Lin L, Frelinger J, Jiang W, Finak G, Seshadri C, Bart PA, Pantaleo G, McElrath J, DeRosa S, Gottardo R. Identification and visualization of multidimensional antigen-specific T-cell populations in polychromatic cytometry data.
Cytometry A 2015;
87:675-82. [PMID:
25908275 PMCID:
PMC4482785 DOI:
10.1002/cyto.a.22623]
[Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/24/2014] [Accepted: 12/10/2014] [Indexed: 11/08/2022]
Abstract
An important aspect of immune monitoring for vaccine development, clinical trials, and research is the detection, measurement, and comparison of antigen-specific T-cells from subject samples under different conditions. Antigen-specific T-cells compose a very small fraction of total T-cells. Developments in cytometry technology over the past five years have enabled the measurement of single-cells in a multivariate and high-throughput manner. This growth in both dimensionality and quantity of data continues to pose a challenge for effective identification and visualization of rare cell subsets, such as antigen-specific T-cells. Dimension reduction and feature extraction play pivotal role in both identifying and visualizing cell populations of interest in large, multi-dimensional cytometry datasets. However, the automated identification and visualization of rare, high-dimensional cell subsets remains challenging. Here we demonstrate how a systematic and integrated approach combining targeted feature extraction with dimension reduction can be used to identify and visualize biological differences in rare, antigen-specific cell populations. By using OpenCyto to perform semi-automated gating and features extraction of flow cytometry data, followed by dimensionality reduction with t-SNE we are able to identify polyfunctional subpopulations of antigen-specific T-cells and visualize treatment-specific differences between them.
Collapse