-5E7 demonstrated high neutralizing activity against CPV and showed significant efficacy in treating CPV-2c infections, positioning it as a promising candidate therapeutic antibody for the treatment of CPV infection.
Collapse
|
|
1 |
|
13
|
Lou Y, Xin J, Suolang S, Qiong D, Dawa Z, Gong G. Detection and Whole Genome Amplification of the 4d Type of Porcine Hepatitis E Virus in Eastern Tibet, China. Vet Med Sci 2025; 11:e70194. [PMID: 39832188 PMCID: PMC11745153 DOI: 10.1002/vms3.70194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025] Open
Abstract
Genomic and evolutionary analysis of epidemic porcine hepatitis E virus (HEV) in the Tibetan Plateau was performed. Faecal samples were collected from 216 Tibetan pigs and 78 Tibetan Yorkshire (Large White) and 53 tissue samples from Yorkshire from the Linzhi City slaughterhouse. Total RNA was extracted from faeces and fragments of HEV open reading frame 2 (ORF2) detected by reverse transcription and nested polymerase chain reaction (RT-nPCR) and cloned. Twenty-three samples (23/347; 6.63%) were positive for the virus, including 6.94% (15/216) Tibetan pig and 6.11% (8/131) Yorkshire samples. No tissue samples tested positive for the virus. Cloned sequences were uploaded to GenBank (accession numbers: OR392679-OR392685, OR355817-OR355824 and OR909495-OR909502) and a phylogenetic tree constructed. The entire viral genome was amplified using primers for the 5-month-old Tibetan pig sequence which confirmed that the strain belonged to HEV type 4, subtype d (GenBank accession number: OQ981960) and showed 93.30% homology with Sichuan Tibetan pig sequence, MK410044. Bayesian tree analysis showed that the earliest divergence was in 1999 and evidence of homologous recombination was found. Genomic and evolutionary analysis of HEV in the Tibetan Plateau is presented. The importance of continuous surveillance and genomic analysis of HEV is highlighted, especially in regions like the Tibetan Plateau where new strains may emerge. The findings contribute to our understanding of HEV's genetic diversity, evolutionary history and potential risks to animal and human health.
Collapse
|
research-article |
1 |
|
14
|
Mao L, Li X, Cai X, Li W, Li J, Yang S, Zhai J, Suolang S, Li B. First Specific Detection of Mammalian Orthoreovirus from Goats Using TaqMan Real-Time RT-PCR Technology. Vet Sci 2024; 11:141. [PMID: 38668409 PMCID: PMC11054425 DOI: 10.3390/vetsci11040141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/08/2024] [Accepted: 03/16/2024] [Indexed: 04/29/2024] Open
Abstract
Mammalian orthoreovirus (MRV) infections are ubiquitous in multiple mammalian species including humans, and mainly causes gastroenteritis and respiratory disease. In this study, we developed a rapid and sensitive TaqMan qRT-PCR method for MRV detection based on the primers and probe designed within the conserved L1 gene. The qRT-PCR assay was evaluated for its sensitivity, specificity, efficiency and reproducibility. It was found that the detection sensitivity was equivalent to 10 DNA copies/μL, and the standard curves had a linear correlation of R2 = 0.998 with an amplification efficiency of 99.6%. The inter- and intra-assay coefficients of variation (CV%) were in the range of 0.29% to 2.16% and 1.60% to 3.60%, respectively. The primer sets specifically amplified their respective MRV segments and had the highest detection sensitivities of 100.25 TCID50/mL with amplification efficiencies of 99.5% (R2 = 0.999). qRT-PCR was used for MRV detection from samples of sheep, goats, and calves from four regions in China, and the overall MRV prevalence was 8.2% (35/429), whereas 17/429 (4.0%) were detected by RT-PCR and 14/429 (3.3%) by virus isolation. The qRT-PCR assay showed significantly higher sensitivity than RT-PCR and virus isolation. Results from an epidemiological survey indicated that the positive rate of MRV in rectal swabs from sheep and goats tested in Shaanxi, Jiangsu, and Xinjiang were 9/80 (11.3%), 12/93 (12.9%) and 14/128 (10.9%), respectively. In goats and sheep, MRV prevalence was obviously associated with season and age, with a high positive rate of more than 8% during September to April and approximately 13% in small ruminant animals under two months of age. This is the first instance of MRV infection in sheep and goats in China, thus broadening our knowledge of MRV hosts. Consequently, primer optimization for qRT-PCR should not only prioritize amplification efficiency and specificity, but also sensitivity. This assay will contribute to more accurate and rapid MRV monitoring by epidemiological investigation, viral load, and vaccination efficacy.
Collapse
|
research-article |
1 |
|
15
|
Wang S, Wang Z, Li Y, Tu S, Zou J, Cheng Y, Zhang H, Suolang S, Zhou H. Generation of whole-porcine neutralizing antibodies of an alphacoronavirus by single B cell antibody technology. Antiviral Res 2023; 220:105754. [PMID: 37967753 DOI: 10.1016/j.antiviral.2023.105754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus that causes severe morbidity and mortality in piglets, resulting in substantial economic losses to the swine industry. While vaccination is currently the most effective preventive measure, existing vaccines fail to provide complete and reliable protection against PEDV infection. Consequently, there is a need to explore alternative or complementary strategies to address this issue. In this study, we utilized single B cell antibody technology to obtain a potent neutralizing antibody, C62, which specifically targets the receptor binding domain S1B of the PEDV-S1 protein. C62 exhibited potent neutralizing activity against PEDV and inhibited viral attachment to the cell surface in vitro. Furthermore, the effectiveness of C62 in mitigating PEDV infection was demonstrated in vivo, as evidenced by the delayed onset of diarrhea and reduced mortality rates observed in piglets following oral administration of C62. Our study provides an alternative approach for controlling PEDV infection. Meanwhile, C62 holds promise as a therapeutic biological agent to complement existing vaccines. More importantly, our study forms a solid foundation for the development of whole-porcine neutralizing antibodies against other swine coronaviruses, thus contributing to the overall improvement of swine health.
Collapse
|
|
2 |
|
16
|
Li K, Chen D, Zhao K, Liu D, Kong D, Sun Y, Guan A, Zhou P, Jin H, Jongkaewwattana A, Suolang S, Wang D, Zhou H, Luo R. Cleavage of the selective autophagy receptor NBR1 by the PDCoV main protease NSP5 impairs autophagic degradation of the viral envelope protein. Autophagy 2025:1-16. [PMID: 40047225 DOI: 10.1080/15548627.2025.2474576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus that causes severe diarrhea in neonatal piglets worldwide and presents a significant public health threat due to its potential for cross-species transmission. Selective macroautophagy/autophagy, mediated by autophagy receptors such as NBR1 (NBR1 autophagy cargo receptor), plays a key role in restricting viral infection and modulating the host immune response. In this study, we revealed that overexpression of NBR1 inhibits PDCoV replication, while its knockdown increases viral titers. Further analysis demonstrated that NBR1 interacts with the PDCoV envelope (E) protein independently of ubiquitination, directing it to phagophores for autophagic degradation to limit viral proliferation. To counteract this defense, PDCoV 3C-like protease, encoded by NSP5, cleaves porcine NBR1 at glutamine 353 (Q353), impairing its selective autophagy function and antiviral activity. Additionally, we demonstrated that NSP5 proteases from other coronaviruses including PEDV, TGEV, and SARS-CoV-2 also cleave NBR1 at the same site, suggesting that coronaviruses employ a conserved strategy of NSP5-mediated cleavage of NBR1 to evade host antiviral responses and facilitate infection. Overall, our study underscores the importance of NBR1-mediated selective autophagy in the host's defense against PDCoV and reveals a strategy by which PDCoV evades autophagic mechanisms to promote successful infection.Abbreviation: Cas9: CRISPR-associated protein 9; CC1: coiled-coil 1; Co-IP: co-immunoprecipitation; CRISPR: clustered regularly interspaced short palindromic repeats; GFP: green fluorescent protein; IFA: indirect immunofluorescence assay; KO: knockout; LIR: MAP1LC3/LC3-interacting region; mAb: monoclonal antibody; NBR1: NBR1 autophagy cargo receptor; NBR1-C: C-terminal fragment of NBR1; NBR1-N: N-terminal fragment of NBR1; OPTN: optineurin; pAb: polyclonal antibody; PB1: Phox/BEM1 domain; PDCoV: porcine deltacoronavirus; PEDV: porcine epidemic diarrhea virus; Q353A: a NBR1 construct with the glutamine (Q) residue at position 353 replaced with glutamic acid (A); SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SQSTM1: sequestosome 1; TCID50: 50% tissue culture infective dose; TGEV: porcine transmissible gastroenteritis virus; UBA: ubiquitin-associated domain; Ub: ubiquitin; WT: wild type; ZZ: ZZ-type zinc finger domain.
Collapse
|
|
1 |
|
17
|
Wu D, Luo R, Gong G, Zhang L, Huang J, Cai C, Li Y, Irshad I, Song R, Suolang S. Antimicrobial susceptibility and multilocus sequence typing of Clostridium perfringens isolated from yaks in Qinghai-Tibet plateau, China. Front Vet Sci 2022; 9:1022215. [DOI: 10.3389/fvets.2022.1022215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridium perfringens (C. perfringens) is an opportunistic pathogen that cause necrotic enteritis, food poisoning and even death in animals. In this study, we explored the prevalence, antibiotic resistance and genetic diversity of Clostridium perfringens isolated from yak in the Qinghai-Tibet plateau, China. A total of 744 yak fecal samples were collected and assessed for toxin genes, antimicrobial susceptibility and multilocus sequence typing (MLST). Results indicated that 144 out of 744 (19.35%) yak fecal samples were tested to be positive for C. perfringens, 75% (n = 108, 108/144) were C. perfringens type A, 17.36% (n = 25, 25/144) were C. perfringens type C, 2.78% (n = 4, 4/144) were C. perfringens type D, and 4.86% (n = 7, 7/144) were C. perfringens type F. In addition, 2.78% (n = 4, 4/144) of the isolates were positive for cpb2 toxin gene. Antimicrobial susceptibility testing revealed that 98.61% (142/144) of the isolates showed multiple-antibiotic resistance. According to MLST and phylogenetic tree, 144 yak-derived C. perfringens isolates had an average of 12.95 alleles and could be divided into 89 sequence types (STs) and clustered in 11 clonal complexes (CCs). The most of isolates belong to type A with a considerable genetic diversity, having Simpson index up to 0.9754. MLST and phylogenetic analysis showed that the isolates under the same clade came from multiple regions. Cross-transmission among isolates and interconnectedness were observed in the genetic evolution. According to the study, the most of the isolates exhibited broad-spectrum antibacterial resistance, diverse alleles, and multiple lethal toxin genes of C. perfringens.
Collapse
|
|
3 |
|
18
|
Yao Y, Meng Z, Li W, Xu Y, Wang Y, Suolang S, Xi G, Cao L, Guo M. Profiling and Functional Analysis of long non-coding RNAs in yak healthy and atretic follicles. Anim Reprod 2022; 19:e20210131. [PMID: 36313598 PMCID: PMC9613354 DOI: 10.1590/1984-3143-ar2021-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 09/13/2022] [Indexed: 11/26/2022] Open
Abstract
Yak is the livestock on which people live in plateau areas, but its fecundity is low. Follicular development plays a decisive role in yak reproductive performance. As an important regulatory factor, the expression of long non-coding RNA (lncRNAs) in yak follicular development and its regulatory mechanism remains unclear. To explore the differentially expressed lncRNAs between healthy and atretic follicular in yaks. We used RNA-seq to construct lncRNA, miRNA, and mRNA expression profiles in yak atretic and healthy follicles, and the RNA sequence results were identified by qPCR. In addition, the correlation of lncRNA and targeted mRNA was also analyzed by Starbase software. Moreover, lncRNA/miRNA/mRNA networks were constructed by Cytoscape software, and the network was verified by dual-luciferase analysis. A total of 682 novel lncRNAs, 259 bta-miRNAs, and 1704 mRNAs were identified as differentially expressed between healthy and atretic follicles. Among them, 135 mRNAs were positively correlated with lncRNA expression and 97 were negatively correlated, which may be involved in the yak follicular development. In addition, pathway enrichment analysis of differentially expressed lncRNA host genes by Kyoto Genome Encyclopedia (KEGG) showed that host genes were mainly involved in hormone secretion, granulosa cell apoptosis, and follicular development. In conclusion, we identified a series of novel lncRNAs, constructed the lncRNA ceRNA regulatory network, and provided comprehensive resources for exploring the role of lncRNAs in yak ovarian follicular development.
Collapse
|
|
3 |
|
19
|
Gong G, Xin J, Lou Y, Qiong D, Dawa Z, Gesang Z, Suolang S. Cell Culture of a Swine Genotype 4 Hepatitis E Virus Strain. J Med Virol 2024; 96:e70031. [PMID: 39530175 DOI: 10.1002/jmv.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
HEV infection has become a global health concern. The study of HEV pathogenicity has been hindered by the lack of a suitable in vitro culture system. In the present research, we systematic demonstration of efficient replication of swine GT4 HEV in A549 cells, Huh-7 cells, and HepG2/C3A cell lines. The results of the immunofluorescence assay and immunofluorescence confocal assay showed that swine GT4 HEV is efficiently replicated in three cell lines at 72 h postinoculation. Meanwhile, we also detected the virus titer quantified were increased at 2-, 6,- and 11-days postinoculation. Moreover, we successfully observed HEV virus particles in the cell suspension at 6 days postinoculation. This finding holds significance for advancing in vitro HEV studies.
Collapse
|
|
1 |
|
20
|
Li D, Zhang K, Xue X, Bai Z, Yang L, Qi J, Suolang S. Treatment-Related Mechanisms of Tibetan Medicine Terminalia chebula (TC) Aqueous Extract Against Mouse Gastroenteritis Caused by Yak-Origin Salmonella Determined Using Intestinal Microbiome Analysis and Metabolomics. Animals (Basel) 2025; 15:755. [PMID: 40076040 PMCID: PMC11899446 DOI: 10.3390/ani15050755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
This study aimed to evaluate the therapeutic effect of Terminalia chebula (TC) on Tibetan yak-origin Salmonella-induced diarrhea and dysentery in mice. The levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α), anti-inflammatory cytokines (IL-4 and IL-10), and the oxidative stress markers malondialdehyde (MDA), superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC), reduced glutathione (GSH-PX), and catalase (CAT) in the serum of mice were measured using ELISA kits. Using microbial diversity sequencing and non-targeted metabolomics detection techniques, the relevant mechanisms of TC treatment in a mouse Salmonella infection model were evaluated. The results showed the following: TC can effectively reduce the diarrhea rate; alleviate weight loss caused by Salmonella invasion; reduce the pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α in serum; and increase the concentrations of the anti-inflammatory cytokines IL-4 and IL-10. TC can improve the body's antioxidant levels to heal the damage caused by oxidative stress and lipid peroxidation. The histological section results show that TC can significantly improve gastric and intestinal tissue lesions and has no toxic effects on the liver and kidneys. 16S rRNA and ITS sequencing analysis suggests that Lactobacillus, Enterorhabdus, Alistipes (bacterial community), Lodderomyces, Saccharomyces, and Penicillium (fungal community) may be key functional microbial communities in TC. Non-targeted metabolomics also suggests that the antibacterial treatment of dysentery with chebulic acid may be related to regulation of the Ras signaling pathway, long-term potentiation, the MAPK signaling pathway, metabolic pathways, and gut microbiome composition. Conclusion: TC has clear clinical efficacy in treating bacterial diarrhea, presenting anti-inflammatory and antioxidant effects. Its roles in regulating the gut microbiome and metabolic pathways and products were determined as the main reason for its therapeutic effect in a mouse gastroenteritis model caused by Salmonella infection.
Collapse
|
research-article |
1 |
|
21
|
Li X, Cai X, He Y, Li W, Zhai J, Luo R, Suolang S, Mao L, Li B. Genomic Characteristics and Pathogenicity of Novel Reassortant Mammalian Orthoreoviruses From Sheep, China. Transbound Emerg Dis 2025; 2025:6025244. [PMID: 40406227 PMCID: PMC12097874 DOI: 10.1155/tbed/6025244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/15/2025] [Indexed: 05/26/2025]
Abstract
Mammalian orthoreoviruses (MRVs) have a wide geographic distribution worldwide and have been detected from humans and a variety of animal species. This study represents the first isolation of MRV from sheep rectal swabs in China, with analyses of its molecular and pathogenicity characteristics. MRV-positive samples were inoculated into Madin-Darby bovine kidney (MDBK) cells, resulting in stable cytopathic effects (CPEs) after three generations of blind passage. Two isolates were isolated and confirmed as MRV, named MRV-XJ23 and MRV-sheep/SY13, through reverse-transcription polymerase chain reaction (RT-PCR), transmission electron microscopy, and indirect immunofluorescence assay (IFA). The viruses exhibited broad cellular tropism. Whole-genome sequences were obtained and subjected to homology and evolutionary analyses, revealing that MRV-XJ23 and MRV-sheep/SY13 belong to the MRV-1 serotype. Phylogenetic analyses demonstrated that MRV-XJ23 is a reassortant virus containing gene segments from three MRVs that infected humans, bovines, and bats, with nucleotide homology exceeding 94.56%. The gene segments of MRV-sheep/SY13 were derived from five strains-Osaka2005, BatMRV-2/SNU1/Korea/2021, T1/human/Netherlands/1/84, IND/MZ/3013814/reo, and B/03-with nucleotide homology exceeding 95.47%. Animal experiments demonstrated that MRV-sheep/SY13 infection induced significant pathological changes in the respiratory and digestive tracts of mice. In sheep, MRV-sheep/SY13 caused respiratory infections, but no obvious lesion was observed from the digestive tract. This study expands our understanding of the MRV host range, reveals the potential public health risk of MRV transmission across species and zoonotic transmission, and underscores the necessity of further studies on epidemiology, reassortment patterns, and pathogenicity of MRV in sheep and domestic animals.
Collapse
|
research-article |
1 |
|
22
|
Zhu J, Xiao Q, Yin L, Zhang F, Wen L, Suolang S, He K. Porcine circovirus-like virus P1 activates pancreatic secretion pathway by interacting with CHRM3 protein. Vet Microbiol 2022; 272:109495. [DOI: 10.1016/j.vetmic.2022.109495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 11/29/2022]
|
|
3 |
|