von Meyer A, Albert G, Kunzelmann S, Rank C, Zerback R, Imdahl R. Evaluating the performance of an updated high-sensitivity troponin T assay with increased tolerance to biotin.
Clin Chem Lab Med 2020;
59:591-597. [PMID:
33112775 DOI:
10.1515/cclm-2020-0104]
[Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 09/27/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES
Biotin >20 ng/mL may interfere with the Elecsys® Troponin T-high sensitive assay (cTnT-hs; Roche Diagnostics International Ltd). We evaluated the performance of an updated assay, cTnT-hs*, which was designed to reduce biotin interference.
METHODS
cTnT-hs* assay performance was assessed using up to two applications (18 min/9 min) on three analyzers (cobas e 411/cobas e 601/cobas e 801). Biotin interference was determined by measuring recovery in an 11-sample series dilution with biotin ranging from 0-3600 ng/mL. Repeatability/reproducibility were evaluated in five serum sample pools (n=75 each). Method comparisons tested: cTnT-hs* vs. cTnT-hs (18 min/cobas e 601); cTnT-hs* assay 18 vs. 9 min (cobas e 601); cTnT-hs* (18 min) on cobas e 601 vs. cobas e 411 and cobas e 601 vs. cobas e 801. Concordance at the 99th percentile decision limit between cTnT-hs* and cTnT-hs (9 min/cobas e 601) was calculated using 300 lithium-heparin plasma samples and a 14 ng/L assay cutoff.
RESULTS
cTnT-hs* assay (18 min/cobas e 601) recovery was ≥96% for biotin ≤1250 ng/mL. Across all applications/analyzers, coefficients of variation for repeatability/reproducibility with the cTnT-hs* assay were <5% in most serum sample pools (mean cardiac troponin T: 8.528-9484 ng/L). High correlation (Pearson's r=1.000) was demonstrated for all method comparisons. Concordance at the 99th percentile decision limit was high between the cTnT-hs* and cTnT-hs assays.
CONCLUSIONS
The updated cTnT-hs* assay may provide greater tolerance to biotin interference, and shows good analytical and clinical agreement/concordance with the previous cTnT-hs assay.
Collapse