1
|
Hey M, Hersbach AA, Hocke T, Mauger SJ, Böhnke B, Mewes A. Ecological Momentary Assessment to Obtain Signal Processing Technology Preference in Cochlear Implant Users. J Clin Med 2022; 11:jcm11102941. [PMID: 35629065 PMCID: PMC9147494 DOI: 10.3390/jcm11102941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Background: To assess the performance of cochlear implant users, speech comprehension benefits are generally measured in controlled sound room environments of the laboratory. For field-based assessment of preference, questionnaires are generally used. Since questionnaires are typically administered at the end of an experimental period, they can be inaccurate due to retrospective recall. An alternative known as ecological momentary assessment (EMA) has begun to be used for clinical research. The objective of this study was to determine the feasibility of using EMA to obtain in-the-moment responses from cochlear implant users describing their technology preference in specific acoustic listening situations. Methods: Over a two-week period, eleven adult cochlear implant users compared two listening programs containing different sound processing technologies during everyday take-home use. Their task was to compare and vote for their preferred program. Results: A total of 205 votes were collected from acoustic environments that were classified into six listening scenes. The analysis yielded different patterns of voting among the subjects. Two subjects had a consistent preference for one sound processing technology across all acoustic scenes, three subjects changed their preference based on the acoustic scene, and six subjects had no conclusive preference for either technology. Conclusion: Results show that EMA is suitable for quantifying real-world self-reported preference, showing inter-subject variability in different listening environments. However, there is uncertainty that patients will not provide sufficient spontaneous feedback. One improvement for future research is a participant forced prompt to improve response rates.
Collapse
|
2
|
Hey M, Böhnke B, Mewes A, Munder P, Mauger SJ, Hocke T. Speech comprehension across multiple CI processor generations: Scene dependent signal processing. Laryngoscope Investig Otolaryngol 2021; 6:807-815. [PMID: 34401506 PMCID: PMC8356868 DOI: 10.1002/lio2.564] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/19/2021] [Accepted: 04/06/2021] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES In clinical practice, characterization of speech comprehension for cochlear implant (CI) patients is typically administered by a set of suprathreshold measurements in quiet and in noise. This study investigates speech comprehension of the three most recent cochlear implant sound processors; CP810, CP910, and CP1000 (Cochlear Limited). To compare sound processor performance across generations and input dynamic range changes, the state-of-the art signal processing technologies available in each sound processor were enabled. Outcomes will be assessed across a range of stimulation intensities, and finally analyzed with respect to normal hearing listeners. METHODS In a prospective study, 20 experienced postlingually deafened CI patients who received a Nucleus CI in the ENT department of the University Hospital of SH in Kiel were recruited. Speech comprehension was measured in quiet at 40, 50, and 65 dBSPL with monosyllabic words as well as by speech reception threshold for two-digit numbers. In noise, speech reception thresholds were measured with the adaptive German matrix test with speech and noise in front. RESULTS We found that high levels of open-set speech comprehension are achieved at suprathreshold presentation levels in quiet. However, results at lower test levels have remained mostly unchanged for tested sound processors with default dynamic range. Expanding the lower limit of the acoustic input dynamic range yields better speech comprehension at lower presentation levels. In noise the application of ForwardFocus improves the speech reception. Overall, a continuous improvement for speech perception across three generations of CI sound processors was found. CONCLUSIONS Findings motivate further development of signal pre-processing, an additional focus of clinical work on lower stimulation levels, and automation of ForwardFocus. LEVEL OF EVIDENCE 2.
Collapse
|
3
|
Hey M, Hocke T, Böhnke B, Mauger SJ. ForwardFocus with cochlear implant recipients in spatially separated and fluctuating competing signals - introduction of a reference metric. Int J Audiol 2019; 58:869-878. [PMID: 31464542 DOI: 10.1080/14992027.2019.1638527] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective: To clinically evaluate ForwardFocus in noise with experienced Nucleus® cochlear implant (CI) recipients.Design: Listening performance with ForwardFocus was compared against the best in class directional microphone program (BEAM®). Speech comprehension was tested with the Oldenburg sentence test with competing signals (stationary, three, six and 18-talker babble) in both co-located and spatially-separated listening environments. Additionally, normal hearing participants were tested monaurally in the same listening environments as a reference and to promote cross-study comparisons between CI clinical study outcomes.Study sample: Post-lingually deaf adult CI recipients (n = 20) who were experienced users of the Nucleus sound processor (Cochlear Limited).Results: Improved speech comprehension was found with the ForwardFocus program compared to the BEAM program in a co-located frontal listening environment for both stationary and fluctuating competing signals. In spatially-separated environments ForwardFocus provided significant speech reception threshold (SRT) improvements of 5.8 dB for three-talker competing signals, respectively.Conclusions: ForwardFocus was shown to significantly improve speech comprehension in a wide range of listening environments. This technology is likely to provide significant improvements in real-world listening for CI recipients, given the clinically relevant performance outcomes in challenging dynamic noise environments, bringing their performance closer to their normal hearing peers.
Collapse
|
4
|
Bentsen T, Mauger SJ, Kressner AA, May T, Dau T. The impact of noise power estimation on speech intelligibility in cochlear-implant speech coding strategies. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:818. [PMID: 30823804 DOI: 10.1121/1.5089887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
The advanced combination encoder (ACE™) is an established speech-coding strategy in cochlear-implant processing that selects a number of frequency channels based on amplitudes. However, speech intelligibility outcomes with this strategy are limited in noisy conditions. To improve speech intelligibility, either noise-dominant channels can be attenuated prior to ACE™ with noise reduction or, alternatively, channels can be selected based on estimated signal-to-noise ratios. A noise power estimation stage is, therefore, required. This study investigated the impact of noise power estimation in noise-reduction and channel-selection strategies. Results imply that estimation with improved noise-tracking capabilities does not necessarily translate into increased speech intelligibility.
Collapse
|
5
|
Mauger SJ, Jones M, Nel E, Del Dot J. Clinical outcomes with the Kanso™ off-the-ear cochlear implant sound processor. Int J Audiol 2017; 56:267-276. [DOI: 10.1080/14992027.2016.1265156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Plasmans A, Rushbrooke E, Moran M, Spence C, Theuwis L, Zarowski A, Offeciers E, Atkinson B, McGovern J, Dornan D, Leigh J, Kaicer A, Hollow R, Martelli L, Looi V, Nel E, Del Dot J, Cowan R, Mauger SJ. A multicentre clinical evaluation of paediatric cochlear implant users upgrading to the Nucleus(®) 6 system. Int J Pediatr Otorhinolaryngol 2016; 83:193-9. [PMID: 26968076 DOI: 10.1016/j.ijporl.2016.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The aim of this study was to investigate whether experienced paediatric cochlear implant users could show benefits to speech perception outcomes from the introduction of noise reduction and automated scene classification technologies as implemented in the Nucleus(®) 6 sound processor. Previous research with adult cochlear implant users had shown significant improvements in speech intelligibility for listening in noisy conditions and good user acceptance for upgrading to the Nucleus 6 processor. In adults, these improvements for listening in noise were primarily attributed to the use of a range of new input processing technologies including noise reduction, as well as introduction of automatic scene classification technology. METHODS Experienced paediatric cochlear implant users (n=25) were recruited from four clinics located in three countries. Research participants were evaluated on three occasions, an initial session using their Nucleus 5 sound processor; a second session in which participants used the Nucleus 6 processor programmed with the same technologies as were used in their Nucleus 5 sound processor; and a final session in which participants used the Nucleus 6 processor programmed with the default technologies including automatic scene classification (SCAN) which automatically selects the microphone directionality, noise reduction (SNR-NR), and wind noise reduction (WNR) technologies. Prior to both the second and third evaluations, research participants had approximately two weeks take-home experience with the new system. Speech perception performances on monosyllabic word tests presented in quiet and in noise, and a sentence test presented in noise, were compared across the three processor conditions. Acceptance of the Nucleus 6 default settings was assessed in a final session. RESULTS No group mean difference in performance was found for monosyllabic words in quiet. A significant improvement in speech perception was found for both monosyllabic words and sentences in noise with the default Nucleus 6 program condition as compared with the Nucleus 5 condition. No acceptance issues were noted for any of the children. CONCLUSIONS Experienced paediatric cochlear implant users showed a significant improvement in speech perception in listening in noise when upgraded to the Nucleus 6 sound processor primarily due to the introduction of a noise reduction technology, and all children accepted the default program. These findings suggest that school-aged children may benefit from upgrading to the Nucleus 6 sound processor using the default program.
Collapse
|
7
|
Mauger SJ, Warren CD, Knight MR, Goorevich M, Nel E. Clinical evaluation of the Nucleus 6 cochlear implant system: performance improvements with SmartSound iQ. Int J Audiol 2015; 53:564-76. [PMID: 25005776 PMCID: PMC4245995 DOI: 10.3109/14992027.2014.895431] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Objective: This paper provides a detailed description of the Nucleus 6 system, and clinically evaluates user performance compared to the previous Nucleus 5 system in cochlear implant recipients. Additionally, it clinically evaluates a range of Nucleus 6 and Nucleus 5 programs to determine the performance benefits provided by new input processing technologies available in SmartSound iQ. Design Speech understanding tests were used to clinically validate the default Nucleus 6 program, by comparing performance outcomes against up to five custom Nucleus 5 or Nucleus 6 programs in a range of listening environments. Clinical comparisons between programs were conducted across the following listening environments; quiet, speech weighted noise (co-located and spatially separated noise), and 4-talker babble (co-located and spatially separated noise). Study sample Twenty-one adult cochlear implant recipients participated. Results Significant speech understanding benefits were found with the default Nucleus 6 program compared to the participants’ preferred program using their Nucleus 5 processor and compared to a range of custom Nucleus 6 programs. All participants successfully accepted and upgraded to the new default Nucleus 6 SmartSound iQ program. Conclusion This study demonstrates the acceptance and clinical benefits of the Nucleus 6 cochlear implant system and SmartSound iQ.
Collapse
|
8
|
Ye H, Deng G, Mauger SJ, Hersbach AA, Dawson PW, Heasman JM. A wavelet-based noise reduction algorithm and its clinical evaluation in cochlear implants. PLoS One 2013; 8:e75662. [PMID: 24086605 PMCID: PMC3784455 DOI: 10.1371/journal.pone.0075662] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/16/2013] [Indexed: 11/18/2022] Open
Abstract
Noise reduction is often essential for cochlear implant (CI) recipients to achieve acceptable speech perception in noisy environments. Most noise reduction algorithms applied to audio signals are based on time-frequency representations of the input, such as the Fourier transform. Algorithms based on other representations may also be able to provide comparable or improved speech perception and listening quality improvements. In this paper, a noise reduction algorithm for CI sound processing is proposed based on the wavelet transform. The algorithm uses a dual-tree complex discrete wavelet transform followed by shrinkage of the wavelet coefficients based on a statistical estimation of the variance of the noise. The proposed noise reduction algorithm was evaluated by comparing its performance to those of many existing wavelet-based algorithms. The speech transmission index (STI) of the proposed algorithm is significantly better than other tested algorithms for the speech-weighted noise of different levels of signal to noise ratio. The effectiveness of the proposed system was clinically evaluated with CI recipients. A significant improvement in speech perception of 1.9 dB was found on average in speech weighted noise.
Collapse
|
9
|
Abstract
Noise-reduction methods have provided significant improvements in speech perception for cochlear implant recipients, where only quality improvements have been found in hearing aid recipients. Recent psychoacoustic studies have suggested changes to noise-reduction techniques specifically for cochlear implants, due to differences between hearing aid recipient and cochlear implant recipient hearing. An optimized noise-reduction method was developed with significantly increased temporal smoothing of the signal-to-noise ratio estimate and a more aggressive gain function compared to current noise-reduction methods. This optimized noise-reduction algorithm was tested with 12 cochlear implant recipients over four test sessions. Speech perception was assessed through speech in noise tests with three noise types; speech-weighted noise, 20-talker babble and 4-talker babble. A significant speech perception improvement using optimized noise reduction over standard processing was found in babble noise and speech-weighted noise and over a current noise-reduction method in speech-weighted noise. Speech perception in quiet was not degraded. Listening quality testing for noise annoyance and overall preference found significant improvements over the standard processing and over a current noise-reduction method in speech-weighted and babble noise types. This optimized method has shown significant speech perception and quality improvements compared to the standard processing and a current noise-reduction method.
Collapse
|
10
|
Mauger SJ, Shivdasani MN, Rathbone GD, Paolini AG. An in vivo investigation of inferior colliculus single neuron responses to cochlear nucleus pulse train stimulation. J Neurophysiol 2012; 108:2999-3008. [PMID: 22972959 DOI: 10.1152/jn.01087.2011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The auditory brain stem implant (ABI) is being used clinically to restore hearing to patients unable to benefit from a cochlear implant (CI). Speech perception outcomes for ABI users are typically poor compared with most CI users. The ABI is implanted either on the surface of or penetrating through the cochlear nucleus in the auditory brain stem and uses stimulation strategies developed for auditory nerve stimulation with a CI. Although the stimulus rate may affect speech perception outcomes with current stimulation strategies, no studies have systematically investigated the effect of stimulus rate electrophysiologically or clinically. We therefore investigated rate response properties and temporal response properties of single inferior colliculus (IC) neurons from penetrating ABI stimulation using stimulus rates ranging from 100 to 1,600 pulses/s in the rat. We found that the stimulus rate affected the proportion of response types, thresholds, and dynamic ranges of IC activation. The stimulus rate was also found to affect the temporal properties of IC responses, with higher rates providing more temporally similar responses to acoustic stimulation. Suppression of neural firing and inhibition in IC neurons was also found, with response properties varying with the stimulus rate. This study demonstrated that changes in the ABI stimulus rate results in significant differences in IC neuron response properties. Due to electrophysiological differences, the stimulus rate may also change perceptual properties. We suggest that clinical evaluation of the ABI stimulus rate should be performed.
Collapse
|
11
|
Mauger SJ, Dawson PW, Hersbach AA. Perceptually optimized gain function for cochlear implant signal-to-noise ratio based noise reduction. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 131:327-336. [PMID: 22280595 DOI: 10.1121/1.3665990] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Noise reduction in cochlear implants has achieved significant speech perception improvements through spectral subtraction and signal-to-noise ratio based noise reduction techniques. Current methods use gain functions derived through mathematical optimization or motivated by normal listening psychoacoustic experiments. Although these gain functions have been able to improve speech perception, recent studies have indicated that they are not optimal for cochlear implant noise reduction. This study systematically investigates cochlear implant recipients' speech perception and listening preference of noise reduction with a range of gain functions. Results suggest an advantageous gain function and show that gain functions currently used for noise reduction are not optimal for cochlear implant recipients. Using the cochlear implant optimised gain function, a 27% improvement over the current advanced combination encoder (ACE) stimulation strategy in speech weighted noise and a 7% improvement over current noise reduction strategies were observed in babble noise conditions. The optimized gain function was also most preferred by cochlear implant recipients. The CI specific gain function derived from this study can be easily incorporated into existing noise reduction strategies, to further improve listening performance for CI recipients in challenging environments.
Collapse
|
12
|
Shivdasani MN, Mauger SJ, Argent RE, Rathbone GD, Paolini AG. Inferior colliculus responses to dual-site intralamina stimulation in the ventral cochlear nucleus. J Comp Neurol 2010; 518:4226-42. [PMID: 20878785 DOI: 10.1002/cne.22450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A major limitation of the present auditory brainstem implant (ABI) is its inability to access the tonotopic organization of the ventral cochlear nucleus (VCN). A previous study by our group indicated that stimulation of single sites within a given VCN frequency region did not always elicit frequency-specific responses within the central nucleus of the inferior colliculus (CIC) and in some cases did not elicit a response at all. For this study, we hypothesized that sequential stimulation (with a short interpulse delay of 320 μsec) of two VCN sites in similar frequency regions would enhance responsiveness in CIC neurons. Multiunit neural recordings in response to pure tones were obtained at 58 VCN and 164 CIC sites in anesthetized rats. Among the 58 VCN sites, 39 pairs of sites with similar characteristic frequencies were chosen for electrical stimulation. Each member of a VCN pair was electrically stimulated individually, followed by sequential stimulation of the pair, while recording CIC responses. On average, CIC sites were found to respond to dual-site VCN stimulation with significantly lower thresholds, wider dynamic ranges, a greater extent of activation with increasing current levels, and a higher degree of frequency specificity compared with single-site stimulation. Although these effects were positive for the most part, in some cases dual-site stimulation resulted in increased CIC thresholds and decreased dynamic ranges, extent of activation, and frequency specificity. The results suggest that multisite stimulation within VCN isofrequency laminae using penetrating electrodes could significantly improve ABI stimulation strategies and implant performance.
Collapse
|
13
|
Mauger SJ, Shivdasani MN, Rathbone GD, Argent RE, Paolini AG. An in vivo investigation of first spike latencies in the inferior colliculus in response to multichannel penetrating auditory brainstem implant stimulation. J Neural Eng 2010; 7:036004. [PMID: 20440054 DOI: 10.1088/1741-2560/7/3/036004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The cochlear nucleus (CN) is the first auditory processing site within the brain and the target location of the auditory brainstem implant (ABI), which provides speech perception to patients who cannot benefit from a cochlear implant (CI). Although there is variance between ABI recipient speech performance outcomes, performance is typically low compared to CI recipients. Temporal aspects of neural firing such as first spike latency (FSL) are thought to code for many speech features; however, no studies have investigated FSL from CN stimulation. Consequently, ABIs currently do not incorporate CN-specific temporal information. We therefore systematically investigated inferior colliculus (IC) neuron's FSL response to frequency-specific electrical stimulation of the CN in rats. The range of FSLs from electrical stimulation of many neurons indicates that both monosynaptic and polysynaptic pathways were activated, suggesting initial activation of multiple CN neuron types. Electrical FSLs for a single neuron did not change irrespective of the CN frequency region stimulated, indicating highly segregated projections from the CN to the IC. These results present the first evidence of temporal responses to frequency-specific CN electrical stimulation. Understanding the auditory system's temporal response to electrical stimulation will help in future ABI designs and stimulation strategies.
Collapse
|
14
|
Crea KN, Shivdasani MN, Argent RE, Mauger SJ, Rathbone GD, O'Leary SJ, Paolini AG. Acute Cochlear Nucleus Compression Alters Tuning Properties of Inferior Colliculus Neurons. ACTA ACUST UNITED AC 2010; 15:18-26. [PMID: 19451706 DOI: 10.1159/000218359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 01/26/2009] [Indexed: 11/19/2022]
|
15
|
Shivdasani MN, Mauger SJ, Rathbone GD, Paolini AG. Neural synchrony in ventral cochlear nucleus neuron populations is not mediated by intrinsic processes but is stimulus induced: implications for auditory brainstem implants. J Neural Eng 2009; 6:065003. [PMID: 19850978 DOI: 10.1088/1741-2560/6/6/065003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this investigation was to elucidate if neural synchrony forms part of the spike time-based theory for coding of sound information in the ventral cochlear nucleus (VCN) of the auditory brainstem. Previous research attempts to quantify the degree of neural synchrony at higher levels of the central auditory system have indicated that synchronized firing of neurons during presentation of an acoustic stimulus could play an important role in coding complex sound features. However, it is unknown whether this synchrony could in fact arise from the VCN as it is the first station in the central auditory pathway. Cross-correlation analysis was conducted on 499 pairs of multiunit clusters recorded in the urethane-anesthetized rat VCN in response to pure tones and combinations of two tones to determine the presence of neural synchrony. The shift predictor correlogram was used as a measure for determining the synchrony owing to the effects of the stimulus. Without subtraction of the shift predictor, over 65% of the pairs of multiunit clusters exhibited significant correlation in neural firing when the frequencies of the tones presented matched their characteristic frequencies (CFs). In addition, this stimulus-evoked neural synchrony was dependent on the physical distance between electrode sites, and the CF difference between multiunit clusters as the number of correlated pairs dropped significantly for electrode sites greater than 800 microm apart and for multiunit cluster pairs with a CF difference greater than 0.5 octaves. However, subtraction of the shift predictor correlograms from the raw correlograms resulted in no remaining correlation between all VCN pairs. These results suggest that while neural synchrony may be a feature of sound coding in the VCN, it is stimulus induced and not due to intrinsic neural interactions within the nucleus. These data provide important implications for stimulation strategies for the auditory brainstem implant, which is used to provide functional hearing to the profoundly deaf through electrical stimulation of the VCN.
Collapse
|
16
|
Shivdasani MN, Mauger SJ, Rathbone GD, Paolini AG. Inferior colliculus responses to multichannel microstimulation of the ventral cochlear nucleus: implications for auditory brain stem implants. J Neurophysiol 2007; 99:1-13. [PMID: 17928560 DOI: 10.1152/jn.00629.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multichannel techniques were used to assess the frequency specificity of activation in the central nucleus of the inferior colliculus (CIC) produced by electrical stimulation of localized regions within the ventral cochlear nucleus (VCN). Data were recorded in response to pure tones from 141 and 193 multiunit clusters in the rat VCN and the CIC, respectively. Of 141 VCN sites, 126 were individually stimulated while recording responses in the CIC. A variety of CIC response types were seen with an increase in both electrical and acoustic stimulation levels. The majority of sites exhibited monotonic rate-level types acoustically, whereas spike rate saturation was achieved predominantly with electrical stimulation. In 20.6% of the 364 characteristic frequency aligned VCN-CIC pairs, the CIC sites did not respond to stimulation. In 26% of the 193 CIC sites, a high correlation was observed between acoustic tuning and electrical tuning obtained through VCN stimulation. A high degree of frequency specificity was found in 58% of the 118 lowest threshold VCN-CIC pairs. This was dependent on electrode placement within the VCN because a higher degree of frequency specificity was achieved with stimulation of medial, central, and posterolateral VCN regions than more anterolateral regions. Broadness of acoustic tuning in the CIC played a role in frequency-specific activation. Narrowly tuned CIC sites showed the lowest degree of frequency specificity on stimulation of the anterolateral VCN regions. These data provide significant implications for auditory brain stem implant electrode placement, current localization, power requirements, and facilitation of information transfer to higher brain centers.
Collapse
|