1
|
Crosnier C, Driancourt C, Raynaud N, Dhorne-Pollet S, Pollet N, Bernard O, Hadchouel M, Meunier-Rotival M. Mutations in JAGGED1 gene are predominantly sporadic in Alagille syndrome. Gastroenterology 1999; 116:1141-8. [PMID: 10220506 DOI: 10.1016/s0016-5085(99)70017-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUNDS & AIMS Mutations in the JAGGED1 gene are responsible for the Alagille syndrome, an autosomal dominant disorder characterized by neonatal jaundice, intrahepatic cholestasis, and developmental disorders affecting the liver, heart, vertebrae, eyes, and face. We screened a large group of patients for mutations in JAGGED1 and studied transmission of the mutations. METHODS The coding sequence of the JAGGED1 gene was searched by single-strand conformation polymorphism and sequence analysis for mutations in 109 unrelated patients with the Alagille syndrome and their family if available. RESULTS Sixty-nine patients (63%) had intragenic mutations, including 14 nonsense mutations, 31 frameshifts, 11 splice site mutations, and 13 missense mutations. We identified 59 different types of mutation of which 54 were previously undescribed; 8 were observed more than once. Mutations were de novo in 40 of 57 probands. CONCLUSIONS Most of the observed mutations other than the missense mutations in JAGGED1 are expected to give rise to truncated and unanchored proteins. All mutations mapped to the extracellular domain of the protein, and there appeared to be regional hot spots, although no clustering was observed. Thus, the sequencing of 7 exons of JAGGED1 would detect 51% of the mutations. Transmission analysis showed a high frequency of sporadic cases (70%).
Collapse
|
|
26 |
137 |
2
|
Foissac S, Djebali S, Munyard K, Vialaneix N, Rau A, Muret K, Esquerré D, Zytnicki M, Derrien T, Bardou P, Blanc F, Cabau C, Crisci E, Dhorne-Pollet S, Drouet F, Faraut T, Gonzalez I, Goubil A, Lacroix-Lamandé S, Laurent F, Marthey S, Marti-Marimon M, Momal-Leisenring R, Mompart F, Quéré P, Robelin D, Cristobal MS, Tosser-Klopp G, Vincent-Naulleau S, Fabre S, der Laan MHPV, Klopp C, Tixier-Boichard M, Acloque H, Lagarrigue S, Giuffra E. Multi-species annotation of transcriptome and chromatin structure in domesticated animals. BMC Biol 2019; 17:108. [PMID: 31884969 PMCID: PMC6936065 DOI: 10.1186/s12915-019-0726-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/19/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Comparative genomics studies are central in identifying the coding and non-coding elements associated with complex traits, and the functional annotation of genomes is a critical step to decipher the genotype-to-phenotype relationships in livestock animals. As part of the Functional Annotation of Animal Genomes (FAANG) action, the FR-AgENCODE project aimed to create reference functional maps of domesticated animals by profiling the landscape of transcription (RNA-seq), chromatin accessibility (ATAC-seq) and conformation (Hi-C) in species representing ruminants (cattle, goat), monogastrics (pig) and birds (chicken), using three target samples related to metabolism (liver) and immunity (CD4+ and CD8+ T cells). RESULTS RNA-seq assays considerably extended the available catalog of annotated transcripts and identified differentially expressed genes with unknown function, including new syntenic lncRNAs. ATAC-seq highlighted an enrichment for transcription factor binding sites in differentially accessible regions of the chromatin. Comparative analyses revealed a core set of conserved regulatory regions across species. Topologically associating domains (TADs) and epigenetic A/B compartments annotated from Hi-C data were consistent with RNA-seq and ATAC-seq data. Multi-species comparisons showed that conserved TAD boundaries had stronger insulation properties than species-specific ones and that the genomic distribution of orthologous genes in A/B compartments was significantly conserved across species. CONCLUSIONS We report the first multi-species and multi-assay genome annotation results obtained by a FAANG project. Beyond the generation of reference annotations and the confirmation of previous findings on model animals, the integrative analysis of data from multiple assays and species sheds a new light on the multi-scale selective pressure shaping genome organization from birds to mammals. Overall, these results emphasize the value of FAANG for research on domesticated animals and reinforces the importance of future meta-analyses of the reference datasets being generated by this community on different species.
Collapse
|
research-article |
6 |
81 |
3
|
Le Goffic R, Bouguyon E, Chevalier C, Vidic J, Da Costa B, Leymarie O, Bourdieu C, Decamps L, Dhorne-Pollet S, Delmas B. Influenza A virus protein PB1-F2 exacerbates IFN-beta expression of human respiratory epithelial cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:4812-23. [PMID: 20844191 DOI: 10.4049/jimmunol.0903952] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The PB1-F2 protein of the influenza A virus (IAV) contributes to viral pathogenesis by a mechanism that is not well understood. PB1-F2 was shown to modulate apoptosis and to be targeted by the CD8(+) T cell response. In this study, we examined the downstream effects of PB1-F2 protein during IAV infection by measuring expression of the cellular genes in response to infection with wild-type WSN/33 and PB1-F2 knockout viruses in human lung epithelial cells. Wild-type virus infection resulted in a significant induction of genes involved in innate immunity. Knocking out the PB1-F2 gene strongly decreased the magnitude of expression of cellular genes implicated in antiviral response and MHC class I Ag presentation, suggesting that PB1-F2 exacerbates innate immune response. Biological network analysis revealed the IFN pathway as a link between PB1-F2 and deregulated genes. Using quantitative RT-PCR and IFN-β gene reporter assay, we determined that PB1-F2 mediates an upregulation of IFN-β expression that is dependent on NF-κB but not on AP-1 and IFN regulatory factor-3 transcription factors. Recombinant viruses knocked out for the PB1-F2 and/or the nonstructural viral protein 1 (the viral antagonist of the IFN response) genes provide further evidence that PB1-F2 increases IFN-β expression and that nonstructural viral protein 1 strongly antagonizes the effect of PB1-F2 on the innate response. Finally, we compared the effect of PB1-F2 variants taken from several IAV strains on IFN-β expression and found that PB1-F2-mediated IFN-β induction is significantly influenced by its amino acid sequence, demonstrating its importance in the host cell response triggered by IAV infection.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
79 |
4
|
Dhorne-Pollet S, Deleuze JF, Hadchouel M, Bonaïti-Pellié C. Segregation analysis of Alagille syndrome. J Med Genet 1994; 31:453-7. [PMID: 8071971 PMCID: PMC1049922 DOI: 10.1136/jmg.31.6.453] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Alagille syndrome (AGS) is a well defined genetic disorder characterised by five major features. An autosomal dominant mode of transmission with reduced penetrance has been suggested by the analysis of a limited number of families. However there has been no statistical analysis. We report here the first segregation analysis of AGS, using 33 families collected through 43 probands. Segregation analysis of these families allowed us to conclude that AGS is transmitted as a dominant disorder with 94% penetrance and 15% of cases are sporadic. The expressivity of the phenotype was variable and 26 persons (15 parents and 11 sibs) were identified as presenting minor forms of the disease. These results are valuable for genetic counselling.
Collapse
|
research-article |
31 |
62 |
5
|
Salhab M, Dhorne-Pollet S, Auclair S, Guyader-Joly C, Brisard D, Dalbies-Tran R, Dupont J, Ponsart C, Mermillod P, Uzbekova S. In vitro maturation of oocytes alters gene expression and signaling pathways in bovine cumulus cells. Mol Reprod Dev 2013; 80:166-82. [PMID: 23280668 DOI: 10.1002/mrd.22148] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/17/2012] [Indexed: 12/24/2022]
Abstract
In vitro maturation (IVM) of immature oocytes is widely used in assisted reproduction technologies in cattle, and is increasingly used to treat human infertility. The development competence of IVM oocytes, however, is lower than preovulatory, in vivo-matured oocytes. During maturation, cumulus cells (CC) are metabolically coupled with an oocyte and support the acquisition of its developmental potential. Our objective was to identify genes and pathways that were affected by IVM in bovine CC. Microarray transcriptomic analysis of CC enclosing in vitro- or in vivo-mature oocytes revealed 472 differentially expressed genes, including 28% related to apoptosis, correlating with twofold higher cell death after IVM than in vivo, as detected by TUNEL. Genes overexpressed after IVM were significantly enriched in functions involved in cell movement, focal adhesion, extracellular matrix function, and TGF-beta signaling, whereas under-expressed genes were enriched in regulating gene expression, energy metabolism, stress response, and MAP kinases pathway functions. Differential expression of 15 genes, including PAG11 (increased) and TXNIP (decreased), which were never detected in CC before, was validated by real-time RT-PCR. Moreover, protein quantification confirmed the lower abundance of glutathione S-transferase A1 and prostaglandin G/H synthase 2, and the higher abundance of hyaluronan synthase 2 and SMAD4, a member of TGF-beta pathway, in CC after IVM. Phosphorylation levels of SMAD2, MAPK3/1, and MAPK14, but not MAPK8, were higher after IVM that in vivo. In conclusion, IVM provokes the hyper-activation of TGF-beta and MAPK signaling components, modifies gene expression, leads to increased apoptosis in CC, and thus affects oocyte quality.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
56 |
6
|
Schmaltz-Panneau B, Cordova A, Dhorne-Pollet S, Hennequet-Antier C, Uzbekova S, Martinot E, Doret S, Martin P, Mermillod P, Locatelli Y. Early bovine embryos regulate oviduct epithelial cell gene expression during in vitro co-culture. Anim Reprod Sci 2014; 149:103-16. [DOI: 10.1016/j.anireprosci.2014.06.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/26/2014] [Accepted: 06/19/2014] [Indexed: 01/12/2023]
|
|
11 |
43 |
7
|
Mach N, Ruet A, Clark A, Bars-Cortina D, Ramayo-Caldas Y, Crisci E, Pennarun S, Dhorne-Pollet S, Foury A, Moisan MP, Lansade L. Priming for welfare: gut microbiota is associated with equitation conditions and behavior in horse athletes. Sci Rep 2020; 10:8311. [PMID: 32433513 PMCID: PMC7239938 DOI: 10.1038/s41598-020-65444-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
We simultaneously measured the fecal microbiota and multiple environmental and host-related variables in a cohort of 185 healthy horses reared in similar conditions during a period of eight months. The pattern of rare bacteria varied from host to host and was largely different between two time points. Among a suite of variables examined, equitation factors were highly associated with the gut microbiota variability, evoking a relationship between gut microbiota and high levels of physical and mental stressors. Behavioral indicators that pointed toward a compromised welfare state (e.g. stereotypies, hypervigilance and aggressiveness) were also associated with the gut microbiota, reinforcing the notion for the existence of the microbiota-gut-brain axis. These observations were consistent with the microbiability of behaviour traits (> 15%), illustrating the importance of gut microbial composition to animal behaviour. As more elite athletes suffer from stress, targeting the microbiota offers a new opportunity to investigate the bidirectional interactions within the brain gut microbiota axis.
Collapse
|
research-article |
5 |
37 |
8
|
Dhorne-Pollet S, Thélie A, Pollet N. Validation of novel reference genes for RT-qPCR studies of gene expression in Xenopus tropicalis during embryonic and post-embryonic development. Dev Dyn 2013; 242:709-17. [PMID: 23559567 DOI: 10.1002/dvdy.23972] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 02/04/2013] [Accepted: 03/26/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Accurate interpretation of transcriptome profiling by quantitative PCR requires the establishment of species-specific standards. However, the selection of reference genes for assessing RNA expression profiles in Xenopus laevis and Xenopus tropicalis was mostly based on historical reasons and they often only reflect the traditions of a laboratory. RESULTS We investigated the expression stability of 10 genes (dicer1, drosha, eef1a1, elavl3, gsc, h4, odc1, rpl8, smn2, tbp), 8 of which are commonly used as internal controls in published RT-qPCR experiments. We defined specific primer pairs and evaluated their suitability as reference genes by performing RT-qPCR expression profiling in Xenopus tropicalis. Gene expression stability was assayed in a set of 15 developmental stages from the egg to the froglet, and in dissected embryos. CONCLUSIONS Overall, we determined a set of qualified reference genes for distinct developmental periods. We recommend the use of dicer1, drosha, eef1a1, and smn2 from early embryonic development up to the end of metamorphosis. During early embryogenesis drosha, eef1a1, smn2 are suitable. For the whole post-embryonic development and for metamorphic stages including pro-metamorphosis and metamorphic climax, we recommend the use of drosha and smn2. These reference genes should prove their usefulness for data comparison across studies.
Collapse
|
Validation Study |
12 |
24 |
9
|
Seranski P, Heiss NS, Dhorne-Pollet S, Radelof U, Korn B, Hennig S, Backes E, Schmidt S, Wiemann S, Schwarz CE, Lehrach H, Poustka A. Transcription mapping in a medulloblastoma breakpoint interval and Smith-Magenis syndrome candidate region: identification of 53 transcriptional units and new candidate genes. Genomics 1999; 56:1-11. [PMID: 10036180 DOI: 10.1006/geno.1998.5647] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chromosomal band 17p11.2 is associated with a number of neurological disorders and malignant diseases. This region is also characterized by the presence of complex repeat elements that are probably responsible for the frequent occurrence of interstitial deletions, duplications, and isochromosome formation. In the course of the molecular analysis of this interval, an integrated map with YACs, PACs, and cosmids covering approximately 6 Mb was established. Focusing on the 1.4-Mb interval containing the Smith-Magenis syndrome critical region and the breakpoint region for medulloblastomas, we constructed a detailed transcript map between the marker PS2 and the proximal CMT1A repeat. FISH analysis of the PACs allowed determination of the position of the transcripts with respect to the SMS critical region and the presumptive chromosomal breakpoint in medulloblastomas. One PAC (G21100) provided evidence for the presence of a novel complex repeat unit, indicating that there are at least three independent repeat elements within 2 Mb. Five genes were mapped to clone G21100 and are likely to form part of this novel complex sequence repeat. In summary, 53 new transcripts were isolated by using cDNA selection and exon trapping. This included 8 known but previously unmapped genes and 45 novel transcripts. The expression profile of 21 transcripts was determined by RT-PCR. Based on their homologies to known genes or proteins, some of the novel genes are considered candidate genes either for malignant diseases or for the Smith-Magenis syndrome.
Collapse
|
|
26 |
23 |
10
|
Sinzelle L, Thuret R, Hwang HY, Herszberg B, Paillard E, Bronchain OJ, Stemple DL, Dhorne-Pollet S, Pollet N. Characterization of a novel Xenopus tropicalis cell line as a model for in vitro studies. Genesis 2011; 50:316-24. [PMID: 22083648 PMCID: PMC3503257 DOI: 10.1002/dvg.20822] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/21/2011] [Accepted: 10/26/2011] [Indexed: 11/08/2022]
Abstract
Cell lines are useful tools to facilitate in vitro studies of many biological and molecular processes. We describe a new permanent fibroblast-type cell line obtained from disaggregated Xenopus tropicalis limb bud. The cell line population doubling time was ∼ 24 h. Its karyotype was genetically stable with a chromosome number of 2n = 21 and a chromosome 10 trisomy. These cells could be readily transfected and expressed transgenes faithfully. We obtained stable transformants using transposon-based gene transfer technology. These cells responded to thyroid hormone and thus can provide a complementary research tool to study thyroid hormone signaling events. In conclusion, this cell line baptized “Speedy” should prove useful to couple in vitro and in vivo biological studies in the X. tropicalisfrog model. genesis 50:316–324, 2012. © 2011 Wiley Periodicals, Inc.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
23 |
11
|
Faucon F, Rebours E, Bevilacqua C, Helbling JC, Aubert J, Makhzami S, Dhorne-Pollet S, Robin S, Martin P. Terminal differentiation of goat mammary tissue during pregnancy requires the expression of genes involved in immune functions. Physiol Genomics 2009; 40:61-82. [PMID: 19843654 DOI: 10.1152/physiolgenomics.00032.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Terminal differentiation of mammary tissue into a functional epithelium that synthesizes and secretes milk occurs during pregnancy. The molecular mechanisms underlying this complex process are poorly understood, especially in ruminants. To obtain an overview of the ruminant mammary gland's final differentiation process, we conducted time-course gene expression analysis of five physiological stages: four during pregnancy (P46, P70, P90, and P110) and one after 40 days of lactation (L40). An appropriate loop experimental design was used to follow gene expression profiles. Using three nulliparous (pregnancy) or primiparous (lactation) goats per stage, we performed a comparison starting from nine dye-swaps and using a 22K bovine oligoarray. Statistical analysis revealed that the expression of 1,696 genes varied significantly at least once in the study. These genes fell into 19 clusters based on their expression profiles. Identification of biological functions with Ingenuity Pathway Analysis software revealed several similarities, in keeping with physiological stages described in mice. As in mice, expression of milk protein genes began at midpregnancy, and genes regulating lipid biosynthesis were induced at the onset of lactation. During the first half of pregnancy, the molecular signature of goat mammary tissue was characterized by the expression of genes associated with tissue remodeling and differentiation, while the second half was mainly characterized by the presence of messengers encoding genes involved in cell proliferation. A large number of immune-related genes were also induced, supporting recent speculation that mammary tissue has an original immune function, and the recruitment of migrating hematopoietic cells possibly involved in the branching morphogenesis of the mammary gland. These data hint that the induction of differentiation occurs early in pregnancy, very likely before P46. This period is therefore crucial for obtaining a healthy and productive mammary gland.
Collapse
|
Journal Article |
16 |
22 |
12
|
Sedlacek Z, Münstermann E, Dhorne-Pollet S, Otto C, Bock D, Schütz G, Poustka A. Human and mouse XAP-5 and XAP-5-like (X5L) genes: identification of an ancient functional retroposon differentially expressed in testis. Genomics 1999; 61:125-32. [PMID: 10534398 DOI: 10.1006/geno.1999.5931] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although most retroposons that arose by reverse transcription of cellular mRNAs and by reintegration into the genome are nonfunctional, several examples exist in which the retroposon acquired a novel function and became fixed in the genome as a functional gene. We identified another such case: the ubiquitously expressed X-linked XAP-5 gene with unknown function gave rise to its retroposed counterpart, XAP-5-like (X5L), which has an intronless open reading frame and is autosomal in human. Phylogenetic analysis of the human and mouse XAP-5 and X5L genes shows that the retroposition most likely took place before the radiation of eutherian mammals. The XAP-5 and X5L genes are expressed in a wide range of tissues but are differentially expressed in testis. The ancient origin and broad expression of the X5L retroposon indicate that the XAP-5 and X5L genes may have assumed different functions in somatic cells. In addition to this, because of its autosomal location and its high level and particular pattern of expression in spermatogenic cells, the X5L expression in testis may compensate for the X-linked XAP-5 gene, which may be silenced during spermatogenesis.
Collapse
|
|
26 |
21 |
13
|
Mach N, Lansade L, Bars-Cortina D, Dhorne-Pollet S, Foury A, Moisan MP, Ruet A. Gut microbiota resilience in horse athletes following holidays out to pasture. Sci Rep 2021; 11:5007. [PMID: 33658551 PMCID: PMC7930273 DOI: 10.1038/s41598-021-84497-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023] Open
Abstract
Elite horse athletes that live in individual boxes and train and compete for hours experience long-term physical and mental stress that compromises animal welfare and alters the gut microbiota. We therefore assessed if a temporary period out to pasture with conspecifics could improve animal welfare and in turn, favorably affect intestinal microbiota composition. A total of 27 athletes were monitored before and after a period of 1.5 months out to pasture, and their fecal microbiota and behavior profiles were compared to those of 18 horses kept in individual boxes. The overall diversity and microbiota composition of pasture and control individuals were temporally similar, suggesting resilience to environmental challenges. However, pasture exposure induced an increase in Ruminococcus and Coprococcus that lasted 1-month after the return to individual boxes, which may have promoted beneficial effects on health and welfare. Associations between the gut microbiota composition and behavior indicating poor welfare were established. Furthermore, withdrawn behavior was associated with the relative abundances of Lachnospiraceae AC2044 group and Clostridiales family XIII. Both accommodate a large part of butyrate-producing bacterial genera. While we cannot infer causality within this study, arguably, these findings suggest that management practices maintained over a longer period of time may moderate the behavior link to the gut ecosystem beyond its resilience potential.
Collapse
|
research-article |
4 |
15 |
14
|
Ahanda MLE, Zerjal T, Dhorne-Pollet S, Rau A, Cooksey A, Giuffra E. Impact of the genetic background on the composition of the chicken plasma MiRNome in response to a stress. PLoS One 2014; 9:e114598. [PMID: 25473826 PMCID: PMC4256448 DOI: 10.1371/journal.pone.0114598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/10/2014] [Indexed: 12/20/2022] Open
Abstract
Circulating extra-cellular microRNAs (miRNAs) have emerged as promising minimally invasive markers in human medicine. We evaluated miRNAs isolated from total plasma as biomarker candidates of a response to an abiotic stress (feed deprivation) in a livestock species. Two chicken lines selected for high (R+) and low (R-) residual feed intake were chosen as an experimental model because of their extreme divergence in feed intake and energy metabolism. Adult R+ and R- cocks were sampled after 16 hours of feed deprivation and again four hours after re-feeding. More than 292 million sequence reads were generated by small RNA-seq of total plasma RNA. A total of 649 mature miRNAs were identified; after quality filtering, 148 miRNAs were retained for further analyses. We identified 23 and 19 differentially abundant miRNAs between feeding conditions and between lines respectively, with only two miRNAs identified in both comparisons. We validated a panel of six differentially abundant miRNAs by RT-qPCR on a larger number of plasma samples and checked their response to feed deprivation in liver. Finally, we evaluated the conservation and tissue distribution of differentially abundant miRNAs in plasma across a variety of red jungle fowl tissues. We show that the chicken plasma miRNome reacts promptly to the alteration of the animal physiological condition driven by a feed deprivation stress. The plasma content of stress-responsive miRNAs is strongly influenced by the genetic background, with differences reflecting the phenotypic divergence acquired through long-term selection, as evidenced by the profiles of conserved miRNAs with a regulatory role in energy metabolism (gga-miR-204, gga-miR-let-7f-5p and gga-miR-122-5p). These results reinforce the emerging view in human medicine that even small genetic differences can have a considerable impact on the resolution of biomarker studies, and provide support for the emerging interest in miRNAs as potential novel and minimally invasive biomarkers for livestock species.
Collapse
|
research-article |
11 |
13 |
15
|
Bronchain OJ, Pollet N, Ymlahi-Ouazzani Q, Dhorne-Pollet S, Helbling JC, Lecarpentier JE, Percheron K, Wegnez M. The olig family: phylogenetic analysis and early gene expression in Xenopus tropicalis. Dev Genes Evol 2007; 217:485-97. [PMID: 17554554 DOI: 10.1007/s00427-007-0158-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 04/20/2007] [Indexed: 11/25/2022]
Abstract
The olig genes form a small subfamily of basic helix-loop-helix transcription factors. They were discovered in 2000 as genes required for oligodendrocyte lineage specification. Since then, olig genes have been identified in various vertebrate species and corresponding sequences accumulated within genomic databases. Until now, three groups of olig genes have been characterized. Our phylogenetic analysis demonstrates the existence of a fourth group, which we named olig4. Genes of the four olig groups are present in actinopterygians and amphibians, whereas mammals only possess olig1, 2, and 3. We also found one olig gene in hemichordates, urochordates, and cephalochordates. Our expression study during Xenopus tropicalis embryogenesis shows that the four olig genes have very distinct expression patterns. Olig1 is very faintly expressed before the tadpole stage, whereas olig2, 3, and 4 are expressed from the gastrula stage onward. The olig3 expression during neurulation suggests a role in early anteroposterior patterning of the brain. All these results indicate that olig genes are involved in several developmental processes during early development.
Collapse
|
|
18 |
12 |
16
|
Pollet N, Dhorne-Pollet S, Deleuze JF, Boccaccio C, Driancourt C, Raynaud N, Le Paslier D, Hadchouel M, Meunier-Rotival M. Construction of a 3.7-Mb physical map within human chromosome 20p12 ordering 18 markers in the Alagille syndrome locus. Genomics 1995; 27:467-74. [PMID: 7558028 DOI: 10.1006/geno.1995.1078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alagille syndrome (AGS, MIM 118450) is associated with human chromosome band 20p12. To study this region, we constructed a 3.7-Mb physical map using 36 YACs isolated from the CEPH YAC library with three sequence-tagged sites (STS): D20S503, D20S41, and D20S188. New STSs were obtained from 6 isolated YAC end-fragments. Eighteen markers were ordered on the contig as follows:20ptel-D20S177-D20S175-D20S509- D20S5/D20S503-D20S506-D20S162-D20S504- D20S505-D20S507-D20S188-(D20S6-D20S27- D20S189)-D20S186-D20S41-D20S61-D20S492- D20S508-20pcen. A restriction map with the enzymes AscI, MluI, NotI, SacII, and SfiI was generated, revealing seven putative CpG islands. We established a YAC contig that spans the AGS region and thus will be valuable for cloning candidate genes and searching for DNA polymorphisms segregating with this syndrome.
Collapse
|
|
30 |
11 |
17
|
Dhorne-Pollet S, Crisci E, Mach N, Renson P, Jaffrézic F, Marot G, Maroilley T, Moroldo M, Lecardonnel J, Blanc F, Bertho N, Bourry O, Giuffra E. The miRNA-targeted transcriptome of porcine alveolar macrophages upon infection with Porcine Reproductive and Respiratory Syndrome Virus. Sci Rep 2019; 9:3160. [PMID: 30816147 PMCID: PMC6395673 DOI: 10.1038/s41598-019-39220-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 01/18/2019] [Indexed: 12/20/2022] Open
Abstract
Host miRNAs are known to modulate the cell response to virus infections. We characterized the miRNA-targeted transcriptome of porcine alveolar macrophages (PAMs) at early times after infection with a subtype 1.1 strain of PRRSV (Porcine Reproductive and Respiratory Syndrome Virus). We performed the immunoprecipitation of RISC (RNA-induced Silencing Complex) followed by microarray analysis of the RISC-bound miRNA targets (RIP-Chip) to evaluate the relative enrichment or depletion of expressed genes in RISC. The miRNA-mediated regulation occurred early after PRRSV infection and decreased fast (1,241 and 141 RISC-bound genes at 7 h and 10 h post-infection, respectively); it affected several cell functions with evidence of miRNA buffering of upregulated interferon-related genes. Eight miRNAs were highly enriched in RISC of both control and infected cells with no evidence of differential expression. Although miR-335-5p was the miRNA with most predicted targets among enriched RISC-bound genes, no effects on surface markers, cytokine expression and PRRSV replication were detected upon miR-335-5p mimics of primary PAMs. Our results do not point to specific miRNA-driven mechanisms regulating the early response to infection with this PRRSV 1.1 strain and indicate that the miRNome expressed by steady-state PAMs reacts promptly to counterbalance PRRSV infection by a pervasive modulation of host functions.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
9 |
18
|
Pollet N, Boccaccio C, Dhorne-Pollet S, Driancourt C, Raynaud N, Auffray C, Hadchouel M, Meunier-Rotival M. Construction of an integrated physical and gene map of human chromosome 20p12 providing candidate genes for Alagille syndrome. Genomics 1997; 42:489-98. [PMID: 9205123 DOI: 10.1006/geno.1997.4676] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Physical mapping and localization of eSTS markers were used to generate an integrated physical and gene map covering a approximately 10-Mb region of human chromosome 20p12 containing the Alagille syndrome (AGS) locus. Seventy-four STSs, 28 of which were derived from cDNA sequences, mapped with an average resolution of 135 kb. The 28 eSTS markers define 20 genes. Six known genes, namely CHGB, BMP2, PLCB1, PLCB4, SNAP, and HJ1, were precisely mapped. Among the genes identified, one maps in the smallest region of overlap of the deletions associated with AGS and could therefore be regarded as a candidate gene for Alagille syndrome.
Collapse
|
|
28 |
9 |
19
|
Boisseau M, Dhorne-Pollet S, Bars-Cortina D, Courtot É, Serreau D, Annonay G, Lluch J, Gesbert A, Reigner F, Sallé G, Mach N. Species interactions, stability, and resilience of the gut microbiota - Helminth assemblage in horses. iScience 2023; 26:106044. [PMID: 36818309 PMCID: PMC9929684 DOI: 10.1016/j.isci.2023.106044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/16/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The nature and strength of interactions entertained among helminths and their host gut microbiota remain largely unexplored. Using 40 naturally infected Welsh ponies, we tracked the gut microbiota-cyathostomin temporal dynamics and stability before and following anthelmintic treatment and the associated host blood transcriptomic response. High shedders harbored 14 species of cyathostomins, dominated by Cylicocyclus nassatus. They exhibited a highly diverse and temporal dynamic gut microbiota, with butyrate-producing Clostridia likely driving the ecosystem steadiness and host tolerance toward cyathostomins infection. However, anthelmintic administration sharply bent the microbial community. It disrupted the ecosystem stability and the time-dependent network of interactions, affecting longer term microbial resilience. These observations highlight how anthelmintic treatments alter the triangular relationship of parasite, host, and gut microbiota and open new perspectives for adding nutritional intervention to current parasite management strategies.
Collapse
|
research-article |
2 |
9 |
20
|
Dhorne-Pollet S, Robert-Granié C, Aurel MR, Marie-Etancelin C. A functional genomic approach to the study of the milking ability in dairy sheep. Anim Genet 2011; 43:199-209. [PMID: 22404356 DOI: 10.1111/j.1365-2052.2011.02237.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To understand the mechanisms underlying milk ability and more precisely the kinetics of milk emission, we compared teat transcriptome profiles from Lacaune ewes in the tails of the milk flow phenotypic distribution. Two different arrays containing respectively 1896 and 13 168 PCR products selected from several tissue-specific cDNA libraries, including mammary gland, allowed the identification of 73 differentially expressed genes between teats from high and low milk flow ewes. Genes involved in muscle contraction were identified as over-expressed, and genes encoding collagen were found to be under-expressed in teats from low milk flow ewes. We confirmed this underexpression of COL1A1 and COL1A2 in low-milk flow ewes using RT-qPCR. These results suggest that milking ability may be due to the capacity of the teat sphincter to relax during mechanical milking. We propose that an optimal condition for mechanical milking may require proper relaxation of the teats. To our knowledge, this is the first transcriptomic analysis studying milking ability, using udder tissue for gene expression profiling, which demonstrates that mechanical milking ability is not only determined by morphological features but also by tissue composition.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
8 |
21
|
Dhorne-Pollet S, Barrey E, Pollet N. A new method for long-read sequencing of animal mitochondrial genomes: application to the identification of equine mitochondrial DNA variants. BMC Genomics 2020; 21:785. [PMID: 33176683 PMCID: PMC7661214 DOI: 10.1186/s12864-020-07183-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 10/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial DNA is remarkably polymorphic. This is why animal geneticists survey mitochondrial genomes variations for fundamental and applied purposes. We present here an approach to sequence whole mitochondrial genomes using nanopore long-read sequencing. Our method relies on the selective elimination of nuclear DNA using an exonuclease treatment and on the amplification of circular mitochondrial DNA using a multiple displacement amplification step. RESULTS We optimized each preparative step to obtain a 100 million-fold enrichment of horse mitochondrial DNA relative to nuclear DNA. We sequenced these amplified mitochondrial DNA using nanopore sequencing technology and obtained mitochondrial DNA reads that represented up to half of the sequencing output. The sequence reads were 2.3 kb of mean length and provided an even coverage of the mitochondrial genome. Long-reads spanning half or more of the whole mtDNA provided a coverage that varied between 118X and 488X. We evaluated SNPs identified using these long-reads by Sanger sequencing as ground truth and found a precision of 100.0%; a recall of 93.1% and a F1-score of 0.964 using the Twilight horse mtDNA reference. The choice of the mtDNA reference impacted variant calling efficiency with F1-scores varying between 0.947 and 0.964. CONCLUSIONS Our method to amplify mtDNA and to sequence it using the nanopore technology is usable for mitochondrial DNA variant analysis. With minor modifications, this approach could easily be applied to other large circular DNA molecules.
Collapse
|
research-article |
5 |
8 |
22
|
Tixier-Boichard M, Fabre S, Dhorne-Pollet S, Goubil A, Acloque H, Vincent-Naulleau S, Ross P, Wang Y, Chanthavixay G, Cheng H, Ernst C, Leesburg V, Giuffra E, Zhou H. Tissue Resources for the Functional Annotation of Animal Genomes. Front Genet 2021; 12:666265. [PMID: 34234809 PMCID: PMC8256271 DOI: 10.3389/fgene.2021.666265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/29/2021] [Indexed: 11/25/2022] Open
Abstract
In order to generate an atlas of the functional elements driving genome expression in domestic animals, the Functional Annotation of Animal Genome (FAANG) strategy was to sample many tissues from a few animals of different species, sexes, ages, and production stages. This article presents the collection of tissue samples for four species produced by two pilot projects, at INRAE (National Research Institute for Agriculture, Food and Environment) and the University of California, Davis. There were three mammals (cattle, goat, and pig) and one bird (chicken). It describes the metadata characterizing these reference sets (1) for animals with origin and selection history, physiological status, and environmental conditions; (2) for samples with collection site and tissue/cell processing; (3) for quality control; and (4) for storage and further distribution. Three sets are identified: set 1 comprises tissues for which collection can be standardized and for which representative aliquots can be easily distributed (liver, spleen, lung, heart, fat depot, skin, muscle, and peripheral blood mononuclear cells); set 2 comprises tissues requiring special protocols because of their cellular heterogeneity (brain, digestive tract, secretory organs, gonads and gametes, reproductive tract, immune tissues, cartilage); set 3 comprises specific cell preparations (immune cells, tracheal epithelial cells). Dedicated sampling protocols were established and uploaded in https://data.faang.org/protocol/samples. Specificities between mammals and chicken are described when relevant. A total of 73 different tissues or tissue sections were collected, and 21 are common to the four species. Having a common set of tissues will facilitate the transfer of knowledge within and between species and will contribute to decrease animal experimentation. Combining data on the same samples will facilitate data integration. Quality control was performed on some tissues with RNA extraction and RNA quality control. More than 5,000 samples have been stored with unique identifiers, and more than 4,000 were uploaded onto the Biosamples database, provided that standard ontologies were available to describe the sample. Many tissues have already been used to implement FAANG assays, with published results. All samples are available without restriction for further assays. The requesting procedure is described. Members of FAANG are encouraged to apply a range of molecular assays to characterize the functional status of collected samples and share their results, in line with the FAIR (Findable, Accessible, Interoperable, and Reusable) data principles.
Collapse
|
Journal Article |
4 |
7 |
23
|
Courtot É, Boisseau M, Dhorne-Pollet S, Serreau D, Gesbert A, Reigner F, Basiaga M, Kuzmina T, Lluch J, Annonay G, Kuchly C, Diekmann I, Krücken J, von Samson-Himmelstjerna G, Mach N, Sallé G. Comparison of two molecular barcodes for the study of equine strongylid communities with amplicon sequencing. PeerJ 2023; 11:e15124. [PMID: 37070089 PMCID: PMC10105562 DOI: 10.7717/peerj.15124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 03/03/2023] [Indexed: 04/19/2023] Open
Abstract
Basic knowledge on the biology and epidemiology of equine strongylid species still needs to be improved to contribute to the design of better parasite control strategies. Nemabiome metabarcoding is a convenient tool to quantify and identify species in bulk samples that could overcome the hurdle that cyathostomin morphological identification represents. To date, this approach has relied on the internal transcribed spacer 2 (ITS-2) of the ribosomal RNA gene, with a limited investigation of its predictive performance for cyathostomin communities. Using DNA pools of single cyathostomin worms, this study aimed to provide the first elements to compare performances of the ITS-2 and a cytochrome c oxidase subunit I (COI) barcode newly developed in this study. Barcode predictive abilities were compared across various mock community compositions of two, five and 11 individuals from distinct species. The amplification bias of each barcode was estimated. Results were also compared between various types of biological samples, i.e., eggs, infective larvae or adults. Bioinformatic parameters were chosen to yield the closest representation of the cyathostomin community for each barcode, underscoring the need for communities of known composition for metabarcoding purposes. Overall, the proposed COI barcode was suboptimal relative to the ITS-2 rDNA region, because of PCR amplification biases, reduced sensitivity and higher divergence from the expected community composition. Metabarcoding yielded consistent community composition across the three sample types. However, imperfect correlations were found between relative abundances from infective larvae and other life-stages for Cylicostephanus species using the ITS-2 barcode. While the results remain limited by the considered biological material, they suggest that additional improvements are needed for both the ITS-2 and COI barcodes.
Collapse
|
research-article |
2 |
4 |
24
|
Bioukar EB, Sarrazin S, Conti M, Rabetafika E, Carreau JP, Dhorne-Pollet S, Raynaud N, Deschatrette J. Extinction of peroxisomal functions in hepatoma cell-fibroblast hybrids. Biochem Genet 1996; 34:77-91. [PMID: 8734409 DOI: 10.1007/bf02396242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although peroxisomes are ubiquitous, differences in the number of organelles and in the expression of associated metabolic activities are observed, depending on the cell type. To investigate the control of peroxisomal activity in connection with cell differentiation, we constructed hybrids between two types of cells whose histogenetic origins dictate significant differences in peroxisomal activities: hepatoma cells and fibroblasts, with high and low expression, respectively, of peroxisomal functions. In these hybrids, extinction of the elevated activities that characterize liver cells is observed, in parallel with the well-documented extinction of differentiated functions. This suggests the existence in fibroblasts of a negative trans-acting regulation.
Collapse
|
|
29 |
2 |
25
|
Dhorne-Pollet S, Fitzpatrick C, Da Costa B, Bourgon C, Eléouët JF, Meunier N, Burzio VA, Delmas B, Barrey E. Antisense oligonucleotides targeting ORF1b block replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Front Microbiol 2022; 13:915202. [PMID: 36386681 PMCID: PMC9644129 DOI: 10.3389/fmicb.2022.915202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/29/2022] [Indexed: 10/15/2023] Open
Abstract
The ongoing COVID-19 pandemic continues to pose a need for new and efficient therapeutic strategies. We explored antisense therapy using oligonucleotides targeting the severe acute respiratory syndrome coronavirus (SARS-CoV-2) genome. We predicted in silico four antisense oligonucleotides (ASO gapmers with 100% PTO linkages and LNA modifications at their 5' and 3'ends) targeting viral regions ORF1a, ORF1b, N and the 5'UTR of the SARS-CoV-2 genome. Efficiency of ASOs was tested by transfection in human ACE2-expressing HEK-293T cells and monkey VeroE6/TMPRSS2 cells infected with SARS-CoV-2. The ORF1b-targeting ASO was the most efficient, with a 71% reduction in the number of viral genome copies. N- and 5'UTR-targeting ASOs also significantly reduced viral replication by 55 and 63%, respectively, compared to non-related control ASO (ASO-C). Viral titration revealed a significant decrease in SARS-CoV-2 multiplication both in culture media and in cells. These results show that anti-ORF1b ASO can specifically reduce SARS-CoV-2 genome replication in vitro in two different cell infection models. The present study presents proof-of concept of antisense oligonucleotide technology as a promising therapeutic strategy for COVID-19.
Collapse
|
research-article |
3 |
2 |