1
|
Abstract
Sugars have important signaling functions throughout all stages of the plant's life cycle. This review presents our current understanding of the different mechanisms of sugar sensing and sugar-induced signal transduction, including the experimental approaches used. In plants separate sensing systems are present for hexose and sucrose. Hexokinase-dependent and -independent hexose sensing systems can further be distinguished. There has been progress in understanding the signal transduction cascade by analyzing the function of the SNF1 kinase complex and the regulatory PRL1 protein. The role of sugar signaling in seed development and in seed germination is discussed, especially with respect to the various mechanisms by which sugar signaling controls gene expression. Finally, recent literature on interacting signal transduction cascades is discussed, with particular emphasis on the ethylene and ABA signal transduction pathways.
Collapse
|
Journal Article |
25 |
620 |
2
|
Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S. Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. PLANT PHYSIOLOGY 2005; 139:1840-52. [PMID: 16299184 PMCID: PMC1310563 DOI: 10.1104/pp.105.066688] [Citation(s) in RCA: 443] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sugar-induced anthocyanin accumulation has been observed in many plant species. We observed that sucrose (Suc) is the most effective inducer of anthocyanin biosynthesis in Arabidopsis (Arabidopsis thaliana) seedlings. Other sugars and osmotic controls are either less effective or ineffective. Analysis of Suc-induced anthocyanin accumulation in 43 Arabidopsis accessions shows that considerable natural variation exists for this trait. The Cape Verde Islands (Cvi) accession essentially does not respond to Suc, whereas Landsberg erecta is an intermediate responder. The existing Landsberg erecta/Cvi recombinant inbred line population was used in a quantitative trait loci analysis for Suc-induced anthocyanin accumulation (SIAA). A total of four quantitative trait loci for SIAA were identified in this way. The locus with the largest contribution to the trait, SIAA1, was fine mapped and using a candidate gene approach, it was shown that the MYB75/PAP1 gene encodes SIAA1. Genetic complementation studies and analysis of a laboratory-generated knockout mutation in this gene confirmed this conclusion. Suc, in a concentration-dependent way, induces MYB75/PAP1 mRNA accumulation. Moreover, MYB75/PAP1 is essential for the Suc-mediated expression of the dihydroflavonol reductase gene. The SIAA1 locus in Cvi probably is a weak or loss-of-function MYB75/PAP1 allele. The C24 accession similarly shows a very weak response to Suc-induced anthocyanin accumulation encoded by the same locus. Sequence analysis showed that the Cvi and C24 accessions harbor mutations both inside and downstream of the DNA-binding domain of the MYB75/PAP1 protein, which most likely result in loss of activity.
Collapse
|
|
20 |
443 |
3
|
Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, Meissner RC, Petroni K, Urzainqui A, Bevan M, Martin C, Smeekens S, Tonelli C, Paz-Ares J, Weisshaar B. Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 16:263-76. [PMID: 9839469 DOI: 10.1046/j.1365-313x.1998.00278.x] [Citation(s) in RCA: 408] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Transcription factors containing a conserved DNA-binding domain similar to that of the proto-oncogene c-myb have been identified in nearly all eukaryotes. MYB-related proteins from plants generally contain two related helix-turn-helix motifs, the R2 and R3 repeats. It was estimated that Arabidopsis thaliana contains more than 100 R2R3-MYB genes. The few cases where functional data are available suggest an important role of these genes in the regulation of secondary metabolism, the control of cell shape, disease resistance, and hormone responses. To determine the full regulatory potential of this large family of regulatory genes, a systematic search for the function of all genes of this family was initiated. Sequence data for more than 90 different A. thaliana R2R3-MYB genes have been obtained. Sequence comparison revealed conserved amino acid motifs shared by subgroups of R2R3-MYB genes in addition to the characteristic DNA-binding domain. No significant clustering of the genes was detected, although they are not uniformly distributed throughout the A. thaliana genome.
Collapse
|
|
27 |
408 |
4
|
Smeekens S, Ma J, Hanson J, Rolland F. Sugar signals and molecular networks controlling plant growth. CURRENT OPINION IN PLANT BIOLOGY 2010; 13:274-9. [PMID: 20056477 DOI: 10.1016/j.pbi.2009.12.002] [Citation(s) in RCA: 359] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 12/09/2009] [Indexed: 05/18/2023]
Abstract
In recent years, several regulatory systems that link carbon nutrient status to plant growth and development have emerged. In this paper, we discuss the growth promoting functions of the hexokinase (HXK) glucose sensor, the trehalose 6-phosphate (T6P) signal and the Target of Rapamycin (TOR) kinase pathway, and the growth inhibitory function of the SNF1-related Protein Kinase1 (SnRK1) and the C/S1 bZIP transcription factor network. It is crucial that these systems interact closely in regulating growth and in several cases crosstalk has been demonstrated. Importantly, these nutrient controlled systems must interact with other growth regulatory pathways.
Collapse
|
Review |
15 |
359 |
5
|
Lastdrager J, Hanson J, Smeekens S. Sugar signals and the control of plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:799-807. [PMID: 24453229 DOI: 10.1093/jxb/ert474] [Citation(s) in RCA: 340] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sugars have a central regulatory function in steering plant growth. This review focuses on information presented in the past 2 years on key players in sugar-mediated plant growth regulation, with emphasis on trehalose 6-phosphate, target of rapamycin kinase, and Snf1-related kinase 1 regulatory systems. The regulation of protein synthesis by sugars is fundamental to plant growth control, and recent advances in our understanding of the regulation of translation by sugars will be discussed.
Collapse
|
Review |
11 |
340 |
6
|
Schluepmann H, Pellny T, van Dijken A, Smeekens S, Paul M. Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2003; 100:6849-54. [PMID: 12748379 PMCID: PMC164535 DOI: 10.1073/pnas.1132018100] [Citation(s) in RCA: 338] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genes for trehalose metabolism are widespread in higher plants. Insight into the physiological role of the trehalose pathway outside of resurrection plant species is lacking. To address this lack of insight, we express Escherichia coli genes for trehalose metabolism in Arabidopsis thaliana, which manipulates trehalose 6-phosphate (T6P) contents in the transgenic plants. Plants expressing otsA [encoding trehalose phosphate synthase (TPS)] accumulate T6P whereas those expressing either otsB [encoding trehalose phosphate phosphatase (TPP)] or treC [encoding trehalose phosphate hydrolase (TPH)] contain low levels of T6P. Expression of treF (encoding trehalase) yields plants with unaltered T6P content and a phenotype not distinguishable from wild type when grown on soil. The marked phenotype obtained of plants accumulating T6P is opposite to that of plants with low T6P levels obtained by expressing either TPP or TPH and consistent with a critical role for T6P in growth and development. Supplied sugar strongly inhibits growth of plants with reduced T6P content and leads to accumulation of respiratory intermediates. Remarkably, sugar improves growth of TPS expressors over wild type, a feat not previously accomplished by manipulation of metabolism. The data indicate that the T6P intermediate of the trehalose pathway controls carbohydrate utilization and thence growth via control of glycolysis in a manner analogous to that in yeast. Furthermore, embryolethal A. thaliana tps1 mutants are rescued by expression of E. coli TPS, but not by supply of trehalose, suggesting that T6P control over primary metabolism is indispensable for development.
Collapse
|
research-article |
22 |
338 |
7
|
|
Review |
26 |
312 |
8
|
Smeekens S, Bauerle C, Hageman J, Keegstra K, Weisbeek P. The role of the transit peptide in the routing of precursors toward different chloroplast compartments. Cell 1986; 46:365-75. [PMID: 3731274 DOI: 10.1016/0092-8674(86)90657-4] [Citation(s) in RCA: 211] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The role of the transit peptide in the routing of imported proteins inside the chloroplast was investigated with chimeric proteins in which the transit peptides for the nuclear-encoded ferredoxin and plastocyanin precursors were exchanged. Import and localization experiments with a reconstituted chloroplast system show that the ferredoxin transit peptide directs mature plastocyanin away from its correct location, the thylakoid lumen, to the stroma. With the plastocyanin transit peptide-mature ferredoxin chimera, a processing intermediate is arrested on its way to the lumen. We propose a two domain hypothesis for the plastocyanin transit peptide: the first domain functions in the chloroplast import process, whereas the second is responsible for transport across the thylakoid membrane. Thus, the transit peptide not only targets proteins to the chloroplast, but also is a major determinant in their subsequent localization within the organelle.
Collapse
|
|
39 |
211 |
9
|
Schluepmann H, van Dijken A, Aghdasi M, Wobbes B, Paul M, Smeekens S. Trehalose mediated growth inhibition of Arabidopsis seedlings is due to trehalose-6-phosphate accumulation. PLANT PHYSIOLOGY 2004; 135:879-90. [PMID: 15181209 PMCID: PMC514123 DOI: 10.1104/pp.104.039503] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 03/24/2004] [Accepted: 03/24/2004] [Indexed: 05/17/2023]
Abstract
Trehalose-6-phosphate (T6P) is required for carbon utilization during Arabidopsis development, and its absence is embryo lethal. Here we show that T6P accumulation inhibits seedling growth. Wild-type seedlings grown on 100 mm trehalose rapidly accumulate T6P and stop growing, but seedlings expressing Escherichia coli trehalose phosphate hydrolase develop normally on such medium. T6P accumulation likely results from much-reduced T6P dephosphorylation when trehalose levels are high. Metabolizable sugars added to trehalose medium rescue T6P inhibition of growth. In addition, Suc feeding leads to a progressive increase in T6P concentrations, suggesting that T6P control over carbon utilization is related to available carbon for growth. Expression analysis of genes from the Arabidopsis trehalose metabolism further supports this: Suc rapidly induces expression of trehalose phosphate synthase homolog AtTPS5 to high levels. In contrast, T6P accumulation after feeding trehalose in the absence of available carbon induces repression of genes encoding T6P synthases and expression of T6P phosphatases. To identify processes controlled by T6P, we clustered expression profile data from seedlings with altered T6P content. T6P levels correlate with expression of a specific set of genes, including the S6 ribosomal kinase ATPK19, independently of carbon status. Interestingly, Suc addition represses 15 of these genes, one of which is AtKIN11, encoding a Sucrose Non Fermenting 1 (SNF1)-related kinase known to play a role in Suc utilization.
Collapse
|
research-article |
21 |
210 |
10
|
Wind J, Smeekens S, Hanson J. Sucrose: metabolite and signaling molecule. PHYTOCHEMISTRY 2010; 71:1610-4. [PMID: 20696445 DOI: 10.1016/j.phytochem.2010.07.007] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/16/2010] [Accepted: 07/16/2010] [Indexed: 05/05/2023]
Abstract
Sucrose is a molecule that is synthesized only by oxygenic photosynthetic organisms. In plants, sucrose is synthesized in source tissues and then can be transported to sink tissues, where it is utilized or stored. Interestingly, sucrose is both a metabolite and a signaling molecule. Manipulating the rate of the synthesis, transport or degradation of sucrose affects plant growth, development and physiology. Altered sucrose levels changes the quantity of sucrose derived metabolites and sucrose-specific signaling. In this paper, these changes are summarized. Better understanding of sucrose metabolism and sucrose sensing systems in plants will lead to opportunities to adapt plant metabolism and growth.
Collapse
|
|
15 |
192 |
11
|
Abstract
The recent cloning of genes encoding fructosyltransferases and fructan exohydrolases has been a major breakthrough in fructan research. Now, fructan metabolism and fructosyltransferase enzymes can be studied at the molecular level. In addition, fructan synthesis and breakdown can be adapted in such a way that tailor-made fructans are produced in plants for use as healthy food ingredients.
Collapse
|
Review |
22 |
183 |
12
|
Wiese A, Elzinga N, Wobbes B, Smeekens S. A conserved upstream open reading frame mediates sucrose-induced repression of translation. THE PLANT CELL 2004; 16:1717-29. [PMID: 15208401 PMCID: PMC514156 DOI: 10.1105/tpc.019349] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Accepted: 04/13/2004] [Indexed: 05/18/2023]
Abstract
Sugars have been shown to regulate transcription of numerous genes in plants. Sucrose controls translation of the group S basic region leucine zipper (bZIP)-type transcription factor ATB2/AtbZIP11 (Rook et al., 1998a). This control requires the unusually long 5' untranslated region (UTR) of the gene. Point mutations and deletions of the 5'UTR have uncovered the sequences involved. A highly conserved upstream open reading frame (uORF) coding for 42 amino acids is essential for the repression mechanism. It is conserved in 5'UTRs of bZIP transcription factors from other Arabidopsis thaliana genes and many other plants. ATB2/AtbZIP11 is normally expressed in association with vascular tissues. Ectopic expression of a 5'UTR construct shows that the sucrose repression system is functional in all tissues. AtbZIP2 is another Arabidopsis bZIP transcription factor gene harboring the conserved uORF, which is regulated similarly via sucrose-induced repression of translation. This suggests a general function of the conserved uORF in sucrose-controlled regulation of expression. Our findings imply the operation of a sucrose-sensing pathway that controls translation of several plant bZIP transcription factor genes harboring the conserved uORF in their 5'UTRs. Target genes of such transcription factors will then be regulated in sucrose-dependent way.
Collapse
|
research-article |
21 |
170 |
13
|
Spaan W, Delius H, Skinner M, Armstrong J, Rottier P, Smeekens S, van der Zeijst BA, Siddell SG. Coronavirus mRNA synthesis involves fusion of non-contiguous sequences. EMBO J 1984. [PMID: 6196191 PMCID: PMC555368 DOI: 10.1002/j.1460-2075.1983.tb01667.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Positive-stranded genomic RNA of coronavirus MHV and its six subgenomic mRNAs are synthesized in the cytoplasm of the host cell. The mRNAs are composed of leader and body sequences which are non-contiguous on the genome and are fused together in the cytoplasm by a mechanism which appears to involve an unusual and specific 'polymerase jumping' event.
Collapse
|
Research Support, Non-U.S. Gov't |
41 |
163 |
14
|
Huijser C, Kortstee A, Pego J, Weisbeek P, Wisman E, Smeekens S. The Arabidopsis SUCROSE UNCOUPLED-6 gene is identical to ABSCISIC ACID INSENSITIVE-4: involvement of abscisic acid in sugar responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 23:577-85. [PMID: 10972884 DOI: 10.1046/j.1365-313x.2000.00822.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In plants, sugars act as signalling molecules that control many aspects of metabolism and development. Arabidopsis plants homozygous for the recessive sucrose uncoupled-6 (sun6) mutation show a reduced sensitivity to sugars for processes such as photosynthesis, gene expression and germination. The sun6 mutant is insensitive to sugars that are substrates for hexokinase, suggesting that SUN6 might play a role in hexokinase-dependent sugar responses. The SUN6 gene was cloned by transposon tagging and analysis showed it to be identical to the previously described ABSCISIC ACID INSENSITIVE-4 (ABI4) gene. Our analysis suggests the involvement of abscisic acid and components of the abscisic acid signal transduction cascade in a hexokinase-dependent sugar response pathway. During the plant life cycle, SUN6/ABI4 may be involved in controlling metabolite availability in an abscisic acid- and sugar-dependent way.
Collapse
|
|
25 |
157 |
15
|
Armstrong J, Niemann H, Smeekens S, Rottier P, Warren G. Sequence and topology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus. Nature 1984; 308:751-2. [PMID: 6325918 PMCID: PMC7095125 DOI: 10.1038/308751a0] [Citation(s) in RCA: 155] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/1983] [Accepted: 03/21/1984] [Indexed: 01/19/2023]
Abstract
In the eukaryotic cell, both secreted and plasma membrane proteins are synthesized at the endoplasmic reticulum, then transported, via the Golgi complex, to the cell surface. Each of the compartments of this transport pathway carries out particular metabolic functions, and therefore presumably contains a distinct complement of membrane proteins. Thus, mechanisms must exist for localizing such proteins to their respective destinations. However, a major obstacle to the study of such mechanisms is that the isolation and detailed analysis of such internal membrane proteins pose formidable technical problems. We have therefore used the E1 glycoprotein from coronavirus MHV-A59 as a viral model for this class of protein. Here we present the primary structure of the protein, determined by analysis of cDNA clones prepared from viral mRNA. In combination with a previous study of its assembly into the endoplasmic reticulum membrane, the sequence reveals several unusual features of the protein which may be related to its intracellular localization.
Collapse
|
research-article |
41 |
155 |
16
|
Rook F, Gerrits N, Kortstee A, van Kampen M, Borrias M, Weisbeek P, Smeekens S. Sucrose-specific signalling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 15:253-63. [PMID: 9721683 DOI: 10.1046/j.1365-313x.1998.00205.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Arabidopsis bZIP transcription factor gene ATB2 has been shown previously to be expressed in a light-regulated and tissue-specific way. Here we describe the precise localization of ATB2 expression, using transgenic lines containing an ATB2 promoter-GUS reporter gene construct. The observed expression pattern suggests a role for ATB2 in the control of processes associated with the transport or utilization of metabolites. Remarkably, expression of the ATB2-GUS reporter gene construct was specifically repressed by sucrose. Other sugars, such as glucose and fructose, alone or in combination, were ineffective. Repression was observed at external sucrose concentrations exceeding 25 mM. Transcript levels of both the endogenous ATB2 gene and the ATB2-GUS reporter gene were not repressed by sucrose, suggesting that sucrose affects mRNA translation. This translational regulation involves the ATB2 leader sequence because deletion of the leader resulted in loss of sucrose repression. Our results provide evidence for a sucrose-specific sugar sensing and signalling system in plants.
Collapse
|
|
27 |
155 |
17
|
Ehlert A, Weltmeier F, Wang X, Mayer CS, Smeekens S, Vicente-Carbajosa J, Dröge-Laser W. Two-hybrid protein-protein interaction analysis in Arabidopsis protoplasts: establishment of a heterodimerization map of group C and group S bZIP transcription factors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:890-900. [PMID: 16709202 DOI: 10.1111/j.1365-313x.2006.02731.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In vivo protein-protein interactions are frequently studied by means of yeast two-hybrid analysis. However, interactions detected in yeast might differ considerably in the plant system. Based on GAL4 DNA-binding (BD) and activation domains (AD) we established an Arabidopsis protoplast two-hybrid (P2H) system. The use of Gateway-compatible vectors enables the high-throughput screening of protein-protein interactions in plant cells. The efficiency of the system was tested by examining the homo- and heterodimerization properties of basic leucine zipper (bZIP) transcription factors. A comprehensive heterodimerization matrix of Arabidopsis thaliana group C and group S bZIP transcription factors was generated by comparing the results of yeast and protoplast two-hybrid experiments. Surprisingly, almost no homodimerization but rather specific and selective heterodimerization was detected. Heterodimers were preferentially formed between group C members (AtbZIP9, -10, -25, -63) and members of group S1 (AtbZIP1, -2, -11, -44, -53). In addition, significant but low-affinity interactions were detected inside group S1, S2 or C AtbZIPs, respectively. As a quantitative approach, P2H identified weak heterodimerization events which were not detected in the yeast system. Thus, in addition to cell biological techniques, P2H is a valuable tool for studying protein-protein interaction in living plant cells.
Collapse
|
|
19 |
150 |
18
|
Hageman J, Robinson C, Smeekens S, Weisbeek P. A thylakoid processing protease is required for complete maturation of the lumen protein plastocyanin. Nature 1986. [DOI: 10.1038/324567a0] [Citation(s) in RCA: 137] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
39 |
137 |
19
|
Hanson J, Hanssen M, Wiese A, Hendriks MMWB, Smeekens S. The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:935-49. [PMID: 18088315 DOI: 10.1111/j.1365-313x.2007.03385.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Translation of the transcription factor bZIP11 is repressed by sucrose in a process that involves a highly conserved peptide encoded by the 5' leaders of bZIP11 and other plant basic region leucine zipper (bZip) genes. It is likely that a specific signaling pathway operating at physiological sucrose concentrations controls metabolism via a feedback mechanism. In this paper bZIP11 target processes are identified using transiently increased nuclear bZIP11 levels and genome-wide expression analysis. bZIP11 affects the expression of hundreds of genes with proposed functions in biochemical pathways and signal transduction. The expression levels of approximately 80% of the genes tested are not affected by bZIP11 promoter-mediated overexpression of bZIP11. This suggests that <20% of the identified genes appear to be physiologically relevant targets of bZIP11. ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2 are among the rapidly activated bZIP11 targets, whose induction is independent of protein translation. Transient expression experiments in Arabidopsis protoplasts show that the bZIP11-dependent activation of the ASPARAGINE SYNTHETASE1 gene is dependent on a G-box element present in the promoter. Increased bZIP11 expression leads to decreased proline and increased phenylalanine levels. A model is proposed in which sugar signals control amino acid levels via the bZIP11 transcription factor.
Collapse
|
|
17 |
135 |
20
|
Bentsink L, Hanson J, Hanhart CJ, Blankestijn-de Vries H, Coltrane C, Keizer P, El-Lithy M, Alonso-Blanco C, de Andrés MT, Reymond M, van Eeuwijk F, Smeekens S, Koornneef M. Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways. Proc Natl Acad Sci U S A 2010; 107:4264-9. [PMID: 20145108 PMCID: PMC2840098 DOI: 10.1073/pnas.1000410107] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Timing of germination is presumably under strong natural selection as it determines the environmental conditions in which a plant germinates and initiates its postembryonic life cycle. To investigate how seed dormancy is controlled, quantitative trait loci (QTL) analyses has been performed in six Arabidopsis thaliana recombinant inbred line populations by analyzing them simultaneously using a mixed model QTL approach. The recombinant inbred line populations were derived from crosses between the reference accession Landsberg erecta (Ler) and accessions from different world regions. In total, 11 delay of germination (DOG) QTL have been identified, and nine of them have been confirmed by near isogenic lines (NILs). The absence of strong epistatic interactions between the different DOG loci suggests that they affect dormancy mainly by distinct genetic pathways. This was confirmed by analyzing the transcriptome of freshly harvested dry seeds of five different DOG NILs. All five DOG NILs showed discernible and different expression patterns compared with the expression of their genetic background Ler. The genes identified in the different DOG NILs represent largely different gene ontology profiles. It is proposed that natural variation for seed dormancy in Arabidopsis is mainly controlled by different additive genetic and molecular pathways rather than epistatic interactions, indicating the involvement of several independent pathways.
Collapse
|
research-article |
15 |
135 |
21
|
Hanson J, Smeekens S. Sugar perception and signaling--an update. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:562-7. [PMID: 19716759 DOI: 10.1016/j.pbi.2009.07.014] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/23/2009] [Accepted: 07/28/2009] [Indexed: 05/23/2023]
Abstract
Sugars act as potent signaling molecules in plants. Several sugar sensors, including the highly studied glucose sensor HEXOKINASE1 (HXK1), have been identified or proposed. Many additional sensors likely exist, as plants respond to other sugars and sugar metabolites, such as sucrose and trehalose 6-phosphate. Sugar sensing and signaling is a highly complex process resulting in many changes in physiology and development and is integrated with other signaling pathways in plants such as those for inorganic nutrients, hormones, and different stress factors. Importantly, KIN10 and KIN11 protein kinases are central in coordinating several of the responses to sugars and stress. bZIP transcription factors were found to mediate effects of sugar signaling on gene expression and metabolite content.
Collapse
|
Review |
16 |
127 |
22
|
Rahmani F, Hummel M, Schuurmans J, Wiese-Klinkenberg A, Smeekens S, Hanson J. Sucrose control of translation mediated by an upstream open reading frame-encoded peptide. PLANT PHYSIOLOGY 2009; 150:1356-67. [PMID: 19403731 PMCID: PMC2705056 DOI: 10.1104/pp.109.136036] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Accepted: 04/26/2009] [Indexed: 05/18/2023]
Abstract
Regulation of gene expression through translational control is common in many organisms. The Arabidopsis (Arabidopsis thaliana) transcription factor bZIP11 is translational repressed in response to sucrose (Suc), resulting in Suc-regulated changes in amino acid metabolism. The 5' leader of the bZIP11 mRNA harbors several upstream open reading frames (uORFs), of which the second uORF is well conserved among bZIP11 homologous genes. The uORF2 element encodes a Suc control peptide (SC-peptide) of 28 residues that is sufficient for imposing Suc-induced repression of translation (SIRT) on a heterologous mRNA. Detailed analysis of the SC-peptide suggests that it functions as an attenuator peptide. Results suggest that the SC-peptide inhibits bZIP11 translation in response to high Suc levels by stalling the ribosome on the mRNA. The conserved noncanonical AUG contexts of bZIP11 uORFs allow inefficient translational initiation of the uORF, resulting in translation initiation of the scanning ribosome at the AUG codon of the bZIP11 main ORF. The results presented show that Suc-dependent signaling mediates differential translation of mRNAs containing SC-peptides encoding uORFs.
Collapse
|
research-article |
16 |
121 |
23
|
Rutjens B, Bao D, van Eck-Stouten E, Brand M, Smeekens S, Proveniers M. Shoot apical meristem function in Arabidopsis requires the combined activities of three BEL1-like homeodomain proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:641-54. [PMID: 19175771 DOI: 10.1111/j.1365-313x.2009.03809.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plants, most of the above-ground body is formed post-embryonically by the continuous organogenic potential of the shoot apical meristem (SAM). Proper function of the SAM requires maintenance of a delicate balance between the depletion of stem cell daughters into developing primordia and proliferation of the central stem cell population. Here we show that initiation and maintenance of the Arabidopsis SAM, including that of floral meristems, requires the combinatorial action of three members of the BELL-family of TALE homeodomain proteins, ARABIDOPSIS THALIANA HOMEOBOX 1 (ATH1), PENNYWISE (PNY) and POUND-FOOLISH (PNF). All three proteins interact with the KNOX TALE homeodomain protein STM, and combined lesions in ATH1, PNY and PNF result in a phenocopy of stm mutations. Therefore, we propose that ath1 pny pnf meristem defects result from loss of combinatorial BELL-STM control. Further, we demonstrate that heterodimerization-controlled cellular localization of BELL and KNOX proteins involves a CRM1/exportin-1-mediated nuclear exclusion mechanism that is probably generic to control the activity of BELL and KNOX combinations. We conclude that in animals and plants corresponding mechanisms regulate the activity of TALE homeodomain proteins through controlled nuclear-cytosolic distribution of these proteins.
Collapse
|
|
16 |
115 |
24
|
Weltmeier F, Rahmani F, Ehlert A, Dietrich K, Schütze K, Wang X, Chaban C, Hanson J, Teige M, Harter K, Vicente-Carbajosa J, Smeekens S, Dröge-Laser W. Expression patterns within the Arabidopsis C/S1 bZIP transcription factor network: availability of heterodimerization partners controls gene expression during stress response and development. PLANT MOLECULAR BIOLOGY 2009; 69:107-19. [PMID: 18841482 PMCID: PMC2709229 DOI: 10.1007/s11103-008-9410-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 09/22/2008] [Indexed: 05/18/2023]
Abstract
Members of the Arabidopsis group C/S1 basic leucine zipper (bZIP) transcription factor (TF) network are proposed to implement transcriptional reprogramming of plant growth in response to energy deprivation and environmental stresses. The four group C and five group S1 members form specific heterodimers and are, therefore, considered to cooperate functionally. For example, the interplay of C/S1 bZIP TFs in regulating seed maturation genes was analyzed by expression studies and target gene regulation in both protoplasts and transgenic plants. The abundance of the heterodimerization partners significantly affects target gene transcription. Therefore, a detailed analysis of the developmental and stress related expression patterns was performed by comparing promoter: GUS and transcription data. The idea that the C/S1 network plays a role in the allocation of nutrients is supported by the defined and partially overlapping expression patterns in sink leaves, seeds and anthers. Accordingly, metabolic signals strongly affect bZIP expression on the transcriptional and/or post-transcriptional level. Sucrose induced repression of translation (SIRT) was demonstrated for all group S1 bZIPs. In particular, transcription of group S1 genes strongly responds to various abiotic stresses, such as salt (AtbZIP1) or cold (AtbZIP44). In summary, heterodimerization and expression data provide a basic framework to further determine the functional impact of the C/S1 network in regulating the plant energy balance and nutrient allocation.
Collapse
|
research-article |
16 |
106 |
25
|
Ma J, Hanssen M, Lundgren K, Hernández L, Delatte T, Ehlert A, Liu CM, Schluepmann H, Dröge-Laser W, Moritz T, Smeekens S, Hanson J. The sucrose-regulated Arabidopsis transcription factor bZIP11 reprograms metabolism and regulates trehalose metabolism. THE NEW PHYTOLOGIST 2011; 191:733-745. [PMID: 21534971 DOI: 10.1111/j.1469-8137.2011.03735.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
• The Arabidopsis basic region-leucine zipper transcription factor 11 (bZIP11) is known to be repressed by sucrose through a translational inhibition mechanism that requires the conserved sucrose control peptide encoded by the mRNA leader. The function of bZIP11 has been investigated in over-expression studies, and bZIP11 has been found to inhibit plant growth. The addition of sugar does not rescue the growth inhibition phenotype. Here, the function of the bZIP11 transcription factor was investigated. • The mechanism by which bZIP11 regulates growth was studied using large-scale and dedicated metabolic analysis, biochemical assays and molecular studies. • bZIP11 induction results in a reprogramming of metabolism and activation of genes involved in the metabolism of trehalose and other minor carbohydrates such as myo-inositol and raffinose. bZIP11 induction leads to reduced contents of the prominent growth regulatory molecule trehalose 6-phosphate (T6P). • The metabolic changes detected mimic in part those observed in carbon-starved plants. It is proposed that bZIP11 is a powerful regulator of carbohydrate metabolism that functions in a growth regulatory network that includes T6P and the sucrose non-fermenting-1 related protein kinase 1 (SnRK1).
Collapse
|
|
14 |
101 |