Ferrini P, Koelewijn SF, Van Aelst J, Nuttens N, Sels BF. Zeolites as sustainable catalysts for the selective synthesis of renewable bisphenols from lignin-derived monomers.
CHEMSUSCHEM 2017;
10:2249-2257. [PMID:
28375553 DOI:
10.1002/cssc.201700338]
[Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/04/2017] [Indexed: 06/07/2023]
Abstract
Alternative biobased bisphenols from lignocellulosic biomass are not only favorable to reduce the environmental impact of current petroleum-derived plastics, but they can be simultaneously beneficial for health issues related to bisphenol A (BPA). Additionally, conventional BPA synthesis entails a large excess of unrecoverable homogeneous acid catalyst (e.g., HCl) or unrecyclable thermolabile sulfonated resins. In this report, zeolites are proposed as recoverable and thermally stable solid acids for the Brønsted-acid-catalyzed condensation between 4-methylguaiacol and formaldehyde to selectively produce renewable bisphenols. It is found that the Brønsted-acid-site density plays a pivotal role for catalyst performance. In particular, the cheap and environmentally friendly FAU 40 exhibits outstanding activity (turnover frequency of 496 h-1 ) and selectivity (>95 %), outperforming even the best benchmark catalyst. Additionally, the zeolite can be easily recycled without activity loss after regeneration by coke burn-off. The catalytic zeolite system also seems very promising for other lignin-derived alkylphenols, alkylguaiacols, and alkylsyringols.
Collapse