1
|
Lindstrom J, Einarson B, Tzartos S. Production and assay of antibodies to acetylcholine receptors. Methods Enzymol 1981; 74 Pt C:432-60. [PMID: 7321891 DOI: 10.1016/0076-6879(81)74031-x] [Citation(s) in RCA: 204] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
|
44 |
204 |
2
|
Martin-Ruiz CM, Court JA, Molnar E, Lee M, Gotti C, Mamalaki A, Tsouloufis T, Tzartos S, Ballard C, Perry RH, Perry EK. Alpha4 but not alpha3 and alpha7 nicotinic acetylcholine receptor subunits are lost from the temporal cortex in Alzheimer's disease. J Neurochem 1999; 73:1635-40. [PMID: 10501210 DOI: 10.1046/j.1471-4159.1999.0731635.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuronal nicotinic acetylcholine receptors labelled with tritiated agonists are reduced in the cerebral cortex in Alzheimer's disease (AD), but to date it has not been demonstrated which nicotinic receptor subunits contribute to this deficit. In the present study, autopsy tissue from the temporal cortex of 14 AD cases and 15 age-matched control subjects was compared using immunoblotting with antibodies against recombinant peptides specific for alpha3, alpha4, and alpha7 subunits, in conjunction with [3H]epibatidine binding. Antibodies to alpha3, alpha4, and alpha7 produced one major band on western blots at 59, 51, and 57 kDa, respectively. [3H]Epibatidine binding and alpha4-like immunoreactivity (using antibodies against the extracellular domain and cytoplasmic loop of the alpha4 subunit) were reduced in AD cases compared with control subjects (p < 0.02) and with a subgroup of control subjects (n = 9) who did not smoke prior to death (p < 0.05) for the former two parameters. [3H]Epibatidine binding and cytoplasmic alpha4-like immunoreactivity were significantly elevated in a subgroup of control subjects (n = 4) known to have smoked prior to death (p < 0.05). There were no significant changes in alpha3- or alpha7-like immunoreactivity associated with AD or tobacco use. The selective involvement of alpha4 has implications for understanding the role of nicotinic receptors in AD and potential therapeutic targets.
Collapse
|
|
26 |
158 |
3
|
Perry E, Martin-Ruiz C, Lee M, Griffiths M, Johnson M, Piggott M, Haroutunian V, Buxbaum JD, Nãsland J, Davis K, Gotti C, Clementi F, Tzartos S, Cohen O, Soreq H, Jaros E, Perry R, Ballard C, McKeith I, Court J. Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases. Eur J Pharmacol 2000; 393:215-22. [PMID: 10771016 DOI: 10.1016/s0014-2999(00)00064-9] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human brain ageing is associated with reductions in a variety of nicotinic receptors subtypes, whereas changes in age-related disorders including Alzheimer's disease or Parkinson's disease are more selective. In Alzheimer's disease, in the cortex there is a selective loss of the alpha4 (but not alpha3 or 7) subunit immunoreactivity and of nicotine or epibatidine binding but not alpha-bungarotoxin binding. Epibatidine binding is inversely correlated with clinical dementia ratings and with the level of Abeta1-42, but not related to plaque or tangle densities. In contrast, alpha-bungarotoxin binding is positively correlated with plaque densities in the entorhinal cortex. In human temporal cortex loss of acetylcholinesterase catalytic activity is positively correlated with decreased epibatidine binding and in a transgenic mouse model over expressing acetylcholinesterase, epibatidine binding is elevated. In Parkinson's disease, loss of striatal nicotine binding appears to occur early but is not associated with a loss of alpha4 subunit immunoreactivity. Tobacco use in normal elderly individuals is associated with increased alpha4 immunoreactivity in the cortex and lower densities of amyloid-beta plaques, and with greater numbers of dopaminergic neurons in the substantia nigra pars compacta. These findings indicate an early involvement of the alpha4 subunit in beta-amyloidosis but not in nigro-striatal dopaminergic degeneration.
Collapse
|
|
25 |
150 |
4
|
Tzartos S, Hochschwender S, Vasquez P, Lindstrom J. Passive transfer of experimental autoimmune myasthenia gravis by monoclonal antibodies to the main immunogenic region of the acetylcholine receptor. J Neuroimmunol 1987; 15:185-94. [PMID: 3495549 DOI: 10.1016/0165-5728(87)90092-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Experimental autoimmune myasthenia gravis (EAMG) was passively transferred to rats by injecting monoclonal antibodies (mAbs) directed at the main immunogenic region (MIR) of the nicotinic acetylcholine receptor (AChR). The MIR is located on the extracellular part of the AChR alpha-subunit. All four mAbs directed at the MIR which were tested were very efficient in inducing EAMG: within 2 days the rats became moribund or very weak and their muscle AChR content decreased to about 50% of normal. These mAbs are of two different IgG subclasses (IgG1 and IgG2a) and derived from rats immunized with AChR from either fish electric organs or mammalian muscles. One mAb directed at the extracellular side of the beta-subunit did not cause AChR loss or induce symptoms of EAMG. mAbs to the cytoplasmic side were, as expected, ineffective.
Collapse
|
|
38 |
134 |
5
|
Conti-Tronconi B, Tzartos S, Lindstrom J. Monoclonal antibodies as probes of acetylcholine receptor structure. 2. Binding to native receptor. Biochemistry 1981; 20:2181-91. [PMID: 6786327 DOI: 10.1021/bi00511a017] [Citation(s) in RCA: 132] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Binding of monoclonal antibodies top Torpedo californica acetylcholine receptor monomers solubilized in Triton X-100 was studied by centrifugation on sucrose gradients. Antibodies to alpha subunits were of two types. One type formed complexes of one antibody and one receptor monomer, independent of antibody/receptor ratio. We conclude that the binding sites for these antibodies are oriented on the two alpha subunits per monomer in such a way that each could be bound by one of the two binding sites of a single immunoglobulin molecule. Most antibodies were of this type. The other type of monoclonal antibody formed complexes of several sizes, including antibody cross-linked receptors, depending on the ratio of antibody to receptor. We conclude that the binding sites for these antibodies are oriented in such a way that the two alpha subunits per monomer could not be cross-linked by a single antibody molecule. A monoclonal antibody of this type raised against Electrophorus electricus receptors was used to show that this receptor also has two alpha subunits per monomer. This antibody cross-reacted with receptor from fetal calf muscle and was able to induce modulation of receptor in muscle cells in culture. This suggests that muscle receptor also has two alpha subunits and that the antibody can cross-link receptor in the plane of the membrane, as it does in solution, and thereby form complexes which enhance endocytosis and increase the rate of receptor destruction. The rate of antigenic modulation decreases at high antibody/receptor ratios, as expected if un-cross-linked complexes of two antibodies and one receptor were not destroyed at a faster rate. Antibodies which cross-link alpha subunits within a receptor monomer are frequent but would not be expected to be able to induce antigenic modulation. This provides one mechanism by which antisera of equivalent antireceptor titer might differ in their ability to induce antigenic modulation. An antibody which binds to denatured delta and gamma subunits forms complexes of only one antibody and one receptor monomer, independent of antibody ratio, as do antibodies thought to cross-link the two alpha subunits in a monomer. It apparently cross-links delta and gamma subunits within the monomer. Some of the monoclonal antibodies to alpha subunits can bind simultaneously to receptor, while the binding of others is mutually exclusive.
Collapse
|
|
44 |
132 |
6
|
Tzartos S, Langeberg L, Hochschwender S, Swanson LW, Lindstrom J. Characteristics of monoclonal antibodies to denatured Torpedo and to native calf acetylcholine receptors: species, subunit and region specificity. J Neuroimmunol 1986; 10:235-53. [PMID: 3484485 DOI: 10.1016/0165-5728(86)90105-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Seventy-five monoclonal antibodies (mAbs) to sodium dodecyl sulfate-denatured Torpedo californica (66 mAbs) and intact fetal calf (9 mAbs) acetylcholine receptor (AChR) were produced. These mAbs were characterized for subunit, region and species specificity, for Ig class and subclass, for protein A binding and for antigen-crosslinking capacity. Fourteen were identified as anti-alpha, 35 were anti-beta, 8 were anti-gamma and 15 were anti-delta. None of the 11 anti-alpha derived from denatured AChR bound to the main immunogenic region (MIR) as judged by antibody competition assays. This contrasts with previous results using mAbs against native AChr, the majority of which bind to the MIR. Thirty-eight mAbs crossreacted with some or all of the tested AChRs from fish electric organs and mammalian muscles in addition to the immunogen. Eight anti-alpha, anti-beta and 1 anti-delta mAbs showed good to excellent autoantibody activity. Analysis by sucrose gradient centrifugation of some AChR-mAb complexes revealed that some mAbs form intermolecular and others form intramolecular crosslinkings of the AChR. The described mAbs have proven valuable tools in AChR and myasthenia gravis research.
Collapse
|
|
39 |
104 |
7
|
Gullick WJ, Tzartos S, Lindstrom J. Monoclonal antibodies as probes of acetylcholine receptor structure. 1. Peptide mapping. Biochemistry 1981; 20:2173-80. [PMID: 6786326 DOI: 10.1021/bi00511a016] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The isolated subunits of the acetylocholine receptor from Torpedo californica were digested with proteolytic enzymes, and the resulting polypeptide fragments were analyzed by gel electrophoresis. We have identified those fragments which contain carbohydrate and those from the alpha subunit which are labelled with the acetylcholine binding site specific reagent [4-(N-maleimido)benzyl]tri[3H]methylammonium iodide. We have tested several monoclonal antibodies raised to the acetylcholine receptor from torpedo, some of which react with the denatured subunits [Tzartos, S.J., & Lindstrom, J.M. (1980) Proc. Natl. Acad. Sci. U.S.A.77, 755; Tzartos, S.J., & Lindstrom, J.M. (1981) in Monoclonal antibodies in Endocrine Research (Fellows, R., & Eisenbarth, G., Eds.) Raven Press (in press)]. The binding specificities of these antibodies to radioiodinated proteolytically generated fragments of the alpha subunit were determined by immunoprecipitation followed by gel electrophoresis. The antibodies tested fell into at least three main groups on the basis of their binding specificities. These antibodies were also tested for their capacity to bind to acetylcholine receptor solubilized in Triton X-100, sodium cholate, or sodium cholate supplemented with exogenous lipids. A monoclonal antibody raised to the denatured delta subunit, was tested for its ability to select radioiodinated proteolytic fragments of these subunits. These molecules provide probes for many sites on the acetylcholine receptor with affinities and specificities comparable to alpha-neurotoxins.
Collapse
|
|
44 |
96 |
8
|
Tzartos S, Langeberg L, Hochschwender S, Lindstrom J. Demonstration of a main immunogenic region on acetylcholine receptors from human muscle using monoclonal antibodies to human receptor. FEBS Lett 1983; 158:116-8. [PMID: 6862030 DOI: 10.1016/0014-5793(83)80688-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Eleven cloned hybridomas which secrete antibodies to acetylcholine receptors from human muscle have been prepared. All of these monoclonal antibodies to have the same basic specificity as shown by competition for binding to the main immunogenic region on the receptor, but these antibodies differ in fine specificity as shown by reaction with denatured receptor subunits and interspecies cross-reaction.
Collapse
|
|
42 |
90 |
9
|
Koneczny I, Stevens JAA, De Rosa A, Huda S, Huijbers MG, Saxena A, Maestri M, Lazaridis K, Zisimopoulou P, Tzartos S, Verschuuren J, van der Maarel SM, van Damme P, De Baets MH, Molenaar PC, Vincent A, Ricciardi R, Martinez-Martinez P, Losen M. IgG4 autoantibodies against muscle-specific kinase undergo Fab-arm exchange in myasthenia gravis patients. J Autoimmun 2016; 77:104-115. [PMID: 27965060 DOI: 10.1016/j.jaut.2016.11.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/17/2016] [Accepted: 11/22/2016] [Indexed: 01/13/2023]
Abstract
Autoimmunity mediated by IgG4 subclass autoantibodies is an expanding field of research. Due to their structural characteristics a key feature of IgG4 antibodies is the ability to exchange Fab-arms with other, unrelated, IgG4 molecules, making the IgG4 molecule potentially monovalent for the specific antigen. However, whether those disease-associated antigen-specific IgG4 are mono- or divalent for their antigens is unknown. Myasthenia gravis (MG) with antibodies to muscle specific kinase (MuSK-MG) is a well-recognized disease in which the predominant pathogenic IgG4 antibody binds to extracellular epitopes on MuSK at the neuromuscular junction; this inhibits a pathway that clusters the acetylcholine (neurotransmitter) receptors and leads to failure of neuromuscular transmission. In vitro Fab-arm exchange-inducing conditions were applied to MuSK antibodies in sera, purified IgG4 and IgG1-3 sub-fractions. Solid-phase cross-linking assays were established to determine the extent of pre-existing and inducible Fab-arm exchange. Functional effects of the resulting populations of IgG4 antibodies were determined by measuring inhibition of agrin-induced AChR clustering in C2C12 cells. To confirm the results, κ/κ, λ/λ and hybrid κ/λ IgG4s were isolated and tested for MuSK antibodies. At least fifty percent of patients had IgG4, but not IgG1-3, MuSK antibodies that could undergo Fab-arm exchange in vitro under reducing conditions. Also MuSK antibodies were found in vivo that were divalent (monospecific for MuSK). Fab-arm exchange with normal human IgG4 did not prevent the inhibitory effect of serum derived MuSK antibodies on AChR clustering in C2C12 mouse myotubes. The results suggest that a considerable proportion of MuSK IgG4 could already be Fab-arm exchanged in vivo. This was confirmed by isolating endogenous IgG4 MuSK antibodies containing both κ and λ light chains, i.e. hybrid IgG4 molecules. These new findings demonstrate that Fab-arm exchanged antibodies are pathogenic.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
89 |
10
|
Poëa-Guyon S, Christadoss P, Le Panse R, Guyon T, De Baets M, Wakkach A, Bidault J, Tzartos S, Berrih-Aknin S. Effects of cytokines on acetylcholine receptor expression: implications for myasthenia gravis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2005; 174:5941-9. [PMID: 15879086 DOI: 10.4049/jimmunol.174.10.5941] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Myasthenia gravis is an autoimmune disease associated with thymic pathologies, including hyperplasia. In this study, we investigated the processes that may lead to thymic overexpression of the triggering Ag, the acetylcholine receptor (AChR). Using microarray technology, we found that IFN-regulated genes are more highly expressed in these pathological thymic tissues compared with age- and sex-matched normal thymus controls. Therefore, we investigated whether proinflammatory cytokines could locally modify AChR expression in myoid and thymic epithelial cells. We found that AChR transcripts are up-regulated by IFN-gamma, and even more so by IFN-gamma and TNF-alpha, as assessed by real-time RT-PCR, with the alpha-AChR subunit being the most sensitive to this regulation. The expression of AChR protein was increased at the cytoplasmic level in thymic epithelial cells and at the membrane in myoid cells. To examine whether IFN-gamma could influence AChR expression in vivo, we analyzed AChR transcripts in IFN-gamma gene knock-out mice, and found a significant decrease in AChR transcript levels in the thymus but not in the muscle, compared with wild-type mice. However, up-regulation of AChR protein expression was found in the muscles of animals with myasthenic symptoms treated with TNF-alpha. Altogether, these results indicate that proinflammatory cytokines influence the expression of AChR in vitro and in vivo. Because proinflammatory cytokine activity is evidenced in the thymus of myasthenia gravis patients, it could influence AChR expression and thereby contribute to the initiation of the autoimmune anti-AChR response.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Base Sequence
- Cell Line, Transformed
- Cells, Cultured
- Cytokines/physiology
- Humans
- Hyperplasia
- Inflammation Mediators/physiology
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Myasthenia Gravis/immunology
- Myasthenia Gravis/metabolism
- Myasthenia Gravis/pathology
- Protein Subunits/genetics
- Protein Subunits/isolation & purification
- Rats
- Rats, Inbred Lew
- Receptors, Cholinergic/biosynthesis
- Receptors, Cholinergic/genetics
- Receptors, Cholinergic/immunology
- Receptors, Cholinergic/isolation & purification
- Receptors, Interferon/genetics
- Receptors, Nicotinic/biosynthesis
- Response Elements/genetics
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Thymus Gland/pathology
- Up-Regulation/genetics
- Up-Regulation/immunology
- Interferon gamma Receptor
Collapse
|
Research Support, N.I.H., Extramural |
20 |
81 |
11
|
Swanson LW, Lindstrom J, Tzartos S, Schmued LC, O'Leary DD, Cowan WM. Immunohistochemical localization of monoclonal antibodies to the nicotinic acetylcholine receptor in chick midbrain. Proc Natl Acad Sci U S A 1983; 80:4532-6. [PMID: 6192437 PMCID: PMC384073 DOI: 10.1073/pnas.80.14.4532] [Citation(s) in RCA: 78] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We used the indirect immunofluorescence method to determine the crossreactivity of a library of 57 monoclonal antibodies (mAbs) against each of the subunits of the nicotinic acetylcholine receptor (nAcChoR) isolated from Torpedo and Electrophorus electric organs or from fetal calf and human muscle, with specific neural elements in the midbrain of the chick. Out of 17 mAbs that recognized motor end plates on chick muscle, 14 produced a similar pattern of labeling in the midbrain: the neuronal perikarya and dendrites in the lateral spiriform nucleus (SpL) were intensely labeled, and there was moderate labeling of fibers in certain of the deeper layers of the optic tectum, which disappeared after the SpL was destroyed electrolytically. Two lines of evidence suggest that the mAbs may be crossreacting with nAcChoRs in the midbrain. First, all of the mAbs that stained the SpL also stained neuromuscular junctions in skeletal muscle, whereas none of the 40 mAbs that failed to stain end plates crossreacted with the SpL; second, in vitro immunological studies and blocking experiments on tissue sections (in which unlabeled mAbs were used to block the staining of a directly fluorescein-treated mAb) indicated the presence of mAbs specific for unique antigenic determinants on all four of the subunits (alpha, beta, gamma, and delta) from Torpedo nAcChoR in chick midbrain and muscle. On the other hand, the distribution of mAb staining in the optic tectum does not closely parallel that of either acetylcholinesterase staining or of 125I-labeled alpha-bungarotoxin binding; no toxin binding has been observed autoradiographically in the SpL, but the nucleus does contain moderately dense acetylcholinesterase staining. Take together, our observations suggest that there may be a cholinergic input to the SpL and that the projection fibers from the SpL to the optic tectum (which are also stained with an antiserum to [Leu]enkephalin) may contain presynaptic nAcChoRs. It is clear, however, that the distribution of the putative nAcChoRs, alpha-bungarotoxin binding sites, and acetylcholinesterase staining in the avian midbrain are quite different, although they do overlap to some degree in the deeper layers of the optic tectum.
Collapse
|
research-article |
42 |
78 |
12
|
Sargent PB, Hedges BE, Tsavaler L, Clemmons L, Tzartos S, Lindstrom JM. Structure and transmembrane nature of the acetylcholine receptor in amphibian skeletal muscle as revealed by cross-reacting monoclonal antibodies. J Biophys Biochem Cytol 1984; 98:609-18. [PMID: 6363425 PMCID: PMC2113085 DOI: 10.1083/jcb.98.2.609] [Citation(s) in RCA: 78] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A collection of 126 monoclonal antibodies (mAbs) made against acetylcholine receptors (AChRs) from the electric organs of Torpedo californica or Electrophorus electricus was tested for cross-reactivity with AChRs in cryostat sections of skeletal muscle from Rana pipiens and Xenopus laevis by indirect immunofluorescence. 49 mAbs (39%) cross-reacted with AChRs from Rana, and 25 mAbs (20%) cross-reacted with AChRs from Xenopus. mAbs specific for each of the four subunits of electric organ AChR (alpha, beta, gamma, delta) cross-reacted with AChRs from each amphibian species. mAbs cross-reacting with Xenopus AChRs were, with one exception, a subset of the mAbs cross-reacting with Rana AChRs. The major difference detected between the two species was in binding by mAbs specific for the main immunogenic region (MIR) of the alpha-subunit. Whereas 22 of 33 anti-MIR mAbs tested cross-reacted with Rana AChRs, only one of these mAbs cross-reacted with Xenopus AChRs. Some (32) of the cross-reacting mAbs were tested for binding to AChRs in intact muscle. 21 of these mAbs bound to AChRs only when membranes were made permeable with saponin. Electron microscopy using immunoperoxidase or colloidal gold techniques revealed that these mAbs recognize cytoplasmic determinants and that mAbs that do not require saponin in order to bind AChRs in intact muscle recognize extracellular determinants. These results suggest that AChRs in skeletal muscle of Rana and Xenopus are composed of subunits corresponding to the alpha-, beta-, gamma-, and delta-subunits of AChRs from fish electric organs. The subunit specificity of mAbs whose binding was examined by electron microscopy suggests that parts of each subunit (alpha, beta, gamma, delta) are exposed on the cytoplasmic surface and that, as in AChRs from fish electric organs and mammalian muscle, the MIR on alpha-subunits of Rana AChRs is exposed on the extracellular surface.
Collapse
|
research-article |
41 |
78 |
13
|
Lindstrom J, Tzartos S, Gullick W. Structure and function of the acetylcholine receptor molecule studied using monoclonal antibodies. Ann N Y Acad Sci 1981; 377:1-19. [PMID: 6176164 DOI: 10.1111/j.1749-6632.1981.tb33721.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
|
44 |
73 |
14
|
Lindstrom J, Cooper J, Tzartos S. Acetylcholine receptors from Torpedo and Electrophorus have similar subunit structures. Biochemistry 1980; 19:1454-8. [PMID: 7388004 DOI: 10.1021/bi00548a029] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previously, acetylcholine receptor purified from the electric organs of electric eels (Electrophorus electricus) and electric rays (Torpedo californica) (torpedo) had appeared to differ in subunit structure. Receptor from torpedo has the subunit structure alpha 2 beta gamma delta, but subunits corresponding only to alpha, beta, and gamma had been observed in receptor from eel. Here we report that if membrane fragments of eel electric organ are prepared and detergent extracted in the presence of iodoacetamide, then receptor purified from the extract contains a fourth subunit. Using monoclonal antibodies as well as conventional antisera, we show that the newly recognized subunit of receptor from eel corresponds to the delta subunit of torpedo. A monoclonal antibody to the delta subunit of torpedo cross-reacts with the gamma subunit and shows a similar cross-reaction between the delta' and gamma' subunits of receptor from eel, indicating the presence of an unexpected structural similarity. Although the function of the beta, gamma, and delta subunits remains unknown, these results support the concept that receptors from the electric organs of several species and probably also from muscle share a similarly complex subunit structure.
Collapse
|
Comparative Study |
45 |
56 |
15
|
Guyon T, Wakkach A, Poea S, Mouly V, Klingel-Schmitt I, Levasseur P, Beeson D, Asher O, Tzartos S, Berrih-Aknin S. Regulation of acetylcholine receptor gene expression in human myasthenia gravis muscles. Evidences for a compensatory mechanism triggered by receptor loss. J Clin Invest 1998; 102:249-63. [PMID: 9649579 PMCID: PMC509087 DOI: 10.1172/jci1248] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Myasthenia gravis (MG) is a neuromuscular disorder mediated by antibodies directed against the acetylcholine receptor (nAChR) resulting in a functional nAChR loss. To analyze the molecular mechanisms involved at the muscular target site, we studied the expression of nAChR subunits in muscle biopsy specimens from MG patients. By using quantitative PCR with an internal standard for each subunit, we found that the levels of beta-, delta-, and epsilon-subunit mRNA coding for the adult nAChR were increased in severely affected MG patients, matching our previous data on the alpha-subunit. Messenger levels were highly variable in MG patients but not in controls, pointing to individual factors involved in the regulation of nAChR genes. The fetal subunit (gamma-chain) transcripts were almost undetectable in the extrajunctional region of MG muscle, suggesting that gene regulation in MG differs from that in the denervation model, in which nAChR gamma-subunit mRNA is reexpressed. Nicotinic AChR loss mediated by monoclonal anti-nAChR antibodies in both the TE671 muscle cell line and cultured normal human myotubes induces a similar increase in beta- alphand delta-subunit mRNA levels, suggesting the existence of a new muscular signaling pathway system coupled to nAChR internalization and independent of muscle electrical activity. These data demonstrate the existence of a compensatory mechanism regulating the expression of the genes coding for the adult nAChR in patients with MG.
Collapse
|
research-article |
27 |
49 |
16
|
Lykhmus O, Voytenko L, Koval L, Mykhalskiy S, Kholin V, Peschana K, Zouridakis M, Tzartos S, Komisarenko S, Skok M. α7 Nicotinic acetylcholine receptor-specific antibody induces inflammation and amyloid β42 accumulation in the mouse brain to impair memory. PLoS One 2015; 10:e0122706. [PMID: 25816313 PMCID: PMC4376778 DOI: 10.1371/journal.pone.0122706] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/13/2015] [Indexed: 12/11/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) expressed in the brain are involved in regulating cognitive functions, as well as inflammatory reactions. Their density is decreased upon Alzheimer disease accompanied by accumulation of β-amyloid (Aβ42), memory deficit and neuroinflammation. Previously we found that α7 nAChR-specific antibody induced pro-inflammatory interleukin-6 production in U373 glioblastoma cells and that such antibodies were present in the blood of humans. We raised a hypothesis that α7 nAChR-specific antibody can cause neuroinflammation when penetrating the brain. To test this, C57Bl/6 mice were either immunized with extracellular domain of α7 nAChR subunit α7(1-208) or injected with bacterial lipopolysaccharide (LPS) for 5 months. We studied their behavior and the presence of α3, α4, α7, β2 and β4 nAChR subunits, Aβ40 and Aβ42 and activated astrocytes in the brain by sandwich ELISA and confocal microscopy. It was found that either LPS injections or immunizations with α7(1-208) resulted in region-specific decrease of α7 and α4β2 and increase of α3β4 nAChRs, accumulation of Aβ42 and activated astrocytes in the brain of mice and worsening of their episodic memory. Intravenously transferred α7 nAChR-specific-antibodies penetrated the brain parenchyma of mice pre-injected with LPS. Our data demonstrate that (1) neuroinflammation is sufficient to provoke the decrease of α7 and α4β2 nAChRs, Aβ42 accumulation and memory impairment in mice and (2) α7(1-208) nAChR-specific antibodies can cause inflammation within the brain resulting in the symptoms typical for Alzheimer disease.
Collapse
|
research-article |
10 |
45 |
17
|
Wakkach A, Poea S, Chastre E, Gespach C, Lecerf F, De la Porte S, Tzartos S, Coulombe A, Berrih-Aknin S. Establishment of a human thymic myoid cell line. Phenotypic and functional characteristics. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 155:1229-40. [PMID: 10514405 PMCID: PMC1867031 DOI: 10.1016/s0002-9440(10)65225-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The subset of myoid cells is a normal component of the thymic stroma. To characterize these cells, we immortalized stromal cells from human thymus by using a plasmid vector encoding the SV40 T oncogene. Among the eight cell lines obtained, one had myoid characteristics including desmin and troponin antigens. This new line was designated MITC (myoid immortalized thymic cells). These cells expressed both the fetal and adult forms of muscle acetylcholine receptor (AChR) at the mRNA level, as well as the myogenic transcription factor MyoD1. alpha-Subunit AChR protein expression was detected by flow cytometry and the AChR was functional in patch-clamp studies. In addition, AChR expression was down-modulated by myasthenia gravis sera or by monoclonal antibody anti-AChR on MITC line similarly to TE671 rhabdomyosarcoma cells, making the MITC line an interesting tool for AChR antigenic modulation experiments. Finally, the MITC line expressed LFA-3, produced several cytokines able to act on T cells, and protected total thymocytes from spontaneous apoptosis in vitro. These results are compatible with a role of thymic myoid cells in some steps of thymocyte development. Therefore MITC line appears to be a useful tool to investigate the physiological role of thymic myoid cells.
Collapse
|
research-article |
26 |
41 |
18
|
Losen M, Martinez-Martinez P, Molenaar PC, Lazaridis K, Tzartos S, Brenner T, Duan RS, Luo J, Lindstrom J, Kusner L. Standardization of the experimental autoimmune myasthenia gravis (EAMG) model by immunization of rats with Torpedo californica acetylcholine receptors--Recommendations for methods and experimental designs. Exp Neurol 2015; 270:18-28. [PMID: 25796590 PMCID: PMC4466156 DOI: 10.1016/j.expneurol.2015.03.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 12/21/2022]
Abstract
Myasthenia gravis (MG) with antibodies against the acetylcholine receptor (AChR) is characterized by a chronic, fatigable weakness of voluntary muscles. The production of autoantibodies involves the dysregulation of T cells which provide the environment for the development of autoreactive B cells. The symptoms are caused by destruction of the postsynaptic membrane and degradation of the AChR by IgG autoantibodies, predominantly of the G1 and G3 subclasses. Active immunization of animals with AChR from mammalian muscles, AChR from Torpedo or Electrophorus electric organs, and recombinant or synthetic AChR fragments generates a chronic model of MG, termed experimental autoimmune myasthenia gravis (EAMG). This model covers cellular mechanisms involved in the immune response against the AChR, e.g. antigen presentation, T cell-help and regulation, B cell selection and differentiation into plasma cells. Our aim is to define standard operation procedures and recommendations for the rat EAMG model using purified AChR from the Torpedo californica electric organ, in order to facilitate more rapid translation of preclinical proof of concept or efficacy studies into clinical trials and, ultimately, clinical practice.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
40 |
19
|
Zouridakis M, Papakyriakou A, Ivanov IA, Kasheverov IE, Tsetlin V, Tzartos S, Giastas P. Crystal Structure of the Monomeric Extracellular Domain of α9 Nicotinic Receptor Subunit in Complex With α-Conotoxin RgIA: Molecular Dynamics Insights Into RgIA Binding to α9α10 Nicotinic Receptors. Front Pharmacol 2019; 10:474. [PMID: 31118896 PMCID: PMC6504684 DOI: 10.3389/fphar.2019.00474] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Abstract
The α9 subunit of nicotinic acetylcholine receptors (nAChRs) exists mainly in heteropentameric assemblies with α10. Accumulating data indicate the presence of three different binding sites in α9α10 nAChRs: the α9(+)/α9(−), the α9(+)/α10(−), and the α10(+)/α9(−). The major role of the principal (+) side of the extracellular domain (ECD) of α9 subunit in binding of the antagonists methyllylcaconitine and α-bungarotoxin was shown previously by the crystal structures of the monomeric α9-ECD with these molecules. Here we present the 2.26-Å resolution crystal structure of α9-ECD in complex with α-conotoxin (α-Ctx) RgIA, a potential drug for chronic pain, the first structure reported for a complex between an nAChR domain and an α-Ctx. Superposition of this structure with those of other α-Ctxs bound to the homologous pentameric acetylcholine binding proteins revealed significant similarities in the orientation of bound conotoxins, despite the monomeric state of the α9-ECD. In addition, ligand-binding studies calculated a binding affinity of RgIA to the α9-ECD at the low micromolar range. Given the high identity between α9 and α10 ECDs, particularly at their (+) sides, the presented structure was used as template for molecular dynamics simulations of the ECDs of the human α9α10 nAChR in pentameric assemblies. Our results support a favorable binding of RgIA at α9(+)/α9(−) or α10(+)/α9(−) rather than the α9(+)/α10(−) interface, in accordance with previous mutational and functional data.
Collapse
|
Journal Article |
6 |
38 |
20
|
Lindstrom J, Tzartos S, Gullick W, Hochschwender S, Swanson L, Sargent P, Jacob M, Montal M. Use of monoclonal antibodies to study acetylcholine receptors from electric organs, muscle, and brain and the autoimmune response to receptor in myasthenia gravis. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1983; 48 Pt 1:89-99. [PMID: 6586364 DOI: 10.1101/sqb.1983.048.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
Comparative Study |
42 |
34 |
21
|
Plinkert PK, Gitter AH, Zimmermann U, Kirchner T, Tzartos S, Zenner HP. Visualization and functional testing of acetylcholine receptor-like molecules in cochlear outer hair cells. Hear Res 1990; 44:25-34. [PMID: 2324016 DOI: 10.1016/0378-5955(90)90019-l] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The efferent nerve endings at outer hair cells (OHCs) have been suggested to regulate active mechanical processes in the cochlea. The discovery of acetylcholine (ACh)-producing and -degrading enzymes in these synapses gave rise to the speculation that ACh might be one of the efferent transmitters. However, there has as yet been no identification and characterization of any corresponding receptor in OHCs which is required for further clarification of this question. In the present paper existence, location and first characterization of acetylcholine receptors (AChRs) in OHCs are reported. Using two anti-AChR monoclonal antibodies, AChR epitopes were found forming a cup at the basal end of the OHCs opposite to the efferent nerve endings. Furthermore, the studied molecules could be shown to extend through the cell membrane. In addition, the denervated OHC AChR-epitopes seem to move by lateral diffusion. Application of Carbachol and ACh to the basal pole of OHCs induced a weak, reversible cell contraction. Pharmacological controls revealed, that hte motile responses were mediated by the AChRs.
Collapse
|
|
35 |
30 |
22
|
Ulusoy C, Kim E, Tüzün E, Huda R, Yılmaz V, Poulas K, Trakas N, Skriapa L, Niarchos A, Strait RT, Finkelman FD, Turan S, Zisimopoulou P, Tzartos S, Saruhan-Direskeneli G, Christadoss P. Preferential production of IgG1, IL-4 and IL-10 in MuSK-immunized mice. Clin Immunol 2014; 151:155-63. [DOI: 10.1016/j.clim.2014.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/06/2014] [Accepted: 02/20/2014] [Indexed: 01/09/2023]
|
|
11 |
28 |
23
|
Marx A, Osborn M, Tzartos S, Geuder KI, Schalke B, Nix W, Kirchner T, Müller-Hermelink HK. A striational muscle antigen and myasthenia gravis-associated thymomas share an acetylcholine-receptor epitope. DEVELOPMENTAL IMMUNOLOGY 1992; 2:77-84. [PMID: 1379503 PMCID: PMC2275857 DOI: 10.1155/1992/86853] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The coincidence of autoantibodies against the acetylcholine receptor (AChR) and muscle striational antigens (SA) is a characteristic finding in thymoma-associated myasthenia gravis (MG), but their origins are still unresolved. Some common muscle antigens that were shown to be targets of anti-SA autoantibodies in thymoma-associated MG have also been detected in normal or neoplastic thymic epithelial cells, suggesting that the release of (eventually altered) antigens from the thymic tumors could elicit SA autoimmunity. In contrast to this model, we report here that titin, which is a recently reported target of SA autoimmunity, is not expressed in thymomas. In addition, we show that skeletal muscle type-II fibers exhibit a striational immunoreactivity with monoclonal antibody mAb155, which was previously identified to label a very immunogenic cytoplasmic epitope of the AChR and neoplastic epithelial cells of MG-associated thymomas. We conclude from these findings that titin autoimmunity in thymoma-associated MG is either due to a molecular mimicry mechanism involving tumor antigens (other than titin) or is a secondary phenomenon following release of titin from muscle. Based on the common immunoreactivity of the AChR, a striational antigen and thymoma, we suggest as the pathogenetic mechanism of thymoma-associated MGa "circulus vitiosus" in which SA autoimmunity could help maintain the AChR autoimmunity that is primarily elicited by the thymomas.
Collapse
|
research-article |
33 |
28 |
24
|
Wilisch A, Gutsche S, Hoffacker V, Schultz A, Tzartos S, Nix W, Schalke B, Schneider C, Müller-Hermelink HK, Marx A. Association of acetylcholine receptor alpha-subunit gene expression in mixed thymoma with myasthenia gravis. Neurology 1999; 52:1460-6. [PMID: 10227635 DOI: 10.1212/wnl.52.7.1460] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the association of MG with the transcription of muscular or neuronal acetylcholine receptor (AChR) subunit genes in thymomas. BACKGROUND Many steps in the pathogenesis of MG have been elucidated but, with rare exceptions, its etiology is unknown. In patients with MG with thymoma, the tumor probably elicits autoimmunity to AChR, but it is enigmatic why MG develops in some patients but not in others. METHODS Reverse transcriptase (RT)-PCR, immunohistochemistry, and immunofluorescence studies were carried out to investigate AChR expression in 35 patients with thymoma. Statistical analysis was used to specify significant differences between thymoma subtypes. RESULTS Considering all thymomas (n = 35), no correlation was found between MG status and AChR gene expression as detected by RT-PCR. However, when histologically defined thymoma subtypes were studied separately, transcription of the muscular AChR P3A- alpha-subunit gene was significantly associated (alpha < 0.01) with the occurrence of MG in mixed thymomas (n = 17), but not in thymomas of the cortical type. For the other muscular AChR subunits (P3A+ alpha isoform, beta, gamma, delta, and epsilon) and the alpha2 and beta4 neuronal AChR subunits, no such correlation was detected. CONCLUSIONS Expression of the P3A AChR alpha-subunit gene might be important for the pathogenesis of MG in mixed thymomas, suggesting etiologic heterogeneity of paraneoplastic MG among patients with histologically different thymoma subtypes.
Collapse
|
|
26 |
28 |
25
|
Bufler J, Kahlert S, Tzartos S, Toyka KV, Maelicke A, Franke C. Activation and blockade of mouse muscle nicotinic channels by antibodies directed against the binding site of the acetylcholine receptor. J Physiol 1996; 492 ( Pt 1):107-14. [PMID: 8730587 PMCID: PMC1158865 DOI: 10.1113/jphysiol.1996.sp021293] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
1. Using the patch-clamp technique, we have found that mouse muscle nicotinic acetylcholine receptor (nAChR) channels can be activated by low concentrations of a monoclonal antibody (MoAb), referred to as WF6, which is directed against the acetylcholine (ACh) binding site. Similar effects were seen using IgG or F(ab)2 fragments from the sera of patients with myasthenia gravis (MG), which contain polyclonal anti-nAChR antibodies. 2. The mean open times of MoAb and the slope conductance of single WF6-activated single channels were similar to those of ACh-activated channels under the same experimental conditions. 3. On outside-out patches, single channel activity was elicited by MoAb WF6 and MG F(ab)2 fragments, and was blocked by (+)-tubocurarine. We therefore concluded that MoAb WF6 and the MG F(ab)2 fragments activate the nAChR. 4. MoAb WF6 and MG F(ab)2 fragments blocked the current activated by pulsed application of 10(-4) M ACh to a significant extent. The block was partly reversible. The rate constants for the binding and dissociation of MoAb WF6 from the receptor were determined quantitatively.
Collapse
|
|
29 |
27 |