1
|
Hubau W, Lewis SL, Phillips OL, Affum-Baffoe K, Beeckman H, Cuní-Sanchez A, Daniels AK, Ewango CEN, Fauset S, Mukinzi JM, Sheil D, Sonké B, Sullivan MJP, Sunderland TCH, Taedoumg H, Thomas SC, White LJT, Abernethy KA, Adu-Bredu S, Amani CA, Baker TR, Banin LF, Baya F, Begne SK, Bennett AC, Benedet F, Bitariho R, Bocko YE, Boeckx P, Boundja P, Brienen RJW, Brncic T, Chezeaux E, Chuyong GB, Clark CJ, Collins M, Comiskey JA, Coomes DA, Dargie GC, de Haulleville T, Kamdem MND, Doucet JL, Esquivel-Muelbert A, Feldpausch TR, Fofanah A, Foli EG, Gilpin M, Gloor E, Gonmadje C, Gourlet-Fleury S, Hall JS, Hamilton AC, Harris DJ, Hart TB, Hockemba MBN, Hladik A, Ifo SA, Jeffery KJ, Jucker T, Yakusu EK, Kearsley E, Kenfack D, Koch A, Leal ME, Levesley A, Lindsell JA, Lisingo J, Lopez-Gonzalez G, Lovett JC, Makana JR, Malhi Y, Marshall AR, Martin J, Martin EH, Mbayu FM, Medjibe VP, Mihindou V, Mitchard ETA, Moore S, Munishi PKT, Bengone NN, Ojo L, Ondo FE, Peh KSH, Pickavance GC, Poulsen AD, Poulsen JR, Qie L, Reitsma J, Rovero F, Swaine MD, Talbot J, Taplin J, Taylor DM, Thomas DW, Toirambe B, Mukendi JT, Tuagben D, Umunay PM, van der Heijden GMF, et alHubau W, Lewis SL, Phillips OL, Affum-Baffoe K, Beeckman H, Cuní-Sanchez A, Daniels AK, Ewango CEN, Fauset S, Mukinzi JM, Sheil D, Sonké B, Sullivan MJP, Sunderland TCH, Taedoumg H, Thomas SC, White LJT, Abernethy KA, Adu-Bredu S, Amani CA, Baker TR, Banin LF, Baya F, Begne SK, Bennett AC, Benedet F, Bitariho R, Bocko YE, Boeckx P, Boundja P, Brienen RJW, Brncic T, Chezeaux E, Chuyong GB, Clark CJ, Collins M, Comiskey JA, Coomes DA, Dargie GC, de Haulleville T, Kamdem MND, Doucet JL, Esquivel-Muelbert A, Feldpausch TR, Fofanah A, Foli EG, Gilpin M, Gloor E, Gonmadje C, Gourlet-Fleury S, Hall JS, Hamilton AC, Harris DJ, Hart TB, Hockemba MBN, Hladik A, Ifo SA, Jeffery KJ, Jucker T, Yakusu EK, Kearsley E, Kenfack D, Koch A, Leal ME, Levesley A, Lindsell JA, Lisingo J, Lopez-Gonzalez G, Lovett JC, Makana JR, Malhi Y, Marshall AR, Martin J, Martin EH, Mbayu FM, Medjibe VP, Mihindou V, Mitchard ETA, Moore S, Munishi PKT, Bengone NN, Ojo L, Ondo FE, Peh KSH, Pickavance GC, Poulsen AD, Poulsen JR, Qie L, Reitsma J, Rovero F, Swaine MD, Talbot J, Taplin J, Taylor DM, Thomas DW, Toirambe B, Mukendi JT, Tuagben D, Umunay PM, van der Heijden GMF, Verbeeck H, Vleminckx J, Willcock S, Wöll H, Woods JT, Zemagho L. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 2020; 579:80-87. [PMID: 32132693 PMCID: PMC7617213 DOI: 10.1038/s41586-020-2035-0] [Show More Authors] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 12/19/2019] [Indexed: 11/09/2022]
Abstract
Structurally intact tropical forests sequestered about half of the global terrestrial carbon uptake over the 1990s and early 2000s, removing about 15 per cent of anthropogenic carbon dioxide emissions1-3. Climate-driven vegetation models typically predict that this tropical forest 'carbon sink' will continue for decades4,5. Here we assess trends in the carbon sink using 244 structurally intact African tropical forests spanning 11 countries, compare them with 321 published plots from Amazonia and investigate the underlying drivers of the trends. The carbon sink in live aboveground biomass in intact African tropical forests has been stable for the three decades to 2015, at 0.66 tonnes of carbon per hectare per year (95 per cent confidence interval 0.53-0.79), in contrast to the long-term decline in Amazonian forests6. Therefore the carbon sink responses of Earth's two largest expanses of tropical forest have diverged. The difference is largely driven by carbon losses from tree mortality, with no detectable multi-decadal trend in Africa and a long-term increase in Amazonia. Both continents show increasing tree growth, consistent with the expected net effect of rising atmospheric carbon dioxide and air temperature7-9. Despite the past stability of the African carbon sink, our most intensively monitored plots suggest a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical model including carbon dioxide, temperature, drought and forest dynamics accounts for the observed trends and indicates a long-term future decline in the African sink, whereas the Amazonian sink continues to weaken rapidly. Overall, the uptake of carbon into Earth's intact tropical forests peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, independent observations indicating greater recent carbon uptake into the Northern Hemisphere landmass10 reinforce our conclusion that the intact tropical forest carbon sink has already peaked. This saturation and ongoing decline of the tropical forest carbon sink has consequences for policies intended to stabilize Earth's climate.
Collapse
|
Historical Article |
5 |
199 |
2
|
Malhi Y, Adu-Bredu S, Asare RA, Lewis SL, Mayaux P. African rainforests: past, present and future. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120312. [PMID: 23878339 PMCID: PMC3720030 DOI: 10.1098/rstb.2012.0312] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The rainforests are the great green heart of Africa, and present a unique combination of ecological, climatic and human interactions. In this synthesis paper, we review the past and present state processes of change in African rainforests, and explore the challenges and opportunities for maintaining a viable future for these biomes. We draw in particular on the insights and new analyses emerging from the Theme Issue on 'African rainforests: past, present and future' of Philosophical Transactions of the Royal Society B. A combination of features characterize the African rainforest biome, including a history of climate variation; forest expansion and retreat; a long history of human interaction with the biome; a relatively low plant species diversity but large tree biomass; a historically exceptionally high animal biomass that is now being severely hunted down; the dominance of selective logging; small-scale farming and bushmeat hunting as the major forms of direct human pressure; and, in Central Africa, the particular context of mineral- and oil-driven economies that have resulted in unusually low rates of deforestation and agricultural activity. We conclude by discussing how this combination of factors influences the prospects for African forests in the twenty-first century.
Collapse
|
Review |
12 |
55 |
3
|
Aguirre-Gutiérrez J, Oliveras I, Rifai S, Fauset S, Adu-Bredu S, Affum-Baffoe K, Baker TR, Feldpausch TR, Gvozdevaite A, Hubau W, Kraft NJB, Lewis SL, Moore S, Niinemets Ü, Peprah T, Phillips OL, Ziemińska K, Enquist B, Malhi Y. Drier tropical forests are susceptible to functional changes in response to a long-term drought. Ecol Lett 2019; 22:855-865. [PMID: 30828955 DOI: 10.1111/ele.13243] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/17/2018] [Accepted: 02/02/2019] [Indexed: 01/21/2023]
Abstract
Climatic changes have profound effects on the distribution of biodiversity, but untangling the links between climatic change and ecosystem functioning is challenging, particularly in high diversity systems such as tropical forests. Tropical forests may also show different responses to a changing climate, with baseline climatic conditions potentially inducing differences in the strength and timing of responses to droughts. Trait-based approaches provide an opportunity to link functional composition, ecosystem function and environmental changes. We demonstrate the power of such approaches by presenting a novel analysis of long-term responses of different tropical forest to climatic changes along a rainfall gradient. We explore how key ecosystem's biogeochemical properties have shifted over time as a consequence of multi-decadal drying. Notably, we find that drier tropical forests have increased their deciduous species abundance and generally changed more functionally than forests growing in wetter conditions, suggesting an enhanced ability to adapt ecologically to a drying environment.
Collapse
|
Letter |
6 |
39 |
4
|
Rifai SW, Girardin CAJ, Berenguer E, Del Aguila-Pasquel J, Dahlsjö CAL, Doughty CE, Jeffery KJ, Moore S, Oliveras I, Riutta T, Rowland LM, Murakami AA, Addo-Danso SD, Brando P, Burton C, Ondo FE, Duah-Gyamfi A, Amézquita FF, Freitag R, Pacha FH, Huasco WH, Ibrahim F, Mbou AT, Mihindou VM, Peixoto KS, Rocha W, Rossi LC, Seixas M, Silva-Espejo JE, Abernethy KA, Adu-Bredu S, Barlow J, da Costa ACL, Marimon BS, Marimon-Junior BH, Meir P, Metcalfe DB, Phillips OL, White LJT, Malhi Y. ENSO Drives interannual variation of forest woody growth across the tropics. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0410. [PMID: 30297475 DOI: 10.1098/rstb.2017.0410] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2018] [Indexed: 01/05/2023] Open
Abstract
Meteorological extreme events such as El Niño events are expected to affect tropical forest net primary production (NPP) and woody growth, but there has been no large-scale empirical validation of this expectation. We collected a large high-temporal resolution dataset (for 1-13 years depending upon location) of more than 172 000 stem growth measurements using dendrometer bands from across 14 regions spanning Amazonia, Africa and Borneo in order to test how much month-to-month variation in stand-level woody growth of adult tree stems (NPPstem) can be explained by seasonal variation and interannual meteorological anomalies. A key finding is that woody growth responds differently to meteorological variation between tropical forests with a dry season (where monthly rainfall is less than 100 mm), and aseasonal wet forests lacking a consistent dry season. In seasonal tropical forests, a high degree of variation in woody growth can be predicted from seasonal variation in temperature, vapour pressure deficit, in addition to anomalies of soil water deficit and shortwave radiation. The variation of aseasonal wet forest woody growth is best predicted by the anomalies of vapour pressure deficit, water deficit and shortwave radiation. In total, we predict the total live woody production of the global tropical forest biome to be 2.16 Pg C yr-1, with an interannual range 1.96-2.26 Pg C yr-1 between 1996-2016, and with the sharpest declines during the strong El Niño events of 1997/8 and 2015/6. There is high geographical variation in hotspots of El Niño-associated impacts, with weak impacts in Africa, and strongly negative impacts in parts of Southeast Asia and extensive regions across central and eastern Amazonia. Overall, there is high correlation (r = -0.75) between the annual anomaly of tropical forest woody growth and the annual mean of the El Niño 3.4 index, driven mainly by strong correlations with anomalies of soil water deficit, vapour pressure deficit and shortwave radiation.This article is part of the discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
33 |
5
|
Aguirre-Gutiérrez J, Malhi Y, Lewis SL, Fauset S, Adu-Bredu S, Affum-Baffoe K, Baker TR, Gvozdevaite A, Hubau W, Moore S, Peprah T, Ziemińska K, Phillips OL, Oliveras I. Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nat Commun 2020; 11:3346. [PMID: 32620761 PMCID: PMC7335099 DOI: 10.1038/s41467-020-16973-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/29/2020] [Indexed: 11/18/2022] Open
Abstract
Tropical ecosystems adapted to high water availability may be highly impacted by climatic changes that increase soil and atmospheric moisture deficits. Many tropical regions are experiencing significant changes in climatic conditions, which may induce strong shifts in taxonomic, functional and phylogenetic diversity of forest communities. However, it remains unclear if and to what extent tropical forests are shifting in these facets of diversity along climatic gradients in response to climate change. Here, we show that changes in climate affected all three facets of diversity in West Africa in recent decades. Taxonomic and functional diversity increased in wetter forests but tended to decrease in forests with drier climate. Phylogenetic diversity showed a large decrease along a wet-dry climatic gradient. Notably, we find that all three facets of diversity tended to be higher in wetter forests. Drier forests showed functional, taxonomic and phylogenetic homogenization. Understanding how different facets of diversity respond to a changing environment across climatic gradients is essential for effective long-term conservation of tropical forest ecosystems. Different aspects of biodiversity may not necessarily converge in their response to climate change. Here, the authors investigate 25-year shifts in taxonomic, functional and phylogenetic diversity of tropical forests along a spatial climate gradient in West Africa, showing that drier forests are less stable than wetter forests.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
33 |
6
|
Zanne AE, Flores-Moreno H, Powell JR, Cornwell WK, Dalling JW, Austin AT, Classen AT, Eggleton P, Okada KI, Parr CL, Adair EC, Adu-Bredu S, Alam MA, Alvarez-Garzón C, Apgaua D, Aragón R, Ardon M, Arndt SK, Ashton LA, Barber NA, Beauchêne J, Berg MP, Beringer J, Boer MM, Bonet JA, Bunney K, Burkhardt TJ, Carvalho D, Castillo-Figueroa D, Cernusak LA, Cheesman AW, Cirne-Silva TM, Cleverly JR, Cornelissen JHC, Curran TJ, D'Angioli AM, Dallstream C, Eisenhauer N, Evouna Ondo F, Fajardo A, Fernandez RD, Ferrer A, Fontes MAL, Galatowitsch ML, González G, Gottschall F, Grace PR, Granda E, Griffiths HM, Guerra Lara M, Hasegawa M, Hefting MM, Hinko-Najera N, Hutley LB, Jones J, Kahl A, Karan M, Keuskamp JA, Lardner T, Liddell M, Macfarlane C, Macinnis-Ng C, Mariano RF, Méndez MS, Meyer WS, Mori AS, Moura AS, Northwood M, Ogaya R, Oliveira RS, Orgiazzi A, Pardo J, Peguero G, Penuelas J, Perez LI, Posada JM, Prada CM, Přívětivý T, Prober SM, Prunier J, Quansah GW, Resco de Dios V, Richter R, Robertson MP, Rocha LF, Rúa MA, Sarmiento C, Silberstein RP, Silva MC, Siqueira FF, Stillwagon MG, Stol J, Taylor MK, Teste FP, Tng DYP, Tucker D, Türke M, Ulyshen MD, Valverde-Barrantes OJ, van den Berg E, et alZanne AE, Flores-Moreno H, Powell JR, Cornwell WK, Dalling JW, Austin AT, Classen AT, Eggleton P, Okada KI, Parr CL, Adair EC, Adu-Bredu S, Alam MA, Alvarez-Garzón C, Apgaua D, Aragón R, Ardon M, Arndt SK, Ashton LA, Barber NA, Beauchêne J, Berg MP, Beringer J, Boer MM, Bonet JA, Bunney K, Burkhardt TJ, Carvalho D, Castillo-Figueroa D, Cernusak LA, Cheesman AW, Cirne-Silva TM, Cleverly JR, Cornelissen JHC, Curran TJ, D'Angioli AM, Dallstream C, Eisenhauer N, Evouna Ondo F, Fajardo A, Fernandez RD, Ferrer A, Fontes MAL, Galatowitsch ML, González G, Gottschall F, Grace PR, Granda E, Griffiths HM, Guerra Lara M, Hasegawa M, Hefting MM, Hinko-Najera N, Hutley LB, Jones J, Kahl A, Karan M, Keuskamp JA, Lardner T, Liddell M, Macfarlane C, Macinnis-Ng C, Mariano RF, Méndez MS, Meyer WS, Mori AS, Moura AS, Northwood M, Ogaya R, Oliveira RS, Orgiazzi A, Pardo J, Peguero G, Penuelas J, Perez LI, Posada JM, Prada CM, Přívětivý T, Prober SM, Prunier J, Quansah GW, Resco de Dios V, Richter R, Robertson MP, Rocha LF, Rúa MA, Sarmiento C, Silberstein RP, Silva MC, Siqueira FF, Stillwagon MG, Stol J, Taylor MK, Teste FP, Tng DYP, Tucker D, Türke M, Ulyshen MD, Valverde-Barrantes OJ, van den Berg E, van Logtestijn RSP, Veen GFC, Vogel JG, Wardlaw TJ, Wiehl G, Wirth C, Woods MJ, Zalamea PC. Termite sensitivity to temperature affects global wood decay rates. Science 2022; 377:1440-1444. [PMID: 36137034 DOI: 10.1126/science.abo3856] [Show More Authors] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied. An understanding of their climate sensitivities is needed to estimate climate change effects on wood carbon pools. Using data from 133 sites spanning six continents, we found that termite wood discovery and consumption were highly sensitive to temperature (with decay increasing >6.8 times per 10°C increase in temperature)-even more so than microbes. Termite decay effects were greatest in tropical seasonal forests, tropical savannas, and subtropical deserts. With tropicalization (i.e., warming shifts to tropical climates), termite wood decay will likely increase as termites access more of Earth's surface.
Collapse
|
|
3 |
29 |
7
|
Bennett AC, Dargie GC, Cuni-Sanchez A, Tshibamba Mukendi J, Hubau W, Mukinzi JM, Phillips OL, Malhi Y, Sullivan MJP, Cooper DLM, Adu-Bredu S, Affum-Baffoe K, Amani CA, Banin LF, Beeckman H, Begne SK, Bocko YE, Boeckx P, Bogaert J, Brncic T, Chezeaux E, Clark CJ, Daniels AK, de Haulleville T, Djuikouo Kamdem MN, Doucet JL, Evouna Ondo F, Ewango CEN, Feldpausch TR, Foli EG, Gonmadje C, Hall JS, Hardy OJ, Harris DJ, Ifo SA, Jeffery KJ, Kearsley E, Leal M, Levesley A, Makana JR, Mbayu Lukasu F, Medjibe VP, Mihindu V, Moore S, Nssi Begone N, Pickavance GC, Poulsen JR, Reitsma J, Sonké B, Sunderland TCH, Taedoumg H, Talbot J, Tuagben DS, Umunay PM, Verbeeck H, Vleminckx J, White LJT, Woell H, Woods JT, Zemagho L, Lewis SL. Resistance of African tropical forests to an extreme climate anomaly. Proc Natl Acad Sci U S A 2021; 118:e2003169118. [PMID: 34001597 PMCID: PMC8166131 DOI: 10.1073/pnas.2003169118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The responses of tropical forests to environmental change are critical uncertainties in predicting the future impacts of climate change. The positive phase of the 2015-2016 El Niño Southern Oscillation resulted in unprecedented heat and low precipitation in the tropics with substantial impacts on the global carbon cycle. The role of African tropical forests is uncertain as their responses to short-term drought and temperature anomalies have yet to be determined using on-the-ground measurements. African tropical forests may be particularly sensitive because they exist in relatively dry conditions compared with Amazonian or Asian forests, or they may be more resistant because of an abundance of drought-adapted species. Here, we report responses of structurally intact old-growth lowland tropical forests inventoried within the African Tropical Rainforest Observatory Network (AfriTRON). We use 100 long-term inventory plots from six countries each measured at least twice prior to and once following the 2015-2016 El Niño event. These plots experienced the highest temperatures and driest conditions on record. The record temperature did not significantly reduce carbon gains from tree growth or significantly increase carbon losses from tree mortality, but the record drought did significantly decrease net carbon uptake. Overall, the long-term biomass increase of these forests was reduced due to the El Niño event, but these plots remained a live biomass carbon sink (0.51 ± 0.40 Mg C ha-1 y-1) despite extreme environmental conditions. Our analyses, while limited to African tropical forests, suggest they may be more resistant to climatic extremes than Amazonian and Asian forests.
Collapse
|
research-article |
4 |
25 |
8
|
Moore S, Adu-Bredu S, Duah-Gyamfi A, Addo-Danso SD, Ibrahim F, Mbou AT, de Grandcourt A, Valentini R, Nicolini G, Djagbletey G, Owusu-Afriyie K, Gvozdevaite A, Oliveras I, Ruiz-Jaen MC, Malhi Y. Forest biomass, productivity and carbon cycling along a rainfall gradient in West Africa. GLOBAL CHANGE BIOLOGY 2018; 24:e496-e510. [PMID: 28906052 DOI: 10.1111/gcb.13907] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
Net Primary Productivity (NPP) is one of the most important parameters in describing the functioning of any ecosystem and yet it arguably remains a poorly quantified and understood component of carbon cycling in tropical forests, especially outside of the Americas. We provide the first comprehensive analysis of NPP and its carbon allocation to woody, canopy and root growth components at contrasting lowland West African forests spanning a rainfall gradient. Using a standardized methodology to study evergreen (EF), semi-deciduous (SDF), dry forests (DF) and woody savanna (WS), we find that (i) climate is more closely related with above and belowground C stocks than with NPP (ii) total NPP is highest in the SDF site, then the EF followed by the DF and WS and that (iii) different forest types have distinct carbon allocation patterns whereby SDF allocate in excess of 50% to canopy production and the DF and WS sites allocate 40%-50% to woody production. Furthermore, we find that (iv) compared with canopy and root growth rates the woody growth rate of these forests is a poor proxy for their overall productivity and that (v) residence time is the primary driver in the productivity-allocation-turnover chain for the observed spatial differences in woody, leaf and root biomass across the rainfall gradient. Through a systematic assessment of forest productivity we demonstrate the importance of directly measuring the main components of above and belowground NPP and encourage the establishment of more permanent carbon intensive monitoring plots across the tropics.
Collapse
|
|
7 |
22 |
9
|
Cardoso AW, Medina-Vega JA, Malhi Y, Adu-Bredu S, Ametsitsi GKD, Djagbletey G, van Langevelde F, Veenendaal E, Oliveras I. Winners and losers: tropical forest tree seedling survival across a West African forest-savanna transition. Ecol Evol 2016; 6:3417-29. [PMID: 27127608 PMCID: PMC4840012 DOI: 10.1002/ece3.2133] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 11/24/2022] Open
Abstract
Forest encroachment into savanna is occurring at an unprecedented rate across tropical Africa, leading to a loss of valuable savanna habitat. One of the first stages of forest encroachment is the establishment of tree seedlings at the forest–savanna transition. This study examines the demographic bottleneck in the seedlings of five species of tropical forest pioneer trees in a forest–savanna transition zone in West Africa. Five species of tropical pioneer forest tree seedlings were planted in savanna, mixed/transition, and forest vegetation types and grown for 12 months, during which time fire occurred in the area. We examined seedling survival rates, height, and stem diameter before and after fire; and seedling biomass and starch allocation patterns after fire. Seedling survival rates were significantly affected by fire, drought, and vegetation type. Seedlings that preferentially allocated more resources to increasing root and leaf starch (starch storage helps recovery from fire) survived better in savanna environments (frequently burnt), while seedlings that allocated more resources to growth and resource‐capture traits (height, the number of leaves, stem diameter, specific leaf area, specific root length, root‐to‐shoot ratio) survived better in mixed/transition and forest environments. Larger (taller with a greater stem diameter) seedlings survived burning better than smaller seedlings. However, larger seedlings survived better than smaller ones even in the absence of fire. Bombax buonopozense was the forest species that survived best in the savanna environment, likely as a result of increased access to light allowing greater investment in belowground starch storage capacity and therefore a greater ability to cope with fire. Synthesis: Forest pioneer tree species survived best through fire and drought in the savanna compared to the other two vegetation types. This was likely a result of the open‐canopied savanna providing greater access to light, thereby releasing seedlings from light limitation and enabling them to make and store more starch. Fire can be used as a management tool for controlling forest encroachment into savanna as it significantly affects seedling survival. However, if rainfall increases as a result of global change factors, encroachment may be more difficult to control as seedling survival ostensibly increases when the pressure of drought is lifted. We propose B. buonopozense as an indicator species for forest encroachment into savanna in West African forest–savanna transitions.
Collapse
|
Journal Article |
9 |
20 |
10
|
Malhi Y, Adu-Bredu S, Asare RA, Lewis SL, Mayaux P. The past, present and future of Africa's rainforests. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120293. [PMID: 23878326 DOI: 10.1098/rstb.2012.0293] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
Introductory Journal Article |
12 |
20 |
11
|
Adu-Bredu S, Yokota T, Hagihara A. Temperature effect on maintenance and growth respiration coefficients of young, field-grown hinoki cypress (Chamaecyparis obtusa
). Ecol Res 2018. [DOI: 10.1007/bf02529465] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
|
7 |
15 |
12
|
Morel AC, Adu Sasu M, Adu-Bredu S, Quaye M, Moore C, Ashley Asare R, Mason J, Hirons M, McDermott CL, Robinson EJZ, Boyd E, Norris K, Malhi Y. Carbon dynamics, net primary productivity and human-appropriated net primary productivity across a forest-cocoa farm landscape in West Africa. GLOBAL CHANGE BIOLOGY 2019; 25:2661-2677. [PMID: 31006150 DOI: 10.1111/gcb.14661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Terrestrial net primary productivity (NPP) is an important metric of ecosystem functioning; however, there are little empirical data on the NPP of human-modified ecosystems, particularly smallholder, perennial crops like cocoa (Theobroma cacao), which are extensive across the tropics. Human-appropriated NPP (HANPP) is a measure of the proportion of a natural system's NPP that has either been reduced through land-use change or harvested directly and, previously, has been calculated to estimate the scale of the human impact on the biosphere. Additionally, human modification can create shifts in NPP allocation and decomposition, with concomitant impacts on the carbon cycle. This study presents the results of 3 years of intensive monitoring of forest and smallholder cocoa farms across disturbance, management intensity, distance from forest and farm age gradients. We measured among the highest reported NPP values in tropical forest, 17.57 ± 2.1 and 17.7 ± 1.6 Mg C ha-1 year-1 for intact and logged forest, respectively; however, the average NPP of cocoa farms was still higher, 18.8 ± 2.5 Mg C ha-1 year-1 , which we found was driven by cocoa pod production. We found a dramatic shift in litterfall residence times, where cocoa leaves decomposed more slowly than forest leaves and shade tree litterfall decomposed considerably faster, indicating significant changes in rates of nutrient cycling. The average HANPP value for all cocoa farms was 2.1 ± 1.1 Mg C ha-1 year-1 ; however, depending on the density of shade trees, it ranged from -4.6 to 5.2 Mg C ha-1 year-1 . Therefore, rather than being related to cocoa yield, HANPP was reduced by maintaining higher shade levels. Across our monitored farms, 18.9% of farm NPP was harvested (i.e., whole cocoa pods) and only 1.1% (i.e., cocoa beans) was removed from the system, suggesting that the scale of HANPP in smallholder cocoa agroforestry systems is relatively small.
Collapse
|
|
6 |
12 |
13
|
Gvozdevaite A, Oliveras I, Domingues TF, Peprah T, Boakye M, Afriyie L, da Silva Peixoto K, de Farias J, Almeida de Oliveira E, Almeida Farias CC, Dos Santos Prestes NCC, Neyret M, Moore S, Schwantes Marimon B, Marimon Junior BH, Adu-Bredu S, Malhi Y. Leaf-level photosynthetic capacity dynamics in relation to soil and foliar nutrients along forest-savanna boundaries in Ghana and Brazil. TREE PHYSIOLOGY 2018; 38:1912-1925. [PMID: 30388271 DOI: 10.1093/treephys/tpy117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Forest-savanna boundaries extend across large parts of the tropics but the variability of photosynthetic capacity in relation to soil and foliar nutrients across these transition zones is poorly understood. For this reason, we compared photosynthetic capacity (maximum rate of carboxylation of Rubisco at 25 C° (Vcmax25), leaf mass, nitrogen (N), phosphorus (P) and potassium (K) per unit leaf area (LMA, Narea, Parea and Karea, respectively), in relation to respective soil nutrients from 89 species at seven sites along forest-savanna ecotones in Ghana and Brazil. Contrary to our expectations, edaphic conditions were not reflected in foliar nutrient concentrations but LMA was slightly higher in lower fertility soils. Overall, each vegetation type within the ecotones demonstrated idiosyncratic and generally weak relationships between Vcmax25 and Narea, Parea and Karea. Species varied significantly in their Vcmax25 ↔ Narea relationship due to reduced investment of total Narea in photosynthetic machinery with increasing LMA. We suggest that studied species in the forest-savanna ecotones do not maximize Vcmax25 per given total Narea due to adaptation to intermittent water availability. Our findings have implications for global modeling of Vcmax25 and forest-savanna ecotone productivity.
Collapse
|
|
7 |
9 |
14
|
Addo-Danso SD, Prescott CE, Adu-Bredu S, Duah-Gyamfi A, Moore S, Guy RD, Forrester DI, Owusu-Afriyie K, Marshall PL, Malhi Y. Fine-root exploitation strategies differ in tropical old growth and logged-over forests in Ghana. Biotropica 2018. [DOI: 10.1111/btp.12556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
7 |
8 |
15
|
Cooper DLM, Lewis SL, Sullivan MJP, Prado PI, Ter Steege H, Barbier N, Slik F, Sonké B, Ewango CEN, Adu-Bredu S, Affum-Baffoe K, de Aguiar DPP, Ahuite Reategui MA, Aiba SI, Albuquerque BW, de Almeida Matos FD, Alonso A, Amani CA, do Amaral DD, do Amaral IL, Andrade A, de Andrade Miranda IP, Angoboy IB, Araujo-Murakami A, Arboleda NC, Arroyo L, Ashton P, Aymard C GA, Baider C, Baker TR, Balinga MPB, Balslev H, Banin LF, Bánki OS, Baraloto C, Barbosa EM, Barbosa FR, Barlow J, Bastin JF, Beeckman H, Begne S, Bengone NN, Berenguer E, Berry N, Bitariho R, Boeckx P, Bogaert J, Bonyoma B, Boundja P, Bourland N, Boyemba Bosela F, Brambach F, Brienen R, Burslem DFRP, Camargo JL, Campelo W, Cano A, Cárdenas S, Cárdenas López D, de Sá Carpanedo R, Carrero Márquez YA, Carvalho FA, Casas LF, Castellanos H, Castilho CV, Cerón C, Chapman CA, Chave J, Chhang P, Chutipong W, Chuyong GB, Cintra BBL, Clark CJ, Coelho de Souza F, Comiskey JA, Coomes DA, Cornejo Valverde F, Correa DF, Costa FRC, Costa JBP, Couteron P, Culmsee H, Cuni-Sanchez A, Dallmeier F, Damasco G, Dauby G, Dávila N, Dávila Doza HP, De Alban JDT, de Assis RL, De Canniere C, De Haulleville T, de Jesus Veiga Carim M, Demarchi LO, Dexter KG, Di Fiore A, Din HHM, Disney MI, Djiofack BY, Djuikouo MNK, et alCooper DLM, Lewis SL, Sullivan MJP, Prado PI, Ter Steege H, Barbier N, Slik F, Sonké B, Ewango CEN, Adu-Bredu S, Affum-Baffoe K, de Aguiar DPP, Ahuite Reategui MA, Aiba SI, Albuquerque BW, de Almeida Matos FD, Alonso A, Amani CA, do Amaral DD, do Amaral IL, Andrade A, de Andrade Miranda IP, Angoboy IB, Araujo-Murakami A, Arboleda NC, Arroyo L, Ashton P, Aymard C GA, Baider C, Baker TR, Balinga MPB, Balslev H, Banin LF, Bánki OS, Baraloto C, Barbosa EM, Barbosa FR, Barlow J, Bastin JF, Beeckman H, Begne S, Bengone NN, Berenguer E, Berry N, Bitariho R, Boeckx P, Bogaert J, Bonyoma B, Boundja P, Bourland N, Boyemba Bosela F, Brambach F, Brienen R, Burslem DFRP, Camargo JL, Campelo W, Cano A, Cárdenas S, Cárdenas López D, de Sá Carpanedo R, Carrero Márquez YA, Carvalho FA, Casas LF, Castellanos H, Castilho CV, Cerón C, Chapman CA, Chave J, Chhang P, Chutipong W, Chuyong GB, Cintra BBL, Clark CJ, Coelho de Souza F, Comiskey JA, Coomes DA, Cornejo Valverde F, Correa DF, Costa FRC, Costa JBP, Couteron P, Culmsee H, Cuni-Sanchez A, Dallmeier F, Damasco G, Dauby G, Dávila N, Dávila Doza HP, De Alban JDT, de Assis RL, De Canniere C, De Haulleville T, de Jesus Veiga Carim M, Demarchi LO, Dexter KG, Di Fiore A, Din HHM, Disney MI, Djiofack BY, Djuikouo MNK, Do TV, Doucet JL, Draper FC, Droissart V, Duivenvoorden JF, Engel J, Estienne V, Farfan-Rios W, Fauset S, Feeley KJ, Feitosa YO, Feldpausch TR, Ferreira C, Ferreira J, Ferreira LV, Fletcher CD, Flores BM, Fofanah A, Foli EG, Fonty É, Fredriksson GM, Fuentes A, Galbraith D, Gallardo Gonzales GP, Garcia-Cabrera K, García-Villacorta R, Gomes VHF, Gómez RZ, Gonzales T, Gribel R, Guedes MC, Guevara JE, Hakeem KR, Hall JS, Hamer KC, Hamilton AC, Harris DJ, Harrison RD, Hart TB, Hector A, Henkel TW, Herbohn J, Hockemba MBN, Hoffman B, Holmgren M, Honorio Coronado EN, Huamantupa-Chuquimaco I, Hubau W, Imai N, Irume MV, Jansen PA, Jeffery KJ, Jimenez EM, Jucker T, Junqueira AB, Kalamandeen M, Kamdem NG, Kartawinata K, Kasongo Yakusu E, Katembo JM, Kearsley E, Kenfack D, Kessler M, Khaing TT, Killeen TJ, Kitayama K, Klitgaard B, Labrière N, Laumonier Y, Laurance SGW, Laurance WF, Laurent F, Le TC, Le TT, Leal ME, Leão de Moraes Novo EM, Levesley A, Libalah MB, Licona JC, Lima Filho DDA, Lindsell JA, Lopes A, Lopes MA, Lovett JC, Lowe R, Lozada JR, Lu X, Luambua NK, Luize BG, Maas P, Magalhães JLL, Magnusson WE, Mahayani NPD, Makana JR, Malhi Y, Maniguaje Rincón L, Mansor A, Manzatto AG, Marimon BS, Marimon-Junior BH, Marshall AR, Martins MP, Mbayu FM, de Medeiros MB, Mesones I, Metali F, Mihindou V, Millet J, Milliken W, Mogollón HF, Molino JF, Mohd Said MN, Monteagudo Mendoza A, Montero JC, Moore S, Mostacedo B, Mozombite Pinto LF, Mukul SA, Munishi PKT, Nagamasu H, Nascimento HEM, Nascimento MT, Neill D, Nilus R, Noronha JC, Nsenga L, Núñez Vargas P, Ojo L, Oliveira AA, de Oliveira EA, Ondo FE, Palacios Cuenca W, Pansini S, Pansonato MP, Paredes MR, Paudel E, Pauletto D, Pearson RG, Pena JLM, Pennington RT, Peres CA, Permana A, Petronelli P, Peñuela Mora MC, Phillips JF, Phillips OL, Pickavance G, Piedade MTF, Pitman NCA, Ploton P, Popelier A, Poulsen JR, Prieto A, Primack RB, Priyadi H, Qie L, Quaresma AC, de Queiroz HL, Ramirez-Angulo H, Ramos JF, Reis NFC, Reitsma J, Revilla JDC, Riutta T, Rivas-Torres G, Robiansyah I, Rocha M, Rodrigues DDJ, Rodriguez-Ronderos ME, Rovero F, Rozak AH, Rudas A, Rutishauser E, Sabatier D, Sagang LB, Sampaio AF, Samsoedin I, Satdichanh M, Schietti J, Schöngart J, Scudeller VV, Seuaturien N, Sheil D, Sierra R, Silman MR, Silva TSF, da Silva Guimarães JR, Simo-Droissart M, Simon MF, Sist P, Sousa TR, de Sousa Farias E, de Souza Coelho L, Spracklen DV, Stas SM, Steinmetz R, Stevenson PR, Stropp J, Sukri RS, Sunderland TCH, Suzuki E, Swaine MD, Tang J, Taplin J, Taylor DM, Tello JS, Terborgh J, Texier N, Theilade I, Thomas DW, Thomas R, Thomas SC, Tirado M, Toirambe B, de Toledo JJ, Tomlinson KW, Torres-Lezama A, Tran HD, Tshibamba Mukendi J, Tumaneng RD, Umaña MN, Umunay PM, Urrego Giraldo LE, Valderrama Sandoval EH, Valenzuela Gamarra L, Van Andel TR, van de Bult M, van de Pol J, van der Heijden G, Vasquez R, Vela CIA, Venticinque EM, Verbeeck H, Veridiano RKA, Vicentini A, Vieira ICG, Vilanova Torre E, Villarroel D, Villa Zegarra BE, Vleminckx J, von Hildebrand P, Vos VA, Vriesendorp C, Webb EL, White LJT, Wich S, Wittmann F, Zagt R, Zang R, Zartman CE, Zemagho L, Zent EL, Zent S. Consistent patterns of common species across tropical tree communities. Nature 2024; 625:728-734. [PMID: 38200314 PMCID: PMC10808064 DOI: 10.1038/s41586-023-06820-z] [Show More Authors] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 11/01/2023] [Indexed: 01/12/2024]
Abstract
Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.
Collapse
|
research-article |
1 |
7 |
16
|
Huaraca Huasco W, Riutta T, Girardin CAJ, Hancco Pacha F, Puma Vilca BL, Moore S, Rifai SW, Del Aguila-Pasquel J, Araujo Murakami A, Freitag R, Morel AC, Demissie S, Doughty CE, Oliveras I, Galiano Cabrera DF, Durand Baca L, Farfán Amézquita F, Silva Espejo JE, da Costa ACL, Oblitas Mendoza E, Quesada CA, Evouna Ondo F, Edzang Ndong J, Jeffery KJ, Mihindou V, White LJT, N'ssi Bengone N, Ibrahim F, Addo-Danso SD, Duah-Gyamfi A, Djaney Djagbletey G, Owusu-Afriyie K, Amissah L, Mbou AT, Marthews TR, Metcalfe DB, Aragão LEO, Marimon-Junior BH, Marimon BS, Majalap N, Adu-Bredu S, Abernethy KA, Silman M, Ewers RM, Meir P, Malhi Y. Fine root dynamics across pantropical rainforest ecosystems. GLOBAL CHANGE BIOLOGY 2021; 27:3657-3680. [PMID: 33982340 DOI: 10.1111/gcb.15677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/27/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old-growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi-deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water-stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions.
Collapse
|
|
4 |
6 |
17
|
Morel AC, Hirons M, Adu Sasu M, Quaye M, Ashley Asare R, Mason J, Adu-Bredu S, Boyd E, McDermott CL, Robinson EJZ, Straser R, Malhi Y, Norris K. The Ecological Limits of Poverty Alleviation in an African Forest-Agriculture Landscape. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
|
6 |
6 |
18
|
Woon JS, Atkinson D, Adu-Bredu S, Eggleton P, Parr CL. Termites have wider thermal limits to cope with environmental conditions in savannas. J Anim Ecol 2022; 91:766-779. [PMID: 35157309 PMCID: PMC9307009 DOI: 10.1111/1365-2656.13673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/18/2022] [Indexed: 12/01/2022]
Abstract
The most diverse and abundant family of termites, the Termitidae, evolved in African tropical forests. They have since colonised grassy biomes such as savannas. These open environments have more extreme conditions than tropical forests, notably wider extremes of temperature and lower precipitation levels and greater temporal fluctuations (of both annual and diurnal variation). These conditions are challenging for soft‐bodied ectotherms, such as termites, to survive in, let alone become as ecologically dominant as termites have. Here, we quantified termite thermal limits to test the hypothesis that these physiological limits are wider in savanna termite species to facilitate their existence in savanna environments. We sampled termites directly from mound structures, across an environmental gradient in Ghana, ranging from wet tropical forest through to savanna. At each location, we quantified both the Critical Thermal Maxima (CTmax) and the Critical Thermal Minima (CTmin) of all the most abundant mound‐building Termitidae species in the study areas. We modelled the thermal limits in two separate mixed‐effects models against canopy cover at the mound, temperature and rainfall, as fixed effects, with sampling location as a random intercept. For both CTmax and CTmin, savanna species had significantly more extreme thermal limits than forest species. Between and within environments, areas with higher amounts of canopy cover were significantly associated with lower CTmax values of the termite colonies. CTmin was significantly positively correlated with rainfall. Temperature was retained in both models; however, it did not have a significant relationship in either. Sampling location explained a large proportion of the residual variation, suggesting there are other environmental factors that could influence termite thermal limits. Our results suggest that savanna termite species have wider thermal limits than forest species. These physiological differences, in conjunction with other behavioural adaptations, are likely to have enabled termites to cope with the more extreme environmental conditions found in savanna environments and facilitated their expansion into open tropical environments.
Collapse
|
|
3 |
5 |
19
|
Adu-Bredu S, Yokota T, Hagihara A. Carbon balance of the aerial parts of a young hinoki cypress (Chamaecyparis obtusa) stand. TREE PHYSIOLOGY 1996; 16:239-245. [PMID: 14871768 DOI: 10.1093/treephys/16.1-2.239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The aerial carbon balance of a 9-year-old hinoki cypress (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.) stand with an aerial biomass of 24.6 Mg(DW) ha(-1) was studied over a 1-year period. Various components that constitute gross production were measured on the basis of the summation method. Respiration of the aerial parts of six sample trees was measured at monthly intervals by an enclosed standing-tree method. The aerial respiration of sample trees was partitioned into growth and maintenance respiration by a two-component model. The growth coefficient varied between 1.2791 and 1.7957 g CO(2) g(DW) (-1) giving a mean value of 1.5223 +/- 0.0729 (SE) g CO(2) g(DW) (-1), whereas the maintenance coefficient ranged between 0.0200 and 0.0373 g CO(2) g(DW) (-1) month(-1) with a mean value of 0.0299 +/- 0.0031 (SE) g CO(2) g(DW) (-1) month(-1). Growth and maintenance respiration of the stand were estimated to be 8.62 and 10.52 Mg CO(2) ha(-1) year(-1), respectively. An open-top cloth trap method was employed to measure the death of the parts of five sample trees. The death of leaves and total organs in the stand were assessed to be 6.26 and 7.60 Mg(DW) ha(-1) year(-1), respectively. Tree mortality and biomass increment were 1.47 and 4.64 Mg(DW) ha(-1) year(-1), respectively. In terms of carbon, respiration, death, grazing and biomass increment were equivalent to 5.22, 4.53, 0.04 and 2.32 Mg C ha(-1) year(-1), respectively. Net production and gross production were estimated to be 6.89 and 12.11 Mg C ha(-1) year(-1), respectively. Biomass accumulation ratio (biomass/net production) and overall efficiency (net production/gross production) were 1.8 and 0.57, respectively.
Collapse
|
|
29 |
5 |
20
|
Amankwah AA, Quaye-Ballard JA, Koomson B, Amankwah RK, Awotwi A, Kankam BO, Opuni-Frimpong NY, Baah DS, Adu-Bredu S. Deforestation in forest-savannah transition zone of Ghana: Boabeng-Fiema monkey sanctuary. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2020.e01440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
|
4 |
4 |
21
|
Gvozdevaite A, Oliveras I, Domingues TF, Peprah T, Boakye M, Afriyie L, da Silva Peixoto K, de Farias J, Almeida de Oliveira E, Almeida Farias CC, Dos Santos Prestes NCC, Neyret M, Moore S, Schwantes Marimon B, Marimon Junior BH, Adu-Bredu S, Malhi Y. Leaf-level photosynthetic capacity dynamics in relation to soil and foliar nutrients along forest-savanna boundaries in Ghana and Brazil. TREE PHYSIOLOGY 2018; 38:1926. [PMID: 30551152 DOI: 10.1093/treephys/tpy136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Indexed: 06/09/2023]
|
Published Erratum |
7 |
2 |
22
|
Chabi A, Lautenbach S, Tondoh JE, Orekan VOA, Adu-Bredu S, Kyei-Baffour N, Mama VJ, Fonweban J. The relevance of using in situ carbon and nitrogen data and satellite images to assess aboveground carbon and nitrogen stocks for supporting national REDD + programmes in Africa. CARBON BALANCE AND MANAGEMENT 2019; 14:12. [PMID: 31506725 PMCID: PMC7227328 DOI: 10.1186/s13021-019-0127-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on the carbon density per land use/land cover (LULC) class and in situ carbon and nitrogen data is needed. This allows a better representation of the spatial distribution of carbon and nitrogen stocks across LULC. The aim of this study was to emphasize the relevance of using in situ carbon and nitrogen content of the main tree species of the site when quantifying the aboveground carbon and nitrogen stocks in the context of carbon accounting. This paper contributes to that, by combining satellite images with in situ carbon and nitrogen content in dry matter of stem woods together with locally derived and published allometric models to estimate aboveground carbon and nitrogen stocks at the Dassari Basin in the Sudan Savannah zone in the Republic of Benin. RESULTS The estimated mean carbon content per tree species varied from 44.28 ± 0.21% to 49.43 ± 0.27%. The overall mean carbon content in dry matter for the 277 wood samples of the 18 main tree species of the region was 47.01 ± 0.28%-which is close to the Tier 1 coefficient of 47% default value suggested by the Intergovernmental Panel on Climate Change (IPCC). The overall mean fraction of nitrogen in dry matter was estimated as 0.229 ± 0.016%. The estimated mean carbon density varied from 1.52 ± 0.14 Mg C ha-1 (for Cropland and Fallow) to 97.83 ± 27.55 Mg C ha-1 (for Eucalyptus grandis Plantation). In the same order the estimated mean nitrogen density varied from 0.008 ± 0.007 Mg ha-1 of N (for Cropland and Fallow) to 0.321 ± 0.088 Mg ha-1 of N (for Eucalyptus grandis Plantation). CONCLUSION The results show the relevance of using the in situ carbon and nitrogen content of the main tree species for estimating aboveground carbon and nitrogen stocks in the Sudan Savannah environment. The results provide crucial information for carbon accounting programmes related to the implementation of the REDD + initiatives in developing countries.
Collapse
|
research-article |
6 |
1 |
23
|
Gosling WD, Julier ACM, Adu-Bredu S, Djagbletey GD, Fraser WT, Jardine PE, Lomax BH, Malhi Y, Manu EA, Mayle FE, Moore S. Pollen-vegetation richness and diversity relationships in the tropics. VEGETATION HISTORY AND ARCHAEOBOTANY 2017; 27:411-418. [PMID: 31983811 PMCID: PMC6953967 DOI: 10.1007/s00334-017-0642-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/25/2017] [Indexed: 06/10/2023]
Abstract
Tracking changes in biodiversity through time requires an understanding of the relationship between modern diversity and how this diversity is preserved in the fossil record. Fossil pollen is one way in which past vegetation diversity can be reconstructed. However, there is limited understanding of modern pollen-vegetation diversity relationships from biodiverse tropical ecosystems. Here, pollen (palynological) richness and diversity (Hill N 1) are compared with vegetation richness and diversity from forest and savannah ecosystems in the New World and Old World tropics (Neotropics and Palaeotropics). Modern pollen data were obtained from artificial pollen traps deployed in 1-ha vegetation study plots from which vegetation inventories had been completed in Bolivia and Ghana. Pollen counts were obtained from 15 to 22 traps per plot, and aggregated pollen sums for each plot were > 2,500. The palynological richness/diversity values from the Neotropics were moist evergreen forest = 86/6.8, semi-deciduous dry forest = 111/21.9, wooded savannah = 138/31.5, and from the Palaeotropics wet evergreen forest = 144/28.3, semi-deciduous moist forest = 104/4.4, forest-savannah transition = 121/14.1; the corresponding vegetation richness/diversity was 100/36.7, 80/38.7 and 71/39.4 (Neotropics), and 101/54.8, 87/45.5 and 71/34.5 (Palaeotropics). No consistent relationship was found between palynological richness/diversity, and plot vegetation richness/diversity, due to the differential influence of other factors such as landscape diversity, pollination strategy, and pollen source area. Palynological richness exceeded vegetation richness, while pollen diversity was lower than vegetation diversity. The relatively high global diversity of tropical vegetation was found to be reflected in the pollen rain.
Collapse
|
brief-report |
8 |
1 |
24
|
Hwang BC, Giardina CP, Adu-Bredu S, Barrios-Garcia MN, Calvo-Alvarado JC, Dargie GC, Diao H, Duboscq-Carra VG, Hemp A, Hemp C, Huasco WH, Ivanov AV, Johnson NG, Kuijper DPJ, Lewis SL, Lobos-Catalán P, Malhi Y, Marshall AR, Mumladze L, Ngute ASK, Palma AC, Petritan IC, Rordriguez-Cabal MA, Suspense IA, Zagidullina A, Andersson T, Galiano-Cabrera DF, Jiménez-Castillo M, Churski M, Gage SA, Filippova N, Francisco KS, Gaglianese-Woody M, Iankoshvili G, Kaswamila MA, Lyatuu H, Mampouya Wenina YE, Materu B, Mbemba M, Moritz R, Orang K, Plyusnin S, Puma Vilca BL, Rodríguez-Solís M, Šamonil P, Stępniak KM, Walsh SK, Xu H, Metcalfe DB. The impact of insect herbivory on biogeochemical cycling in broadleaved forests varies with temperature. Nat Commun 2024; 15:6011. [PMID: 39019847 PMCID: PMC11254921 DOI: 10.1038/s41467-024-50245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024] Open
Abstract
Herbivorous insects alter biogeochemical cycling within forests, but the magnitude of these impacts, their global variation, and drivers of this variation remain poorly understood. To address this knowledge gap and help improve biogeochemical models, we established a global network of 74 plots within 40 mature, undisturbed broadleaved forests. We analyzed freshly senesced and green leaves for carbon, nitrogen, phosphorus and silica concentrations, foliar production and herbivory, and stand-level nutrient fluxes. We show more nutrient release by insect herbivores at non-outbreak levels in tropical forests than temperate and boreal forests, that these fluxes increase strongly with mean annual temperature, and that they exceed atmospheric deposition inputs in some localities. Thus, background levels of insect herbivory are sufficiently large to both alter ecosystem element cycling and influence terrestrial carbon cycling. Further, climate can affect interactions between natural populations of plants and herbivores with important consequences for global biogeochemical cycles across broadleaved forests.
Collapse
|
research-article |
1 |
|
25
|
Zhang-Zheng H, Deng X, Aguirre-Gutiérrez J, Stocker BD, Thomson E, Ding R, Adu-Bredu S, Duah-Gyamfi A, Gvozdevaite A, Moore S, Oliveras Menor I, Prentice IC, Malhi Y. Why models underestimate West African tropical forest primary productivity. Nat Commun 2024; 15:9574. [PMID: 39505869 PMCID: PMC11541734 DOI: 10.1038/s41467-024-53949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Tropical forests dominate terrestrial photosynthesis, yet there are major contradictions in our understanding due to a lack of field studies, especially outside the tropical Americas. A recent field study indicated that West African forests have among the highest forests gross primary productivity (GPP) yet observed, contradicting models that rank them lower than Amazonian forests. Here, we show possible reasons for this data-model mismatch. We found that biometric GPP measurements are on average 56.3% higher than multiple global GPP products at the study sites. The underestimation of GPP largely disappears when a standard photosynthesis model is informed by local field-measured values of (a) fractional absorbed photosynthetic radiation (fAPAR), and (b) photosynthetic traits. Remote sensing products systematically underestimate fAPAR (33.9% on average at study sites) due to cloud contamination issues. The study highlights the potential widespread underestimation of tropical forests GPP and carbon cycling and hints at the ways forward for model and input data improvement.
Collapse
|
research-article |
1 |
|