1
|
Alizadehsani R, Roshanzamir M, Abdar M, Beykikhoshk A, Khosravi A, Panahiazar M, Koohestani A, Khozeimeh F, Nahavandi S, Sarrafzadegan N. A database for using machine learning and data mining techniques for coronary artery disease diagnosis. Sci Data 2019; 6:227. [PMID: 31645559 PMCID: PMC6811630 DOI: 10.1038/s41597-019-0206-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022] Open
Abstract
We present the coronary artery disease (CAD) database, a comprehensive resource, comprising 126 papers and 68 datasets relevant to CAD diagnosis, extracted from the scientific literature from 1992 and 2018. These data were collected to help advance research on CAD-related machine learning and data mining algorithms, and hopefully to ultimately advance clinical diagnosis and early treatment. To aid users, we have also built a web application that presents the database through various reports.
Collapse
|
2
|
Nahavandi S, Price S, Sumithran P, Ekinci EI. Exploration of the shared pathophysiological mechanisms of gestational diabetes and large for gestational age offspring. World J Diabetes 2019; 10:333-340. [PMID: 31231456 PMCID: PMC6571486 DOI: 10.4239/wjd.v10.i6.333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 02/05/2023] Open
Abstract
Gestational diabetes mellitus (GDM) and large for gestational age (LGA) offspring are two common pregnancy complications. Connections also exist between the two conditions, including mutual maternal risk factors for the conditions and an increased prevalence of LGA offspring amongst pregnancies affected by GDM. Thus, it is important to elucidate potential shared underlying mechanisms of both LGA and GDM. One potential mechanistic link relates to macronutrient metabolism. Indeed, derangement of carbohydrate and lipid metabolism is present in GDM, and maternal biomarkers of glucose and lipid control are associated with LGA neonates in such pregnancies. The aim of this paper is therefore to reflect on the existing nutritional guidelines for GDM in light of our understanding of the pathophysiological mechanisms of GDM and LGA offspring. Lifestyle modification is first line treatment for GDM, and while there is some promise that nutritional interventions may favourably impact outcomes, there is a lack of definitive evidence that changing the macronutrient composition of the diet reduces the incidence of either GDM or LGA offspring. The quality of the available evidence is a major issue, and rigorous trials are needed to inform evidence-based treatment guidelines.
Collapse
|
3
|
Nahavandi S, Seah JM, Shub A, Houlihan C, Ekinci EI. Biomarkers for Macrosomia Prediction in Pregnancies Affected by Diabetes. Front Endocrinol (Lausanne) 2018; 9:407. [PMID: 30108547 PMCID: PMC6079223 DOI: 10.3389/fendo.2018.00407] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022] Open
Abstract
Large birthweight, or macrosomia, is one of the commonest complications for pregnancies affected by diabetes. As macrosomia is associated with an increased risk of a number of adverse outcomes for both the mother and offspring, accurate antenatal prediction of fetal macrosomia could be beneficial in guiding appropriate models of care and interventions that may avoid or reduce these associated risks. However, current prediction strategies which include physical examination and ultrasound assessment, are imprecise. Biomarkers are proving useful in various specialties and may offer a new avenue for improved prediction of macrosomia. Prime biomarker candidates in pregnancies with diabetes include maternal glycaemic markers (glucose, 1,5-anhydroglucitol, glycosylated hemoglobin) and hormones proposed implicated in placental nutrient transfer (adiponectin and insulin-like growth factor-1). There is some support for an association of these biomarkers with birthweight and/or macrosomia, although current evidence in this emerging field is still limited. Thus, although biomarkers hold promise, further investigation is needed to elucidate the potential clinical utility of biomarkers for macrosomia prediction for pregnancies affected by diabetes.
Collapse
|
4
|
Iskander J, Hossny M, Nahavandi S, del Porto L. An ocular biomechanic model for dynamic simulation of different eye movements. J Biomech 2018; 71:208-216. [DOI: 10.1016/j.jbiomech.2018.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/30/2017] [Accepted: 02/05/2018] [Indexed: 11/25/2022]
|
5
|
Lakshmanan S, Lim CP, Nahavandi S, Prakash M, Balasubramaniam P. Dynamical Analysis of the Hindmarsh-Rose Neuron With Time Delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017; 28:1953-1958. [PMID: 27244752 DOI: 10.1109/tnnls.2016.2557845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This brief is mainly concerned with a series of dynamical analyses of the Hindmarsh-Rose (HR) neuron with state-dependent time delays. The dynamical analyses focus on stability, Hopf bifurcation, as well as chaos and chaos control. Through the stability and bifurcation analysis, we determine that increasing the external current causes the excitable HR neuron to exhibit periodic or chaotic bursting/spiking behaviors and emit subcritical Hopf bifurcation. Furthermore, by choosing a fixed external current and varying the time delay, the stability of the HR neuron is affected. We analyze the chaotic behaviors of the HR neuron under a fixed external current through time series, bifurcation diagram, Lyapunov exponents, and Lyapunov dimension. We also analyze the synchronization of the chaotic time-delayed HR neuron through nonlinear control. Based on an appropriate Lyapunov-Krasovskii functional with triple integral terms, a nonlinear feedback control scheme is designed to achieve synchronization between the uncontrolled and controlled models. The proposed synchronization criteria are derived in terms of linear matrix inequalities to achieve the global asymptotical stability of the considered error model under the designed control scheme. Finally, numerical simulations pertaining to stability, Hopf bifurcation, periodic, chaotic, and synchronized models are provided to demonstrate the effectiveness of the derived theoretical results.
Collapse
|
6
|
Veerabhadrappa R, Bhatti A, Berk M, Tye S, Nahavandi S. Hierarchical estimation of neural activity through explicit identification of temporally synchronous spikes. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2016.09.135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Lakshmanan S, Lim C, Prakash M, Nahavandi S, Balasubramaniam P. Neutral-type of delayed inertial neural networks and their stability analysis using the LMI Approach. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2016.12.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Veerabhadrappa R, Lim CP, Nguyen TT, Berk M, Tye SJ, Monaghan P, Nahavandi S, Bhatti A. Unified selective sorting approach to analyse multi-electrode extracellular data. Sci Rep 2016; 6:28533. [PMID: 27339770 PMCID: PMC4919792 DOI: 10.1038/srep28533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 06/03/2016] [Indexed: 11/10/2022] Open
Abstract
Extracellular data analysis has become a quintessential method for understanding the neurophysiological responses to stimuli. This demands stringent techniques owing to the complicated nature of the recording environment. In this paper, we highlight the challenges in extracellular multi-electrode recording and data analysis as well as the limitations pertaining to some of the currently employed methodologies. To address some of the challenges, we present a unified algorithm in the form of selective sorting. Selective sorting is modelled around hypothesized generative model, which addresses the natural phenomena of spikes triggered by an intricate neuronal population. The algorithm incorporates Cepstrum of Bispectrum, ad hoc clustering algorithms, wavelet transforms, least square and correlation concepts which strategically tailors a sequence to characterize and form distinctive clusters. Additionally, we demonstrate the influence of noise modelled wavelets to sort overlapping spikes. The algorithm is evaluated using both raw and synthesized data sets with different levels of complexity and the performances are tabulated for comparison using widely accepted qualitative and quantitative indicators.
Collapse
|
9
|
Khudhair D, Bhatti A, Li Y, Hamedani HA, Garmestani H, Hodgson P, Nahavandi S. Anodization parameters influencing the morphology and electrical properties of TiO2 nanotubes for living cell interfacing and investigations. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:1125-1142. [PMID: 26652471 DOI: 10.1016/j.msec.2015.10.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/16/2015] [Accepted: 10/13/2015] [Indexed: 01/25/2023]
Abstract
Nanotube structures have attracted tremendous attention in recent years in many applications. Among such nanotube structures, titania nanotubes (TiO2) have received paramount attention in the medical domain due to their unique properties, represented by high corrosion resistance, good mechanical properties, high specific surface area, as well as great cell proliferation, adhesion and mineralization. Although lot of research has been reported in developing optimized titanium nanotube structures for different medical applications, however there is a lack of unified literature source that could provide information about the key parameters and experimental conditions required to develop such optimized structure. This paper addresses this gap, by focussing on the fabrication of TiO2 nanotubes through anodization process on both pure titanium and titanium alloys substrates to exploit the biocompatibility and electrical conductivity aspects, critical factors for many medical applications from implants to in-vivo and in-vitro living cell studies. It is shown that the morphology of TiO2 directly impacts the biocompatibility aspects of the titanium in terms of cell proliferation, adhesion and mineralization. Similarly, TiO2 nanotube wall thickness of 30-40nm has shown to exhibit improved electrical behaviour, a critical factor in brain mapping and behaviour investigations if such nanotubes are employed as micro-nano-electrodes.
Collapse
|
10
|
Tang SY, Yi P, Soffe R, Nahavandi S, Shukla R, Khoshmanesh K. Using dielectrophoresis to study the dynamic response of single budding yeast cells to Lyticase. Anal Bioanal Chem 2015; 407:3437-48. [DOI: 10.1007/s00216-015-8529-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/21/2015] [Accepted: 01/30/2015] [Indexed: 02/03/2023]
|
11
|
Soffe R, Tang SY, Baratchi S, Nahavandi S, Nasabi M, Cooper JM, Mitchell A, Khoshmanesh K. Controlled Rotation and Vibration of Patterned Cell Clusters Using Dielectrophoresis. Anal Chem 2015; 87:2389-95. [DOI: 10.1021/ac5043335] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Nahavandi S, Tang SY, Baratchi S, Soffe R, Nahavandi S, Kalantar-zadeh K, Mitchell A, Khoshmanesh K. Microfluidic platforms for the investigation of intercellular signalling mechanisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4810-26. [PMID: 25238429 DOI: 10.1002/smll.201401444] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/27/2014] [Indexed: 05/02/2023]
Abstract
Intercellular signalling has been identified as a highly complex process, responsible for orchestrating many physiological functions. While conventional methods of investigation have been useful, their limitations are impeding further development. Microfluidics offers an opportunity to overcome some of these limitations. Most notably, microfluidic systems can emulate the in-vivo environments. Further, they enable exceptionally precise control of the microenvironment, allowing complex mechanisms to be selectively isolated and studied in detail. There has thus been a growing adoption of microfluidic platforms for investigation of cell signalling mechanisms. This review provides an overview of the different signalling mechanisms and discusses the methods used to study them, with a focus on the microfluidic devices developed for this purpose.
Collapse
|
13
|
Nahavandi S, Baratchi S, Soffe R, Tang SY, Nahavandi S, Mitchell A, Khoshmanesh K. Microfluidic platforms for biomarker analysis. LAB ON A CHIP 2014; 14:1496-514. [PMID: 24663505 DOI: 10.1039/c3lc51124c] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Biomarkers have been described as characteristics, most often molecular, that provide information about biological states, whether normal, pathological, or therapeutically modified. They hold great potential to assist diagnosis and prognosis, monitor disease, and assess therapeutic effectiveness. While a few biomarkers are routinely utilised clinically, these only reflect a very small percentage of all biomarkers discovered. Numerous factors contribute to the slow uptake of these new biomarkers, with challenges faced throughout the biomarker development pipeline. Microfluidics offers two important opportunities to the field of biomarkers: firstly, it can address some of these developmental obstacles, and secondly, it can provide the precise and complex platform required to bridge the gap between biomarker research and the biomarker-based analytical device market. Indeed, adoption of microfluidics has provided a new avenue for advancement, promoting clinical utilisation of both biomarkers and their analytical platforms. This review will discuss biomarkers and outline microfluidic platforms developed for biomarker analysis.
Collapse
|
14
|
Khosravi A, Nahavandi S, Creighton D, Atiya AF. Lower Upper Bound Estimation Method for Construction of Neural Network-Based Prediction Intervals. ACTA ACUST UNITED AC 2011; 22:337-46. [DOI: 10.1109/tnn.2010.2096824] [Citation(s) in RCA: 384] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Khoshmanesh K, Kouzani A, Nahavandi S, Baratchi S, Kanwar J. At a glance: Cellular biology for engineers. Comput Biol Chem 2008; 32:315-31. [DOI: 10.1016/j.compbiolchem.2008.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 07/06/2008] [Indexed: 12/25/2022]
|
16
|
Hossny M, Nahavandi S, Creighton D. A Quadtree Driven Image Fusion Quality Assessment. ACTA ACUST UNITED AC 2007. [DOI: 10.1109/indin.2007.4384794] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|