1
|
Otter JA, Donskey C, Yezli S, Douthwaite S, Goldenberg SD, Weber DJ. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination. J Hosp Infect 2016; 92:235-50. [PMID: 26597631 PMCID: PMC7114921 DOI: 10.1016/j.jhin.2015.08.027] [Citation(s) in RCA: 480] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/28/2015] [Indexed: 12/14/2022]
Abstract
Viruses with pandemic potential including H1N1, H5N1, and H5N7 influenza viruses, and severe acute respiratory syndrome (SARS)/Middle East respiratory syndrome (MERS) coronaviruses (CoV) have emerged in recent years. SARS-CoV, MERS-CoV, and influenza virus can survive on surfaces for extended periods, sometimes up to months. Factors influencing the survival of these viruses on surfaces include: strain variation, titre, surface type, suspending medium, mode of deposition, temperature and relative humidity, and the method used to determine the viability of the virus. Environmental sampling has identified contamination in field-settings with SARS-CoV and influenza virus, although the frequent use of molecular detection methods may not necessarily represent the presence of viable virus. The importance of indirect contact transmission (involving contamination of inanimate surfaces) is uncertain compared with other transmission routes, principally direct contact transmission (independent of surface contamination), droplet, and airborne routes. However, influenza virus and SARS-CoV may be shed into the environment and be transferred from environmental surfaces to hands of patients and healthcare providers. Emerging data suggest that MERS-CoV also shares these properties. Once contaminated from the environment, hands can then initiate self-inoculation of mucous membranes of the nose, eyes or mouth. Mathematical and animal models, and intervention studies suggest that contact transmission is the most important route in some scenarios. Infection prevention and control implications include the need for hand hygiene and personal protective equipment to minimize self-contamination and to protect against inoculation of mucosal surfaces and the respiratory tract, and enhanced surface cleaning and disinfection in healthcare settings.
Collapse
|
Review |
9 |
480 |
2
|
Abstract
Many clinically useful antibiotics exert their antimicrobial effects by blocking protein synthesis on the bacterial ribosome. The structure of the ribosome has recently been determined by X-ray crystallography, revealing the molecular details of the antibiotic-binding sites. The crystal data explain many earlier biochemical and genetic observations, including how drugs exercise their inhibitory effects, how some drugs in combination enhance or impede each other's binding, and how alterations to ribosomal components confer resistance. The crystal structures also provide insight as to how existing drugs might be derivatized (or novel drugs created) to improve binding and circumvent resistance.
Collapse
|
|
20 |
403 |
3
|
Vester B, Douthwaite S. Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob Agents Chemother 2001; 45:1-12. [PMID: 11120937 PMCID: PMC90232 DOI: 10.1128/aac.45.1.1-12.2001] [Citation(s) in RCA: 382] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
review-article |
24 |
382 |
4
|
Hansen LH, Mauvais P, Douthwaite S. The macrolide-ketolide antibiotic binding site is formed by structures in domains II and V of 23S ribosomal RNA. Mol Microbiol 1999; 31:623-31. [PMID: 10027978 DOI: 10.1046/j.1365-2958.1999.01202.x] [Citation(s) in RCA: 230] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The macrolide antibiotic erythromycin interacts with bacterial 23S ribosomal RNA (rRNA) making contacts that are limited to hairpin 35 in domain II of the rRNA and to the peptidyl transferase loop in domain V. These two regions are probably folded close together in the 23S rRNA tertiary structure and form a binding pocket for macrolides and other drug types. Erythromycin has been derivatized by replacing the L-cladinose moiety at position 3 by a keto group (forming the ketolide antibiotics) and by an alkyl-aryl extension at positions 11/12 of the lactone ring. All the drugs footprint identically within the peptidyl transferase loop, giving protection against chemical modification at A2058, A2059 and G2505, and enhancing the accessibility of A2062. However, the ketolide derivatives bind to ribosomes with widely varying affinities compared with erythromycin. This variation correlates with differences in the hairpin 35 footprints. Erythromycin enhances the modification at position A752. Removal of cladinose lowers drug binding 70-fold, with concomitant loss of the A752 footprint. However, the 11/12 extension strengthens binding 10-fold, and position A752 becomes protected. These findings indicate how drug derivatization can improve the inhibition of bacteria that have macrolide resistance conferred by changes in the peptidyl transferase loop.
Collapse
|
|
26 |
230 |
5
|
Johansen SK, Maus CE, Plikaytis BB, Douthwaite S. Capreomycin Binds across the Ribosomal Subunit Interface Using tlyA-Encoded 2′-O-Methylations in 16S and 23S rRNAs. Mol Cell 2006; 23:173-82. [PMID: 16857584 DOI: 10.1016/j.molcel.2006.05.044] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 04/11/2006] [Accepted: 05/30/2006] [Indexed: 11/30/2022]
Abstract
The cyclic peptide antibiotics capreomycin and viomycin are generally effective against the bacterial pathogen Mycobacterium tuberculosis. However, recent virulent isolates have become resistant by inactivation of their tlyA gene. We show here that tlyA encodes a 2'-O-methyltransferase that modifies nucleotide C1409 in helix 44 of 16S rRNA and nucleotide C1920 in helix 69 of 23S rRNA. Loss of these previously unidentified rRNA methylations confers resistance to capreomycin and viomycin. Many bacterial genera including enterobacteria lack a tlyA gene and the ensuing methylations and are less susceptible than mycobacteria to capreomycin and viomycin. We show that expression of recombinant tlyA in Escherichia coli markedly increases susceptibility to these drugs. When the ribosomal subunits associate during translation, the two tlyA-encoded methylations are brought into close proximity at interbridge B2a. The location of these methylations indicates the binding site and inhibitory mechanism of capreomycin and viomycin at the ribosome subunit interface.
Collapse
MESH Headings
- Antibiotics, Antitubercular/pharmacology
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Capreomycin/pharmacology
- Cloning, Molecular
- Drug Resistance, Bacterial/genetics
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Mass Spectrometry
- Methylation
- Molecular Sequence Data
- Mutation
- Mycobacteriaceae/drug effects
- Nucleic Acid Conformation
- RNA, Bacterial/drug effects
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 28S/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
|
|
19 |
167 |
6
|
Recht MI, Douthwaite S, Puglisi JD. Basis for prokaryotic specificity of action of aminoglycoside antibiotics. EMBO J 1999; 18:3133-8. [PMID: 10357824 PMCID: PMC1171394 DOI: 10.1093/emboj/18.11.3133] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The aminoglycosides, a group of structurally related antibiotics, bind to rRNA in the small subunit of the prokaryotic ribosome. Most aminoglycosides are inactive or weakly active against eukaryotic ribosomes. A major difference in the binding site for these antibiotics between prokaryotic and eukaryotic ribosomes is the identity of the nucleotide at position 1408 (Escherichia coli numbering), which is an adenosine in prokaryotic ribosomes and a guanosine in eukaryotic ribosomes. Expression in E.coli of plasmid-encoded 16S rRNA containing an A1408 to G substitution confers resistance to a subclass of the aminoglycoside antibiotics that contain a 6' amino group on ring I. Chemical footprinting experiments indicate that resistance arises from the lower affinity of the drug for the eukaryotic rRNA sequence. The 1408G ribosomes are resistant to the same subclass of aminoglycosides as previously observed both for eukaryotic ribosomes and bacterial ribosomes containing a methylation at the N1 position of A1408. The results indicate that the identity of the nucleotide at position 1408 is a major determinant of specificity of aminoglycoside action, and agree with prior structural studies of aminoglycoside-rRNA complexes.
Collapse
|
research-article |
26 |
141 |
7
|
Xiong L, Kloss P, Douthwaite S, Andersen NM, Swaney S, Shinabarger DL, Mankin AS. Oxazolidinone resistance mutations in 23S rRNA of Escherichia coli reveal the central region of domain V as the primary site of drug action. J Bacteriol 2000; 182:5325-31. [PMID: 10986233 PMCID: PMC110973 DOI: 10.1128/jb.182.19.5325-5331.2000] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxazolidinone antibiotics inhibit bacterial protein synthesis by interacting with the large ribosomal subunit. The structure and exact location of the oxazolidinone binding site remain obscure, as does the manner in which these drugs inhibit translation. To investigate the drug-ribosome interaction, we selected Escherichia coli oxazolidinone-resistant mutants, which contained a randomly mutagenized plasmid-borne rRNA operon. The same mutation, G2032 to A, was identified in the 23S rRNA genes of several independent resistant isolates. Engineering of this mutation by site-directed mutagenesis in the wild-type rRNA operon produced an oxazolidinone resistance phenotype, establishing that the G2032A substitution was the determinant of resistance. Engineered U and C substitutions at G2032, as well as a G2447-to-U mutation, also conferred resistance to oxazolidinone. All the characterized resistance mutations were clustered in the vicinity of the central loop of domain V of 23S rRNA, suggesting that this rRNA region plays a major role in the interaction of the drug with the ribosome. Although the central loop of domain V is an essential integral component of the ribosomal peptidyl transferase, oxazolidinones do not inhibit peptide bond formation, and thus these drugs presumably interfere with another activity associated with the peptidyl transferase center.
Collapse
|
research-article |
25 |
136 |
8
|
Douthwaite S, Hansen LH, Mauvais P. Macrolide-ketolide inhibition of MLS-resistant ribosomes is improved by alternative drug interaction with domain II of 23S rRNA. Mol Microbiol 2000; 36:183-93. [PMID: 10760175 DOI: 10.1046/j.1365-2958.2000.01841.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The macrolide antibiotic erythromycin and its 6-O-methyl derivative (clarithromycin) bind to bacterial ribosomes primarily through interactions with nucleotides in domains II and V of 23S rRNA. The domain II interaction occurs between nucleotide A752 and the macrolide 3-cladinose moiety. Removal of the cladinose, and substitution of a 3-keto group (forming the ketolide RU 56006), results in loss of the A752 interaction and an approximately 100-fold drop in drug binding affinity. Within domain V, the key determinant of drug binding is nucleotide A2058 and substitution of G at this position is the major cause of drug resistance in some clinical pathogens. The 2058G mutation disrupts the drug-domain V contact and leads to a further > 25 000-fold decrease in the binding of RU 56006. Drug binding to resistant ribosomes can be improved over 3000-fold by forming an alternative and more effective contact to A752 via alkyl-aryl groups linked to a carbamate at the drug 11/12 position (in the ketolide antibiotics HMR 3647 and HMR 3004). The data indicate that simultaneous drug interactions with domains II and V strengthen binding and that the domain II contact is of particular importance to achieve binding to the ribosomes of resistant pathogens in which the domain V interaction is perturbed.
Collapse
|
Comparative Study |
25 |
122 |
9
|
Zhanel GG, Walters M, Noreddin A, Vercaigne LM, Wierzbowski A, Embil JM, Gin AS, Douthwaite S, Hoban DJ. The ketolides: a critical review. Drugs 2002; 62:1771-804. [PMID: 12149046 DOI: 10.2165/00003495-200262120-00006] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ketolides are a new class of macrolides designed particularly to combat respiratory tract pathogens that have acquired resistance to macrolides. The ketolides are semi-synthetic derivatives of the 14-membered macrolide erythromycin A, and retain the erythromycin macrolactone ring structure as well as the D-desosamine sugar attached at position 5. The defining characteristic of the ketolides is the removal of the neutral sugar, L-cladinose from the 3 position of the ring and the subsequent oxidation of the 3-hydroxyl to a 3-keto functional group. The ketolides presently under development additionally contain an 11, 12 cyclic carbamate linkage in place of the two hydroxyl groups of erythromycin A and an arylalkyl or an arylallyl chain, imparting in vitro activity equal to or better than the newer macrolides. Telithromycin is the first member of this new class to be approved for clinical use, while ABT-773 is presently in phase III of development. Ketolides have a mechanism of action very similar to erythromycin A from which they have been derived. They potently inhibit protein synthesis by interacting close to the peptidyl transferase site of the bacterial 50S ribosomal subunit. Ketolides bind to ribosomes with higher affinity than macrolides. The ketolides exhibit good activity against Gram-positive aerobes and some Gram-negative aerobes, and have excellent activity against drug-resistant Streptococcus pneumoniae, including macrolide-resistant (mefA and ermB strains of S. pneumoniae). Ketolides such as telithromycin display excellent pharmacokinetics allowing once daily dose administration and extensive tissue distribution relative to serum. Evidence suggests the ketolides are primarily metabolised in the liver and that elimination is by a combination of biliary, hepatic and urinary excretion. Pharmacodynamically, ketolides display an element of concentration dependent killing unlike macrolides which are considered time dependent killers. Clinical trial data are only available for telithromycin and have focused on respiratory infections including community-acquired pneumonia, acute exacerbations of chronic bronchitis, sinusitis and streptococcal pharyngitis. Bacteriological and clinical cure rates have been similar to comparators. Limited data suggest very good eradication of macrolide-resistant and penicillin-resistant S. pneumoniae. As a class, the macrolides are well tolerated and can be used safely. Limited clinical trial data suggest that ketolides have similar safety profiles to the newer macrolides. Telithromycin interacts with the cytochrome P450 enzyme system (specifically CYP 3A4) in a reversible fashion and limited clinically significant drug interactions occur. In summary, clinical trials support the clinical efficacy of the ketolides in upper and lower respiratory tract infections caused by typical and atypical pathogens including strains resistant to penicillins and macrolides. Considerations such as local epidemiology, patterns of resistance and ketolide adverse effects, drug interactions and cost relative to existing agents will define the role of these agents. The addition of the ketolides in the era of antibacterial resistance provides clinicians with more options in the treatment of respiratory infections.
Collapse
|
Review |
23 |
119 |
10
|
Peattie DA, Douthwaite S, Garrett RA, Noller HF. A "bulged" double helix in a RNA-protein contact site. Proc Natl Acad Sci U S A 1981; 78:7331-5. [PMID: 7038676 PMCID: PMC349260 DOI: 10.1073/pnas.78.12.7331] [Citation(s) in RCA: 113] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The binding of ribosomal protein L18 affects specific nucleotides in Escherichia coli 5S RNA as detected by dimethyl sulfate alkylation and RNase A digestion of the 5S-L18 complex. Most of the affected nucleotides are clustered and localize a site of RNA-protein interaction in and around the defined central helix [Fox, G. E. & Woese, C. (1975) Nature (London) 256, 505-507] of 5S RNA. Chemical carbethoxylation of the native 5S RNA with diethyl pyrocarbonate shows that a striking feature of this region is an unstacked adenosine residue at position 66. We propose that this residue exists as a singly bulged nucleotide extending the Fox and Woese central helix by two base pairs in the E. coli sequence (to positions 16-23/60-68) as well as in each of 61 (prokaryotic and eukaryotic) aligned 5S RNA sequences. In each case, the single bulged nucleotide is at the relative position of adenosine-66 in the RNA sequences. The presence of this putative bulged nucleotide appears to have been conserved in 5S RNA sequences throughout evolution, and its identity varies with major phylogenetic divisions. This residue is likely involved in specific 5S RNA-protein recognition or interaction in prokaryotic and eukaryotic ribosomes. The uridine-65 to adenosine-66 internucleotide bond is protected from RNase A digestion in the complex, and carbethoxylation of E. coli adenosine-66 prior to L18 binding affects formation of a stable RNA-protein complex. Thus, we identify a region of E. coli 5S RNA protected by the ribosomal protein L18 and propose that it contains a bulged nucleotide residue important in stable formation of this RNA-protein complex. This bulged residue appears to be evolutionarily conserved and phylogenetically defined in 5S RNA sequences in general, and consideration of other known RNA-protein binding sites shows that such a "bulged helix" may be a common feature of RNA-protein contact sites.
Collapse
|
research-article |
44 |
113 |
11
|
Rosendahl G, Douthwaite S. The antibiotics micrococcin and thiostrepton interact directly with 23S rRNA nucleotides 1067A and 1095A. Nucleic Acids Res 1994; 22:357-63. [PMID: 8127673 PMCID: PMC523589 DOI: 10.1093/nar/22.3.357] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The antibiotics thiostrepton and micrococcin bind to the GTPase region in domain II of 23S rRNA, and inhibit ribosomal A-site associated reactions. When bound to the ribosome, these antibiotics alter the accessibility of nucleotides 1067A and 1095A towards chemical reagents. Plasmid-coded Escherichia coli 23S rRNAs with single mutations at positions 1067 or 1095 were expressed in vivo. Mutant ribosomes are functional in protein synthesis, although those with transversion mutations function less effectively. Antibiotics were bound under conditions where wild-type and mutant ribosomes compete in the same reaction for drug molecules; binding was analysed by allele-specific footprinting. Transversion mutations at 1067 reduce thiostrepton binding more than 1000-fold. The 1067G substitution gives a more modest decrease in thiostrepton binding. The changes at 1095 slightly, but significantly, lower the affinity of ribosomes for thiostrepton, again with the G mutation having the smallest effect. Micrococcin binding to ribosomes is reduced to a far greater extent than thiostrepton by all the 1067 and 1095 mutations. Extrapolating these results to growing cells, mutation of nucleotide 1067A confers resistance towards micrococcin and thiostrepton, while substitutions at 1095A confer micrococcin resistance, and increase tolerance towards thiostrepton. These data support an rRNA tertiary structure model in which 1067A and 1095A lie in close proximity, and are key components in the drug binding site. None of the mutations alters either the higher order rRNA structure or the binding of r-proteins. We therefore conclude that thiostrepton and micrococcin interact directly with 1067A and 1095A.
Collapse
|
research-article |
31 |
100 |
12
|
Vester B, Lundberg LB, Sørensen MD, Babu BR, Douthwaite S, Wengel J. LNAzymes: incorporation of LNA-type monomers into DNAzymes markedly increases RNA cleavage. J Am Chem Soc 2002; 124:13682-3. [PMID: 12431091 DOI: 10.1021/ja0276220] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Incorporation of two alpha-L-LNA/LNA nucleotides into each of the two binding arms of a "10-23" DNAzyme has been accomplished and the RNA cleavage with these novel LNAzymes studied. In comparison with the unmodified DNAzyme, the LNAzymes show significantly improved cleavage of the phosphodiester backbone at the target nucleotide in a small RNA substrate (58n RNA) under single-turnover conditions. The LNAzymes show efficient multiple turnover. With the LNAzymes, efficient cleavage was accomplished also of a naturally occurring ribosomal RNA at a target site within a highly structured region. The reference DNAzyme was ineffective at cleaving the ribosomal RNA target.
Collapse
|
|
23 |
99 |
13
|
Andersen NM, Douthwaite S. YebU is a m5C Methyltransferase Specific for 16 S rRNA Nucleotide 1407. J Mol Biol 2006; 359:777-86. [PMID: 16678201 DOI: 10.1016/j.jmb.2006.04.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 03/31/2006] [Accepted: 04/04/2006] [Indexed: 11/24/2022]
Abstract
The rRNAs in Escherichia coli contain methylations at 24 nucleotides, which collectively are important for ribosome function. Three of these methylations are m5C modifications located at nucleotides C967 and C1407 in 16S rRNA and at nucleotide C1962 in 23S rRNA. Bacterial rRNA modifications generally require specific enzymes, and only one m5C rRNA methyltransferase, RsmB (formerly Fmu) that methylates nucleotide C967, has previously been identified. BLAST searches of the E.coli genome revealed a single gene, yebU, with sufficient similarity to rsmB to encode a putative m5C RNA methyltransferase. This suggested that the yebU gene product modifies C1407 and/or C1962. Here, we analysed the E.coli rRNAs by matrix assisted laser desorption/ionization mass spectrometry and show that inactivation of the yebU gene leads to loss of methylation at C1407 in 16 S rRNA, but does not interfere with methylation at C1962 in 23 S rRNA. Purified recombinant YebU protein retains its specificity for C1407 in vitro, and methylates 30 S subunits (but not naked 16 S rRNA or 70 S ribosomes) isolated from yebU knockout strains. Nucleotide C1407 is located at a functionally active region of the 30 S subunit interface close to the P site, and YebU-directed methylation of this nucleotide seems to be conserved in bacteria. The yebU knockout strains display slower growth and reduced fitness in competition with wild-type cells. We suggest that a more appropriate designation for yebU would be the rRNA small subunit methyltransferase gene rsmF, and that the nomenclature system be extended to include the rRNA methyltransferases that still await identification.
Collapse
MESH Headings
- Amino Acid Sequence
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/metabolism
- Genome, Bacterial
- Methylation
- Methyltransferases/chemistry
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Nucleotides/chemistry
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
|
|
19 |
97 |
14
|
Moazed D, Van Stolk BJ, Douthwaite S, Noller HF. Interconversion of active and inactive 30 S ribosomal subunits is accompanied by a conformational change in the decoding region of 16 S rRNA. J Mol Biol 1986; 191:483-93. [PMID: 2434656 DOI: 10.1016/0022-2836(86)90143-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Zamir, Elson and their co-workers have shown that 30 S ribosomal subunits are reversibly inactivated by depletion of monovalent or divalent cations. We have re-investigated the conformation of 16 S rRNA in the active and inactive forms of the 30 S subunit, using a strategy that is designed to eliminate reversible ion-dependent conformational effects that are unrelated to the heat-dependent Zamir-Elson transition. A combination of structure-specific chemical probes enables us to monitor the accessibility of pyrimidines at N-3 and purines at N-1 and N-7. Chemically modified bases are identified by end-labeling followed by analine-induced strand scission (in some cases preceded by hybrid selection), or by primer extension using synthetic DNA oligomers. These studies show the following: The transition from the active to the inactive state cannot be described as a simple loosening or unfolding of native structure, such as that which is observed under conditions of more severe ion depletion. Instead, it has the appearance of a reciprocal interconversion between two differently structured states; some bases become more reactive toward the probes, whilst others become less reactive as a result of inactivation. Changes in reactivity are almost exclusively confined to the "decoding site" centered at positions 1400 and 1500, but significant differences are also detected at U723 and G791 in the central domain. This may reflect possible structural and functional interactions between the central and 3' regions of 16 S rRNA. The inactive form also shows significantly decreased reactivity at positions 1533 to 1538 (the Shine-Dalgarno region), in agreement with earlier findings. The principal changes in reactivity involve the universally conserved nucleotides G926, C1395, A1398 and G1401. The three purines show reciprocal behavior at their N-1 versus N-7 positions. G926 loses its reactivity at N-1, but becomes highly reactive at N-7 as a result of the transition of the inactive state. In contrast, A1398 and G1401 become reactive at N-1, but lose their hyper-reactivity at N-7. The possible structural and functional implications of these findings are discussed.
Collapse
|
|
39 |
89 |
15
|
Hidalgo L, Hopkins KL, Gutierrez B, Ovejero CM, Shukla S, Douthwaite S, Prasad KN, Woodford N, Gonzalez-Zorn B. Association of the novel aminoglycoside resistance determinant RmtF with NDM carbapenemase in Enterobacteriaceae isolated in India and the UK. J Antimicrob Chemother 2013; 68:1543-50. [PMID: 23580560 DOI: 10.1093/jac/dkt078] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES 16S rRNA methyltransferases are an emerging mechanism conferring high-level resistance to clinically relevant aminoglycosides and have been associated with important mechanisms such as NDM-1. We sought genes encoding these enzymes in isolates highly resistant (MIC >200 mg/L) to gentamicin and amikacin from an Indian hospital and we additionally screened for the novel RmtF enzyme in 132 UK isolates containing NDM. METHODS All highly aminoglycoside-resistant isolates were screened for armA and rmtA-E by PCR, with cloning experiments performed for isolates negative for these genes. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry was used to determine the methylation target of the novel RmtF methyltransferase. RmtF-bearing strains were characterized further, including susceptibility testing, PFGE, electroporation, PCR-based replicon typing and multilocus sequence typing of rmtF-bearing plasmids. RESULTS High-level aminoglycoside resistance was detected in 140/1000 (14%) consecutive isolates of Enterobacteriaceae from India. ArmA, RmtB and RmtC were identified among 46%, 20% and 27% of these isolates, respectively. The novel rmtF gene was detected in 34 aminoglycoside-resistant isolates (overall prevalence 3.4%), most (59%) of which also possessed a bla(NDM) gene; rmtF was detected in 6 NDM producers from the UK. It was found on different plasmid backbones. Four and two isolates showed resistance to tigecycline and colistin, respectively. CONCLUSIONS RmtF was often found in association with NDM in members of the Enterobacteriaceae and on diverse plasmids. It is of clinical concern that the RmtF- and NDM-positive strains identified here show additional resistance to tigecycline and colistin, current drugs of last resort for the treatment of serious bacterial infections.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
86 |
16
|
Farrell DJ, Douthwaite S, Morrissey I, Bakker S, Poehlsgaard J, Jakobsen L, Felmingham D. Macrolide resistance by ribosomal mutation in clinical isolates of Streptococcus pneumoniae from the PROTEKT 1999-2000 study. Antimicrob Agents Chemother 2003; 47:1777-83. [PMID: 12760848 PMCID: PMC155854 DOI: 10.1128/aac.47.6.1777-1783.2003] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sixteen (1.5%) of the 1,043 clinical macrolide-resistant Streptococcus pneumoniae isolates collected and analyzed in the 1999-2000 PROTEKT (Prospective Resistant Organism Tracking and Epidemiology for the Ketolide Telithromycin) study have resistance mechanisms other than rRNA methylation or efflux. We have determined the macrolide resistance mechanisms in all 16 isolates by sequencing the L4 and L22 riboprotein genes, plus relevant segments of the four genes for 23S rRNA, and the expression of mutant rRNAs was analyzed by primer extension. Isolates from Canada (n = 4), Japan (n = 3), and Australia (n = 1) were found to have an A2059G mutation in all four 23S rRNA alleles. The Japanese isolates additionally had a G95D mutation in riboprotein L22; all of these originated from the same collection center and were clonal. Three of the Canadian isolates were also clonal; the rest were not genetically related. Four German isolates had A2059G in one, two, and three 23S rRNA alleles and A2058G in two 23S rRNA alleles, respectively. An isolate from the United States had C2611G in three 23S rRNA alleles, one isolate from Poland had A2058G in three 23S rRNA alleles, one isolate from Turkey had A2058G in four 23S rRNA alleles, and one isolate from Canada had A2059G in two 23S rRNA alleles. Erythromycin and clindamycin resistance gradually increased with the number of A2059G alleles, whereas going from one to two mutant alleles caused sharp rises in the azithromycin, roxithromycin, and rokitamycin MICs. Comparisons of mutation dosage with rRNA expression indicates that not all alleles are equally expressed. Despite their high levels of macrolide resistance, all 16 isolates remained susceptible to the ketolide telithromycin (MICs, 0.015 to 0.25 microg/ml).
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Drug Resistance, Bacterial
- Electrophoresis, Gel, Pulsed-Field
- Humans
- Macrolides
- Pneumococcal Infections/microbiology
- Point Mutation/genetics
- Polymerase Chain Reaction
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Sequence Analysis, DNA
- Streptococcus pneumoniae/drug effects
- Streptococcus pneumoniae/genetics
- Streptococcus pneumoniae/metabolism
Collapse
|
|
22 |
84 |
17
|
Abstract
A molecular genetic approach has been employed to investigate functional interactions within 23S rRNA. Each of the three base substitutions at guanine 2032 has been made. The 2032A mutation confers resistance to the antibiotics chloramphenicol and clindamycin, which interact with the 23S rRNA peptidyltransferase loop. All three base substitutions at position 2032 produce an erythromycin-hypersensitive phenotype. The 2032 substitutions were compared with and combined with a 12-bp deletion mutation in domain II and point mutations at positions 2057 and 2058 in the peptidyltransferase region of domain V that also confer antibiotic resistance. Both the domain II deletion and the 2057A mutation relieve the hypersensitive effect of the 2032A mutation, producing an erythromycin-resistant phenotype; in addition, the combination of the 2032A and 2057A mutations confers a higher level of chloramphenicol resistance than either mutation alone. 23S rRNAs containing mutations at position 2058 that confer clindamycin and erythromycin resistance become deleterious to cell growth when combined with the 2032A mutation and, additionally, confer hypersensitivity to erythromycin and sensitivity to clindamycin and chloramphenicol. Introduction of the domain II deletion into these double-mutation constructs gives rise to erythromycin resistance. The results are interpreted as indicating that position 2032 interacts with the peptidyltransferase loop and that there is a functional connection between domains II and V.
Collapse
|
research-article |
33 |
80 |
18
|
Kirpekar F, Douthwaite S, Roepstorff P. Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry. RNA (NEW YORK, N.Y.) 2000; 6:296-306. [PMID: 10688367 PMCID: PMC1369914 DOI: 10.1017/s1355838200992148] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present a method to screen RNA for posttranscriptional modifications based on Matrix Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). After the RNA is digested to completion with a nucleotide-specific RNase, the fragments are analyzed by mass spectrometry. A comparison of the observed mass data with the data predicted from the gene sequence identifies fragments harboring modified nucleotides. Fragments larger than dinucleotides were valuable for the identification of posttranscriptional modifications. A more refined mapping of RNA modifications can be obtained by using two RNases in parallel combined with further fragmentation by Post Source Decay (PSD). This approach allows fast and sensitive screening of a purified RNA for posttranscriptional modification, and has been applied on 5S rRNA from two thermophilic microorganisms, the bacterium Bacillus stearothermophilus and the archaeon Sulfolobus acidocaldarius, as well as the halophile archaea Halobacterium halobium and Haloarcula marismortui. One S. acidocaldarius posttranscriptional modification was identified and was further characterized by PSD as a methylation of cytidine32. The modified C is located in a region that is clearly conserved with respect to both sequence and position in B. stearothermophilus and H. halobium and to some degree also in H. marismortui. However, no analogous modification was identified in the latter three organisms. We further find that the 5' end of H. halobium 5S rRNA is dephosphorylated, in contrast to the other 5S rRNA species investigated. The method additionally gives an immediate indication of whether the expected RNA sequence is in agreement with the observed fragment masses. Discrepancies with two of the published 5S rRNA sequences were identified and are reported here.
Collapse
MESH Headings
- Base Sequence
- Geobacillus stearothermophilus/genetics
- Geobacillus stearothermophilus/metabolism
- Haloarcula marismortui/genetics
- Haloarcula marismortui/metabolism
- Halobacterium salinarum/genetics
- Halobacterium salinarum/metabolism
- Methylation
- Phosphorylation
- RNA Processing, Post-Transcriptional
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- Species Specificity
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
- Sulfolobus acidocaldarius/genetics
- Sulfolobus acidocaldarius/metabolism
Collapse
|
Comparative Study |
25 |
80 |
19
|
Liu M, Douthwaite S. Resistance to the macrolide antibiotic tylosin is conferred by single methylations at 23S rRNA nucleotides G748 and A2058 acting in synergy. Proc Natl Acad Sci U S A 2002; 99:14658-63. [PMID: 12417742 PMCID: PMC137475 DOI: 10.1073/pnas.232580599] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2002] [Accepted: 09/25/2002] [Indexed: 11/18/2022] Open
Abstract
The macrolide antibiotic tylosin has been used extensively in veterinary medicine and exerts potent antimicrobial activity against Gram-positive bacteria. Tylosin-synthesizing strains of the Gram-positive bacterium Streptomyces fradiae protect themselves from their own product by differential expression of four resistance determinants, tlrA, tlrB, tlrC, and tlrD. The tlrB and tlrD genes encode methyltransferases that add single methyl groups at 23S rRNA nucleotides G748 and A2058, respectively. Here we show that methylation by neither TlrB nor TlrD is sufficient on its own to give tylosin resistance, and resistance is conferred by the G748 and A2058 methylations acting together in synergy. This synergistic mechanism of resistance is specific for the macrolides tylosin and mycinamycin that possess sugars extending from the 5- and 14-positions of the macrolactone ring and is not observed for macrolides, such as carbomycin, spiramycin, and erythromycin, that have different constellations of sugars. The manner in which the G748 and A2058 methylations coincide with the glycosylation patterns of tylosin and mycinamycin reflects unambiguously how these macrolides fit into their binding site within the bacterial 50S ribosomal subunit.
Collapse
|
research-article |
23 |
78 |
20
|
Liu M, Douthwaite S. Activity of the ketolide telithromycin is refractory to Erm monomethylation of bacterial rRNA. Antimicrob Agents Chemother 2002; 46:1629-33. [PMID: 12019067 PMCID: PMC127225 DOI: 10.1128/aac.46.6.1629-1633.2002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylation of specific nucleotides in rRNA is one of the means by which bacteria achieve resistance to macrolides-lincosamides-streptogramin B (MLS(B)) and ketolide antibiotics. The degree of resistance is determined by how effectively the rRNA is methylated. We have implemented a bacterial system in which the rRNA methylations are defined, and in this study we investigate what effect Erm mono- and dimethylation of the rRNA has on the activity of representative MLS(B) and ketolide antibiotics. In the test system, >80% of the rRNA molecules are monomethylated by ErmN (TlrD) or dimethylated by ErmE. ErmE dimethylation confers high resistance to all the MLS(B) and ketolide drugs. ErmN monomethylation predictably confers high resistance to the lincosamides clindamycin and lincomycin, intermediate resistance to the macrolides clarithromycin and erythromycin, and low resistance to the streptogramin B pristinamycin IA. In contrast to the macrolides, monomethylation only mildly affects the antimicrobial activities of the ketolides HMR 3647 (telithromycin) and HMR 3004, and these drugs remain 16 to 250 times as potent as clarithromycin and erythromycin. These differences in the macrolide and ketolide activities could explain the recent reports of variation in the MICs of telithromycin for streptococcal strains that have constitutive erm MLS(B) resistance and are highly resistant to erythromycin.
Collapse
|
research-article |
23 |
74 |
21
|
Madsen CT, Mengel-Jørgensen J, Kirpekar F, Douthwaite S. Identifying the methyltransferases for m(5)U747 and m(5)U1939 in 23S rRNA using MALDI mass spectrometry. Nucleic Acids Res 2003; 31:4738-46. [PMID: 12907714 PMCID: PMC169892 DOI: 10.1093/nar/gkg657] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There are three sites of m(5)U modification in Escherichia coli stable RNAs: one at the invariant tRNA position U54 and two in 23S rRNA at the phylogenetically conserved positions U747 and U1939. Each of these sites is modified by its own methyltransferase, and the tRNA methyltransferase, TrmA, is well-characterised. Two open reading frames, YbjF and YgcA, are approximately 30% identical to TrmA, and here we determine the functions of these candidate methyltransferases using MALDI mass spectrometry. A purified recombinant version of YgcA retains its activity and specificity, and methylates U1939 in an RNA transcript in vitro. We were unable to generate a recombinant version of YbjF that retained in vitro activity, so the function of this enzyme was defined in vivo by engineering a ybjF knockout strain. Comparison of the methylation patterns in 23S rRNAs from YbjF(+) and YbjF(-) strains showed that the latter differed only in the lack of the m(5)U747 modification. With this report, the functions of all the E.coli m(5)U RNA methyltransferases are identified, and a more appropriate designation for YbjF would be RumB (RNA uridine methyltransferases B), in line with the recent nomenclature change for YgcA (now RumA).
Collapse
|
research-article |
22 |
72 |
22
|
Recht MI, Douthwaite S, Dahlquist KD, Puglisi JD. Effect of mutations in the A site of 16 S rRNA on aminoglycoside antibiotic-ribosome interaction. J Mol Biol 1999; 286:33-43. [PMID: 9931247 DOI: 10.1006/jmbi.1998.2446] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Decoding of genetic information occurs upon interaction of an mRNA codon-tRNA anticodon complex with the small subunit of the ribosome. The ribosomal decoding region is associated with highly conserved sequences near the 3' end of 16 S rRNA. The decoding process is perturbed by the aminoglycoside antibiotics, which also interact with this region of rRNA. Mutations of certain nucleotides in rRNA reduce aminoglycoside binding affinity, as previously demonstrated using a model RNA oligonucleotide system. Here, predictions from the oligonucleotide system were tested in the ribosome by mutation of universally conserved nucleotides at 1406 to 1408 and 1494 to 1495 in the decoding region of plasmid-encoded bacterial 16 S rRNA. Phenotypic changes range from the benign effect of U1406-->A or A1408-->G substitutions, to the highly deleterious 1406G and 1495 mutations that assemble into 30 S subunits but are defective in forming functional ribosomes. Changes in the local conformation of the decoding region caused by these mutations were identified by chemical probing of isolated 30 S subunits. Ribosomes containing 16 S rRNA with mutations at positions 1408, 1407+1494, or 1495 had reduced affinity for the aminoglycoside paromomycin, whereas no discernible reduction in affinity was observed with 1406 mutant ribosomes. These data are consistent with prior NMR structural determination of aminoglycoside interaction with the decoding region, and further our understanding of how aminoglycoside resistance can be conferred.
Collapse
|
|
26 |
71 |
23
|
Douthwaite S, Powers T, Lee JY, Noller HF. Defining the structural requirements for a helix in 23 S ribosomal RNA that confers erythromycin resistance. J Mol Biol 1989; 209:655-65. [PMID: 2685326 DOI: 10.1016/0022-2836(89)93000-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The helix spanning nucleotides 1198 to 1247 (helix 1200-1250) in Escherichia coli 23 S ribosomal RNA (rRNA) is functionally important in protein synthesis, and deletions in this region confer erythromycin resistance. In order to define the structural requirements for resistance, we have dissected this region using in vitro mutagenesis. Erythromycin resistance is established after a minimal deletion of three bases, CAU1231 or AUG1232. The maximum deletion observed to confer resistance is 25 bases. The level of erythromycin resistance conferred by intermediate sized deletions is variable and some deletion mutants show a sensitive phenotype. Deletions that extend into the base-pairing between GCC1208 and GGU1240 result in non-functional 23 S RNAs, which consequently do not confer resistance. A number of phylogenetically conserved nucleotides have been shown to be non-essential for 23 S RNA function. However, removal of either these or non-conserved nucleotides from helix 1200-1250 measurably reduces the efficiency of 23 S RNA in forming functional ribosomes. We have used chemical probing and a modified primer extension method to investigate erythromycin binding to wild-type and resistant ribosomes with a 12-base deletion in 23 S RNA. Erythromycin interacts as strongly with mutant 23 S RNA as with wild-type 23 S RNA. Deletions in the 1200-1250 helix do not therefore confer resistance by reducing erythromycin binding, but by suppressing the effects of the drug at the level of its mechanism of action.
Collapse
|
|
36 |
70 |
24
|
Rosendahl G, Douthwaite S. Ribosomal proteins L11 and L10.(L12)4 and the antibiotic thiostrepton interact with overlapping regions of the 23 S rRNA backbone in the ribosomal GTPase centre. J Mol Biol 1993; 234:1013-20. [PMID: 8263910 DOI: 10.1006/jmbi.1993.1655] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Escherichia coli ribosomal protein (r-protein) L11 and its binding site on 23 S ribosomal RNA (rRNA) are associated with ribosomal hydrolysis of guanosine 5'-triphosphate (GTP). We have used hydroxyl radical footprinting to map the contacts between L11 and the backbone riboses in 23 S rRNA, and to investigate how this interaction is influenced by other ribosomal components. Complexes were characterized in both naked 23 S rRNA and ribosomes from an E. coli L11-minus strain, before and after reconstitution with L11. The protein protects 17 riboses between positions 1058 and 1085 in the naked 23 S rRNA. Within the ribosome, L11 also interacts with this rRNA region, although the protection effects are subtly different and extend to nucleotide 1098. The pentameric r-protein complex L10.(L12)4 binds to an adjacent site on the rRNA, protecting riboses at positions 1043, 1046 to 1049, 1053 to 1055 and increasing the accessibility of position 1068. The overlap in the positions affected by r-proteins L11 and L10.(L12)4, and the increase in protection between positions 1078 and 1084 when they are bound at the same time, reflect the mutually cooperative nature of their interaction with the rRNA. The data support a model for the tertiary configuration of the rRNA region, in which two stem-loop structures fold so that the loops lie in close proximity, with the main ribose interactions of L11 within the minor groove of one of the stems. The conformation of the rRNA-L11 interaction is modulated by L10.(L12)4 and other proteins within the ribosome. The antibiotics thiostrepton and micrococcin inhibit the catalytic functions of this region by slotting in between the accessible loops and interacting with nucleotides there.
Collapse
|
|
32 |
69 |
25
|
Pfister P, Jenni S, Poehlsgaard J, Thomas A, Douthwaite S, Ban N, Böttger EC. The structural basis of macrolide-ribosome binding assessed using mutagenesis of 23S rRNA positions 2058 and 2059. J Mol Biol 2004; 342:1569-81. [PMID: 15364582 DOI: 10.1016/j.jmb.2004.07.095] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 07/08/2004] [Accepted: 07/22/2004] [Indexed: 11/26/2022]
Abstract
Macrolides are a diverse group of antibiotics that inhibit bacterial growth by binding within the peptide tunnel of the 50S ribosomal subunit. There is good agreement about the architecture of the macrolide site from different crystallography studies of bacterial and archaeal 50S subunits. These structures show plainly that 23S rRNA nucleotides A2058 and A2059 are located accessibly on the surface of the tunnel wall where they act as key contact sites for macrolide binding. However, the molecular details of how macrolides fit into this site remain a matter of contention. Here, we have generated an isogenic set of single and dual substitutions at A2058 and A2059 in Mycobacterium smegmatis to investigate the effects of the rRNA mutations on macrolide binding. Resistances conferred to a comprehensive array of 11 macrolide compounds are used to assess models of macrolide binding predicted from the crystal structures. The data indicate that all macrolides and their derivatives bind at the same site in the tunnel with their C5 amino sugar in a similar orientation. Our data are compatible with the lactone rings of 14-membered and 16-membered macrolides adopting different conformations, enabling the latter compounds to avoid a steric clash with 2058G. This difference, together with interactions conveyed via substituents that are specific to certain ketolide and macrolide sub-classes, influences the binding to the large ribosomal subunit. Our genetic data show no support for a derivatized-macrolide binding site that has been proposed to be located further down the tunnel.
Collapse
|
Journal Article |
21 |
69 |