1
|
Rottmann M, McNamara C, Yeung BKS, Lee MCS, Zou B, Russell B, Seitz P, Plouffe DM, Dharia NV, Tan J, Cohen SB, Spencer KR, González-Páez GE, Lakshminarayana SB, Goh A, Suwanarusk R, Jegla T, Schmitt EK, Beck HP, Brun R, Nosten F, Renia L, Dartois V, Keller TH, Fidock DA, Winzeler EA, Diagana TT. Spiroindolones, a potent compound class for the treatment of malaria. Science 2010; 329:1175-80. [PMID: 20813948 PMCID: PMC3050001 DOI: 10.1126/science.1193225] [Citation(s) in RCA: 936] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Recent reports of increased tolerance to artemisinin derivatives--the most recently adopted class of antimalarials--have prompted a need for new treatments. The spirotetrahydro-beta-carbolines, or spiroindolones, are potent drugs that kill the blood stages of Plasmodium falciparum and Plasmodium vivax clinical isolates at low nanomolar concentration. Spiroindolones rapidly inhibit protein synthesis in P. falciparum, an effect that is ablated in parasites bearing nonsynonymous mutations in the gene encoding the P-type cation-transporter ATPase4 (PfATP4). The optimized spiroindolone NITD609 shows pharmacokinetic properties compatible with once-daily oral dosing and has single-dose efficacy in a rodent malaria model.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
936 |
2
|
Yeung BKS, Zou B, Rottmann M, Lakshminarayana SB, Ang SH, Leong SY, Tan J, Wong J, Keller-Maerki S, Fischli C, Goh A, Schmitt EK, Krastel P, Francotte E, Kuhen K, Plouffe D, Henson K, Wagner T, Winzeler EA, Petersen F, Brun R, Dartois V, Diagana TT, Keller TH. Spirotetrahydro beta-carbolines (spiroindolones): a new class of potent and orally efficacious compounds for the treatment of malaria. J Med Chem 2010; 53:5155-64. [PMID: 20568778 PMCID: PMC6996867 DOI: 10.1021/jm100410f] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The antiplasmodial activity of a series of spirotetrahydro β-carbolines is described. Racemic spiroazepineindole (1) was identified from a phenotypic screen on wild type Plasmodium falciparum with an in vitro IC50 of 90 nM. Structure−activity relationships for the optimization of 1 to compound 20a (IC50 = 0.2 nM) including the identification of the active 1R,3S enantiomer and elimination of metabolic liabilities is presented. Improvement of the pharmacokinetic profile of the series translated to exceptional oral efficacy in the P. berghei infected malaria mouse model where full cure was achieved in four of five mice with three daily doses of 30 mg/kg.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
329 |
3
|
Pethe K, Sequeira PC, Agarwalla S, Rhee K, Kuhen K, Phong WY, Patel V, Beer D, Walker JR, Duraiswamy J, Jiricek J, Keller TH, Chatterjee A, Tan MP, Ujjini M, Rao SPS, Camacho L, Bifani P, Mak PA, Ma I, Barnes SW, Chen Z, Plouffe D, Thayalan P, Ng SH, Au M, Lee BH, Tan BH, Ravindran S, Nanjundappa M, Lin X, Goh A, Lakshminarayana SB, Shoen C, Cynamon M, Kreiswirth B, Dartois V, Peters EC, Glynne R, Brenner S, Dick T. A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy. Nat Commun 2010; 1:57. [PMID: 20975714 PMCID: PMC3220188 DOI: 10.1038/ncomms1060] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 07/29/2010] [Indexed: 11/29/2022] Open
Abstract
Candidate antibacterials are usually identified on the basis of their in vitro activity. However, the apparent inhibitory activity of new leads can be misleading because most culture media do not reproduce an environment relevant to infection in vivo. In this study, while screening for novel anti-tuberculars, we uncovered how carbon metabolism can affect antimicrobial activity. Novel pyrimidine–imidazoles (PIs) were identified in a whole-cell screen against Mycobacterium tuberculosis. Lead optimization generated in vitro potent derivatives with desirable pharmacokinetic properties, yet without in vivo efficacy. Mechanism of action studies linked the PI activity to glycerol metabolism, which is not relevant for M. tuberculosis during infection. PIs induced self-poisoning of M. tuberculosis by promoting the accumulation of glycerol phosphate and rapid ATP depletion. This study underlines the importance of understanding central bacterial metabolism in vivo and of developing predictive in vitro culture conditions as a prerequisite for the rational discovery of new antibiotics. Candidate anti-tuberculosis drugs are often identified in whole-cell screens. Here, Pethe et al. show that inappropriate carbon-source selection can lead to the identification of compounds devoid of efficacy in vivo, underlining the importance of developing predictive in vitro screens.
Collapse
|
Journal Article |
15 |
224 |
4
|
Manjunatha UH, Vinayak S, Zambriski JA, Chao AT, Sy T, Noble CG, Bonamy GMC, Kondreddi RR, Zou B, Gedeck P, Brooks CF, Herbert GT, Sateriale A, Tandel J, Noh S, Lakshminarayana SB, Lim SH, Goodman LB, Bodenreider C, Feng G, Zhang L, Blasco F, Wagner J, Leong FJ, Striepen B, Diagana TT. A Cryptosporidium PI(4)K inhibitor is a drug candidate for cryptosporidiosis. Nature 2017; 546:376-380. [PMID: 28562588 PMCID: PMC5473467 DOI: 10.1038/nature22337] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 03/31/2017] [Indexed: 01/02/2023]
Abstract
Diarrhoeal disease is responsible for 8.6% of global child mortality. Recent epidemiological studies found the protozoan parasite Cryptosporidium to be a leading cause of paediatric diarrhoea, with particularly grave impact on infants and immunocompromised individuals. There is neither a vaccine nor an effective treatment. Here we establish a drug discovery process built on scalable phenotypic assays and mouse models that take advantage of transgenic parasites. Screening a library of compounds with anti-parasitic activity, we identify pyrazolopyridines as inhibitors of Cryptosporidium parvum and Cryptosporidium hominis. Oral treatment with the pyrazolopyridine KDU731 results in a potent reduction in intestinal infection of immunocompromised mice. Treatment also leads to rapid resolution of diarrhoea and dehydration in neonatal calves, a clinical model of cryptosporidiosis that closely resembles human infection. Our results suggest that the Cryptosporidium lipid kinase PI(4)K (phosphatidylinositol-4-OH kinase) is a target for pyrazolopyridines and that KDU731 warrants further preclinical evaluation as a drug candidate for the treatment of cryptosporidiosis.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
140 |
5
|
Lakshminarayana SB, Huat TB, Ho PC, Manjunatha UH, Dartois V, Dick T, Rao SPS. Comprehensive physicochemical, pharmacokinetic and activity profiling of anti-TB agents. J Antimicrob Chemother 2014; 70:857-67. [PMID: 25587994 DOI: 10.1093/jac/dku457] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The discovery and development of TB drugs has met limited success, with two new drugs approved over the last 40 years. Part of the difficulty resides in the lack of well-established in vitro or in vivo targets of potency and physicochemical and pharmacokinetic parameters. In an attempt to benchmark and compare such properties for anti-TB agents, we have experimentally determined and compiled these parameters for 36 anti-TB compounds, using standardized and centralized assays, thus ensuring direct comparability across drugs and drug classes. METHODS Potency parameters included growth inhibition, cidal activity against growing and non-growing bacteria and activity against intracellular mycobacteria. Pharmacokinetic parameters included basic physicochemical properties, solubility, permeability and metabolic stability. We then attempted to establish correlations between physicochemical, in vitro and in vivo pharmacokinetic and pharmacodynamic indices to tentatively inform future drug discovery efforts. RESULTS Two-thirds of the compounds tested showed bactericidal and intramacrophage activity. Most compounds exhibited favourable solubility, permeability and metabolic stability in standard in vitro pharmacokinetic assays. An analysis of human pharmacokinetic parameters revealed associations between lipophilicity and volume of distribution, clearance, plasma protein binding and oral bioavailability. Not surprisingly, most compounds with favourable pharmacokinetic properties complied with Lipinski's rule of five. CONCLUSIONS However, most attempts to detect in vitro-in vivo correlations were unsuccessful, emphasizing the challenges of anti-TB drug discovery. The objective of this work is to provide a reference dataset for the TB drug discovery community with a focus on comparative in vitro potency and pharmacokinetics.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
109 |
6
|
Manjunatha UH, S Rao SP, Kondreddi RR, Noble CG, Camacho LR, Tan BH, Ng SH, Ng PS, Ma NL, Lakshminarayana SB, Herve M, Barnes SW, Yu W, Kuhen K, Blasco F, Beer D, Walker JR, Tonge PJ, Glynne R, Smith PW, Diagana TT. Direct inhibitors of InhA are active against Mycobacterium tuberculosis. Sci Transl Med 2015; 7:269ra3. [PMID: 25568071 DOI: 10.1126/scitranslmed.3010597] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
New chemotherapeutic agents are urgently required to combat the global spread of multidrug-resistant tuberculosis (MDR-TB). The mycobacterial enoyl reductase InhA is one of the few clinically validated targets in tuberculosis drug discovery. We report the identification of a new class of direct InhA inhibitors, the 4-hydroxy-2-pyridones, using phenotypic high-throughput whole-cell screening. This class of orally active compounds showed potent bactericidal activity against common isoniazid-resistant TB clinical isolates. Biophysical studies revealed that 4-hydroxy-2-pyridones bound specifically to InhA in an NADH (reduced form of nicotinamide adenine dinucleotide)-dependent manner and blocked the enoyl substrate-binding pocket. The lead compound NITD-916 directly blocked InhA in a dose-dependent manner and showed in vivo efficacy in acute and established mouse models of Mycobacterium tuberculosis infection. Collectively, our structural and biochemical data open up new avenues for rational structure-guided optimization of the 4-hydroxy-2-pyridone class of compounds for the treatment of MDR-TB.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
87 |
7
|
Wu T, Nagle A, Kuhen K, Gagaring K, Borboa R, Francek C, Chen Z, Plouffe D, Goh A, Lakshminarayana SB, Wu J, Ang HQ, Zeng P, Kang ML, Tan W, Tan M, Ye N, Lin X, Caldwell C, Ek J, Skolnik S, Liu F, Wang J, Chang J, Li C, Hollenbeck T, Tuntland T, Isbell J, Fischli C, Brun R, Rottmann M, Dartois V, Keller T, Diagana T, Winzeler E, Glynne R, Tully DC, Chatterjee AK. Imidazolopiperazines: hit to lead optimization of new antimalarial agents. J Med Chem 2011; 54:5116-30. [PMID: 21644570 PMCID: PMC6950218 DOI: 10.1021/jm2003359] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Starting from a hit series from a GNF compound library collection and based on a cell-based proliferation assay of Plasmodium falciparum, a novel imidazolopiperazine scaffold was optimized. SAR for this series of compounds is discussed, focusing on optimization of cellular potency against wild-type and drug resistant parasites and improvement of physiochemical and pharmacokinetic properties. The lead compounds in this series showed good potencies in vitro and decent oral exposure levels in vivo. In a Plasmodium berghei mouse infection model, one lead compound lowered the parasitemia level by 99.4% after administration of 100 mg/kg single oral dose and prolonged mice survival by an average of 17.0 days. The lead compounds were also well-tolerated in the preliminary in vitro toxicity studies and represents an interesting lead for drug development.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
83 |
8
|
Nagle A, Wu T, Kuhen K, Gagaring K, Borboa R, Francek C, Chen Z, Plouffe D, Lin X, Caldwell C, Ek J, Skolnik S, Liu F, Wang J, Chang J, Li C, Liu B, Hollenbeck T, Tuntland T, Isbell J, Chuan T, Alper PB, Fischli C, Brun R, Lakshminarayana SB, Rottmann M, Diagana TT, Winzeler EA, Glynne R, Tully DC, Chatterjee AK. Imidazolopiperazines: lead optimization of the second-generation antimalarial agents. J Med Chem 2012; 55:4244-73. [PMID: 22524250 PMCID: PMC3350218 DOI: 10.1021/jm300041e] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
On the basis of the initial success of optimization of a novel series of imidazolopiperazines, a second generation of compounds involving changes in the core piperazine ring was synthesized to improve antimalarial properties. These changes were carried out to further improve the potency and metabolic stability of the compounds by leveraging the outcome of a set of in vitro metabolic identification studies. The optimized 8,8-dimethyl imidazolopiperazine analogues exhibited improved potency, in vitro metabolic stability profile and, as a result, enhanced oral exposure in vivo in mice. The optimized compounds were found to be more efficacious than the current antimalarials in a malaria mouse model. They exhibit moderate oral exposure in rat pharmacokinetic studies to achieve sufficient multiples of the oral exposure at the efficacious dose in toxicology studies.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
75 |
9
|
Kondreddi RR, Jiricek J, Rao SPS, Lakshminarayana SB, Camacho LR, Rao R, Herve M, Bifani P, Ma NL, Kuhen K, Goh A, Chatterjee AK, Dick T, Diagana TT, Manjunatha UH, Smith PW. Design, Synthesis, and Biological Evaluation of Indole-2-carboxamides: A Promising Class of Antituberculosis Agents. J Med Chem 2013; 56:8849-59. [DOI: 10.1021/jm4012774] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
12 |
73 |
10
|
Chang J, Schul W, Butters TD, Yip A, Liu B, Goh A, Lakshminarayana SB, Alonzi D, Reinkensmeier G, Pan X, Qu X, Weidner JM, Wang L, Yu W, Borune N, Kinch MA, Rayahin JE, Moriarty R, Xu X, Shi PY, Guo JT, Block TM. Combination of α-glucosidase inhibitor and ribavirin for the treatment of dengue virus infection in vitro and in vivo. Antiviral Res 2010; 89:26-34. [PMID: 21073903 DOI: 10.1016/j.antiviral.2010.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/26/2010] [Accepted: 11/03/2010] [Indexed: 10/18/2022]
Abstract
Cellular α-glucosidases I and II are enzymes that sequentially trim the three terminal glucoses in the N-linked oligosaccharides of viral envelope glycoproteins. This process is essential for the proper folding of viral glycoproteins and subsequent assembly of many enveloped viruses, including dengue virus (DENV). Imino sugars are substrate mimics of α-glucosidases I and II. In this report, we show that two oxygenated alkyl imino sugar derivatives, CM-9-78 and CM-10-18, are potent inhibitors of both α-glucosidases I and II in vitro and in treated animals, and efficiently inhibit DENV infection of cultured human cells. Pharmacokinetic studies reveal that both compounds are well tolerated at doses up to 100mg/kg in rats and have favorable pharmacokinetic properties and bioavailability in mice. Moreover, we showed that oral administration of either CM-9-78 or CM-10-18 reduces the peak viremia of DENV in mice. Interestingly, while treatment of DENV infected mice with ribavirin alone did not reduce the viremia, combination therapy of ribavirin with sub-effective dose of CM-10-18 demonstrated a significantly enhanced antiviral activity, as indicated by a profound reduction of the viremia. Our findings thus suggest that combination therapy of two broad-spectrum antiviral agents may provide a practically useful approach for the treatment of DENV infection.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
62 |
11
|
Naga Raju GJ, Sarita P, Ramana Murty GAV, Ravi Kumar M, Reddy BS, Charles MJ, Lakshminarayana S, Reddy TS, Reddy SB, Vijayan V. Estimation of trace elements in some anti-diabetic medicinal plants using PIXE technique. Appl Radiat Isot 2006; 64:893-900. [PMID: 16580220 DOI: 10.1016/j.apradiso.2006.02.085] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 02/17/2006] [Accepted: 02/17/2006] [Indexed: 11/17/2022]
Abstract
Trace elemental analysis was carried out in various parts of some anti-diabetic medicinal plants using PIXE technique. A 3MeV proton beam was used to excite the samples. The elements Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb and Sr were identified and their concentrations were estimated. The results of the present study provide justification for the usage of these medicinal plants in the treatment of diabetes mellitus (DM) since they are found to contain appreciable amounts of the elements K, Ca, Cr, Mn, Cu, and Zn, which are responsible for potentiating insulin action. Our results show that the analyzed medicinal plants can be considered as potential sources for providing a reasonable amount of the required elements other than diet to the patients of DM. Moreover, these results can be used to set new standards for prescribing the dosage of the herbal drugs prepared from these plant materials.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
44 |
12
|
Saldivia M, Fang E, Ma X, Myburgh E, Carnielli JBT, Bower-Lepts C, Brown E, Ritchie R, Lakshminarayana SB, Chen YL, Patra D, Ornelas E, Koh HXY, Williams SL, Supek F, Paape D, McCulloch R, Kaiser M, Barrett MP, Jiricek J, Diagana TT, Mottram JC, Rao SPS. Targeting the trypanosome kinetochore with CLK1 protein kinase inhibitors. Nat Microbiol 2020; 5:1207-1216. [PMID: 32661312 PMCID: PMC7610364 DOI: 10.1038/s41564-020-0745-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/25/2020] [Indexed: 11/09/2022]
Abstract
The kinetochore is a macromolecular structure that assembles on the centromeres of chromosomes and provides the major attachment point for spindle microtubules during mitosis. In Trypanosoma brucei, the proteins that make up the kinetochore are highly divergent; the inner kinetochore comprises at least 20 distinct and essential proteins (KKT1-20) that include four protein kinases-CLK1 (also known as KKT10), CLK2 (also known as KKT19), KKT2 and KKT3. Here, we report the identification and characterization of the amidobenzimidazoles (AB) protein kinase inhibitors that show nanomolar potency against T. brucei bloodstream forms, Leishmania and Trypanosoma cruzi. We performed target deconvolution analysis using a selection of 29 T. brucei mutants that overexpress known essential protein kinases, and identified CLK1 as a primary target. Biochemical studies and the co-crystal structure of CLK1 in complex with AB1 show that the irreversible competitive inhibition of CLK1 is dependent on a Michael acceptor forming an irreversible bond with Cys 215 in the ATP-binding pocket, a residue that is not present in human CLK1, thereby providing selectivity. Chemical inhibition of CLK1 impairs inner kinetochore recruitment and compromises cell-cycle progression, leading to cell death. This research highlights a unique drug target for trypanosomatid parasitic protozoa and a new chemical tool for investigating the function of their divergent kinetochores.
Collapse
|
research-article |
5 |
42 |
13
|
Moquin SA, Simon O, Karuna R, Lakshminarayana SB, Yokokawa F, Wang F, Saravanan C, Zhang J, Day CW, Chan K, Wang QY, Lu S, Dong H, Wan KF, Lim SP, Liu W, Seh CC, Chen YL, Xu H, Barkan DT, Kounde CS, Sim WLS, Wang G, Yeo HQ, Zou B, Chan WL, Ding M, Song JG, Li M, Osborne C, Blasco F, Sarko C, Beer D, Bonamy GMC, Sasseville VG, Shi PY, Diagana TT, Yeung BKS, Gu F. NITD-688, a pan-serotype inhibitor of the dengue virus NS4B protein, shows favorable pharmacokinetics and efficacy in preclinical animal models. Sci Transl Med 2021; 13:13/579/eabb2181. [PMID: 33536278 DOI: 10.1126/scitranslmed.abb2181] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus that poses a threat to public health, yet no antiviral drug is available. We performed a high-throughput phenotypic screen using the Novartis compound library and identified candidate chemical inhibitors of DENV. This chemical series was optimized to improve properties such as anti-DENV potency and solubility. The lead compound, NITD-688, showed strong potency against all four serotypes of DENV and demonstrated excellent oral efficacy in infected AG129 mice. There was a 1.44-log reduction in viremia when mice were treated orally at 30 milligrams per kilogram twice daily for 3 days starting at the time of infection. NITD-688 treatment also resulted in a 1.16-log reduction in viremia when mice were treated 48 hours after infection. Selection of resistance mutations and binding studies with recombinant proteins indicated that the nonstructural protein 4B is the target of NITD-688. Pharmacokinetic studies in rats and dogs showed a long elimination half-life and good oral bioavailability. Extensive in vitro safety profiling along with exploratory rat and dog toxicology studies showed that NITD-688 was well tolerated after 7-day repeat dosing, demonstrating that NITD-688 may be a promising preclinical candidate for the treatment of dengue.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
36 |
14
|
Yokokawa F, Wang G, Chan WL, Ang SH, Wong J, Ma I, Rao SPS, Manjunatha U, Lakshminarayana SB, Herve M, Kounde C, Tan BH, Thayalan P, Ng SH, Nanjundappa M, Ravindran S, Gee P, Tan M, Wei L, Goh A, Chen PY, Lee KS, Zhong C, Wagner T, Dix I, Chatterjee AK, Pethe K, Kuhen K, Glynne R, Smith P, Bifani P, Jiricek J. Discovery of tetrahydropyrazolopyrimidine carboxamide derivatives as potent and orally active antitubercular agents. ACS Med Chem Lett 2013; 4:451-5. [PMID: 24900693 DOI: 10.1021/ml400071a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/01/2013] [Indexed: 11/29/2022] Open
Abstract
Tetrahydropyrazolo[1,5-a]pyrimidine scaffold was identified as a hit series from a Mycobacterium tuberculosis (Mtb) whole cell high through-put screening (HTS) campaign. A series of derivatives of this class were synthesized to evaluate their structure-activity relationship (SAR) and structure-property relationship (SPR). Compound 9 had a promising in vivo DMPK profile in mouse and exhibited potent in vivo activity in a mouse efficacy model, achieving a reduction of 3.5 log CFU of Mtb after oral administration to infected mice once a day at 100 mg/kg for 28 days. Thus, compound 9 is a potential candidate for inclusion in combination therapies for both drug-sensitive and drug-resistant TB.
Collapse
|
Journal Article |
12 |
32 |
15
|
Cherian J, Choi I, Nayyar A, Manjunatha UH, Mukherjee T, Lee YS, Boshoff HI, Singh R, Ha YH, Goodwin M, Lakshminarayana SB, Niyomrattanakit P, Jiricek J, Ravindran S, Dick T, Keller TH, Dartois V, Barry CE. Structure-activity relationships of antitubercular nitroimidazoles. 3. Exploration of the linker and lipophilic tail of ((s)-2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazin-6-yl)-(4-trifluoromethoxybenzyl)amine (6-amino PA-824). J Med Chem 2011; 54:5639-59. [PMID: 21755942 PMCID: PMC3158291 DOI: 10.1021/jm1010644] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The (S)-2-nitro-6-(4-(trifluoromethoxy)benzyloxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine named PA-824 (1) has demonstrated antitubercular activity in vitro and in animal models and is currently in clinical trials. We synthesized derivatives at three positions of the 4-(trifluoromethoxy)benzylamino tail, and these were tested for whole-cell activity against both replicating and nonreplicating Mycobacterium tuberculosis (Mtb). In addition, we determined their kinetic parameters as substrates of the deazaflavin-dependent nitroreductase (Ddn) from Mtb that reductively activates these pro-drugs. These studies yielded multiple compounds with 40 nM aerobic whole cell activity and 1.6 μM anaerobic whole cell activity: 10-fold improvements over both characteristics from the parent molecule. Some of these compounds exhibited enhanced solubility with acceptable stability to microsomal and in vivo metabolism. Analysis of the conformational preferences of these analogues using quantum chemistry suggests a preference for a pseudoequatorial orientation of the linker and lipophilic tail.
Collapse
|
Research Support, N.I.H., Intramural |
14 |
30 |
16
|
Heimbach T, Lakshminarayana SB, Hu W, He H. Practical anticipation of human efficacious doses and pharmacokinetics using in vitro and preclinical in vivo data. AAPS J 2009; 11:602-14. [PMID: 19707878 PMCID: PMC2758129 DOI: 10.1208/s12248-009-9136-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Accepted: 07/30/2009] [Indexed: 01/30/2023] Open
Abstract
Accurate predictions of human pharmacokinetic and pharmacodynamic (PK/PD) profiles are critical in early drug development, as safe, efficacious, and "developable" dosing regimens of promising compounds have to be identified. While advantages of successful integration of preclinical PK/PD data in the "anticipation" of human doses (AHD) have been recognized, pharmaceutical scientists have faced difficulties with practical implementation, especially for PK/PD profile projections of compounds with challenging absorption, distribution, metabolism, excretion and formulation properties. In this article, practical projection approaches for formulation-dependent human PK/PD parameters and profiles of Biopharmaceutics Classification System classes I-IV drugs based on preclinical data are described. Case examples for "AHD" demonstrate the utility of preclinical and clinical PK/PD modeling for formulation risk identification, lead candidate differentiation, and prediction of clinical outcome. The application of allometric scaling methods and physiologically based pharmacokinetic approaches for clearance or volume of distribution projections is described using GastroPlus. Methods to enhance prediction confidence such as in vitro-in vivo extrapolations in clearance predictions using in vitro microsomal data are discussed. Examples for integration of clinical PK/PD and formulation data from frontrunner compounds via "reverse pharmacology strategies" that minimize uncertainty with PK/PD predictions are included. The use of integrated softwares such as GastroPlus in combination with established PK projection methods allow the projection of formulation-dependent preclinical and human PK/PD profiles required for compound differentiation and development risk assessments.
Collapse
|
research-article |
16 |
28 |
17
|
Zou B, Nagle A, Chatterjee AK, Leong SY, Tan LJ, Sim WLS, Mishra P, Guntapalli P, Tully DC, Lakshminarayana SB, Lim CS, Tan YC, Abas SN, Bodenreider C, Kuhen KL, Gagaring K, Borboa R, Chang J, Li C, Hollenbeck T, Tuntland T, Zeeman AM, Kocken CHM, McNamara C, Kato N, Winzeler EA, Yeung BKS, Diagana TT, Smith PW, Roland J. Lead optimization of imidazopyrazines: a new class of antimalarial with activity on Plasmodium liver stages. ACS Med Chem Lett 2014; 5:947-50. [PMID: 25147620 DOI: 10.1021/ml500244m] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/06/2014] [Indexed: 02/02/2023] Open
Abstract
Imidazopyridine 1 was identified from a phenotypic screen against P. falciparum (Pf) blood stages and subsequently optimized for activity on liver-stage schizonts of the rodent parasite P. yoelii (Py) as well as hypnozoites of the simian parasite P. cynomolgi (Pc). We applied these various assays to the cell-based lead optimization of the imidazopyrazines, exemplified by 3 (KAI407), and show that optimized compounds within the series with improved pharmacokinetic properties achieve causal prophylactic activity in vivo and may have the potential to target the dormant stages of P. vivax malaria.
Collapse
|
Journal Article |
11 |
25 |
18
|
Lakshminarayana SB, Boshoff HIM, Cherian J, Ravindran S, Goh A, Jiricek J, Nanjundappa M, Nayyar A, Gurumurthy M, Singh R, Dick T, Blasco F, Barry CE, Ho PC, Manjunatha UH. Pharmacokinetics-pharmacodynamics analysis of bicyclic 4-nitroimidazole analogs in a murine model of tuberculosis. PLoS One 2014; 9:e105222. [PMID: 25141257 PMCID: PMC4139342 DOI: 10.1371/journal.pone.0105222] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/18/2014] [Indexed: 12/02/2022] Open
Abstract
PA-824 is a bicyclic 4-nitroimidazole, currently in phase II clinical trials for the treatment of tuberculosis. Dose fractionation pharmacokinetic-pharmacodynamic studies in mice indicated that the driver of PA-824 invivo efficacy is the time during which the free drug concentrations in plasma are above the MIC (fT>MIC). In this study, a panel of closely related potent bicyclic 4-nitroimidazoles was profiled in both invivo PK and efficacy studies. In an established murine TB model, the efficacy of diverse nitroimidazole analogs ranged between 0.5 and 2.3 log CFU reduction compared to untreated controls. Further, a retrospective analysis was performed for a set of seven nitroimidazole analogs to identify the PK parameters that correlate with invivo efficacy. Our findings show that the invivo efficacy of bicyclic 4-nitroimidazoles correlated better with lung PK than with plasma PK. Further, nitroimidazole analogs with moderate-to-high volume of distribution and Lung to plasma ratios of >2 showed good efficacy. Among all the PK-PD indices, total lung T>MIC correlated the best with invivo efficacy (rs = 0.88) followed by lung Cmax/MIC and AUC/MIC. Thus, lung drug distribution studies could potentially be exploited to guide the selection of compounds for efficacy studies, thereby accelerating the drug discovery efforts in finding new nitroimidazole analogs.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
24 |
19
|
Taft BR, Yokokawa F, Kirrane T, Mata AC, Huang R, Blaquiere N, Waldron G, Zou B, Simon O, Vankadara S, Chan WL, Ding M, Sim S, Straimer J, Guiguemde A, Lakshminarayana SB, Jain JP, Bodenreider C, Thompson C, Lanshoeft C, Shu W, Fang E, Qumber J, Chan K, Pei L, Chen YL, Schulz H, Lim J, Abas SN, Ang X, Liu Y, Angulo-Barturen I, Jiménez-Díaz MB, Gamo FJ, Crespo-Fernandez B, Rosenthal PJ, Cooper RA, Tumwebaze P, Aguiar ACC, Campo B, Campbell S, Wagner J, Diagana TT, Sarko C. Discovery and Preclinical Pharmacology of INE963, a Potent and Fast-Acting Blood-Stage Antimalarial with a High Barrier to Resistance and Potential for Single-Dose Cures in Uncomplicated Malaria. J Med Chem 2022; 65:3798-3813. [PMID: 35229610 PMCID: PMC9278664 DOI: 10.1021/acs.jmedchem.1c01995] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A series of 5-aryl-2-amino-imidazothiadiazole (ITD) derivatives
were identified by a phenotype-based high-throughput screening using
a blood stage Plasmodium falciparum (Pf) growth inhibition assay. A lead optimization program focused on
improving antiplasmodium potency, selectivity against human kinases,
and absorption, distribution, metabolism, excretion, and toxicity
properties and extended pharmacological profiles culminated in the
identification of INE963 (1), which demonstrates
potent cellular activity against Pf 3D7 (EC50 = 0.006 μM) and achieves “artemisinin-like”
kill kinetics in vitro with a parasite clearance
time of <24 h. A single dose of 30 mg/kg is fully curative in the Pf-humanized severe combined immunodeficient mouse model. INE963 (1) also exhibits a high barrier to resistance
in drug selection studies and a long half-life (T1/2) across species. These properties suggest the significant
potential for INE963 (1) to provide a curative
therapy for uncomplicated malaria with short dosing regimens. For
these reasons, INE963 (1) was progressed
through GLP toxicology studies and is now undergoing Ph1 clinical
trials.
Collapse
|
|
3 |
15 |
20
|
Rao SPS, Gould MK, Noeske J, Saldivia M, Jumani RS, Ng PS, René O, Chen YL, Kaiser M, Ritchie R, Francisco AF, Johnson N, Patra D, Cheung H, Deniston C, Schenk AD, Cortopassi WA, Schmidt RS, Wiedemar N, Thomas B, Palkar R, Ghafar NA, Manoharan V, Luu C, Gable JE, Wan KF, Myburgh E, Mottram JC, Barnes W, Walker J, Wartchow C, Aziz N, Osborne C, Wagner J, Sarko C, Kelly JM, Manjunatha UH, Mäser P, Jiricek J, Lakshminarayana SB, Barrett MP, Diagana TT. Cyanotriazoles are selective topoisomerase II poisons that rapidly cure trypanosome infections. Science 2023; 380:1349-1356. [PMID: 37384702 DOI: 10.1126/science.adh0614] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/24/2023] [Indexed: 07/01/2023]
Abstract
Millions who live in Latin America and sub-Saharan Africa are at risk of trypanosomatid infections, which cause Chagas disease and human African trypanosomiasis (HAT). Improved HAT treatments are available, but Chagas disease therapies rely on two nitroheterocycles, which suffer from lengthy drug regimens and safety concerns that cause frequent treatment discontinuation. We performed phenotypic screening against trypanosomes and identified a class of cyanotriazoles (CTs) with potent trypanocidal activity both in vitro and in mouse models of Chagas disease and HAT. Cryo-electron microscopy approaches confirmed that CT compounds acted through selective, irreversible inhibition of trypanosomal topoisomerase II by stabilizing double-stranded DNA:enzyme cleavage complexes. These findings suggest a potential approach toward successful therapeutics for the treatment of Chagas disease.
Collapse
|
|
2 |
13 |
21
|
Koester DC, Marx VM, Williams S, Jiricek J, Dauphinais M, René O, Miller SL, Zhang L, Patra D, Chen YL, Cheung H, Gable J, Lakshminarayana SB, Osborne C, Galarneau JR, Kulkarni U, Richmond W, Bretz A, Xiao L, Supek F, Wiesmann C, Honnappa S, Be C, Mäser P, Kaiser M, Ritchie R, Barrett MP, Diagana TT, Sarko C, Rao SPS. Discovery of Novel Quinoline-Based Proteasome Inhibitors for Human African Trypanosomiasis (HAT). J Med Chem 2022; 65:11776-11787. [PMID: 35993839 PMCID: PMC9469205 DOI: 10.1021/acs.jmedchem.2c00791] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human African Trypanosomiasis (HAT) is a vector-borne disease caused by kinetoplastid parasites of the Trypanosoma genus. The disease proceeds in two stages, with a hemolymphatic blood stage and a meningo-encephalic brain stage. In the latter stage, the parasite causes irreversible damage to the brain leading to sleep cycle disruption and is fatal if untreated. An orally bioavailable treatment is highly desirable. In this study, we present a brain-penetrant, parasite-selective 20S proteasome inhibitor that was rapidly optimized from an HTS singleton hit to drug candidate compound 7 that showed cure in a stage II mouse efficacy model. Here, we describe hit expansion and lead optimization campaign guided by cryo-electron microscopy and an in silico model to predict the brain-to-plasma partition coefficient Kp as an important parameter to prioritize compounds for synthesis. The model combined with in vitro and in vivo experiments allowed us to advance compounds with favorable unbound brain-to-plasma ratios (Kp,uu) to cure a CNS disease such as HAT.
Collapse
|
research-article |
3 |
12 |
22
|
Rao SPS, Lakshminarayana SB, Jiricek J, Kaiser M, Ritchie R, Myburgh E, Supek F, Tuntland T, Nagle A, Molteni V, Mäser P, Mottram JC, Barrett MP, Diagana TT. Anti-Trypanosomal Proteasome Inhibitors Cure Hemolymphatic and Meningoencephalic Murine Infection Models of African Trypanosomiasis. Trop Med Infect Dis 2020; 5:tropicalmed5010028. [PMID: 32079320 PMCID: PMC7157554 DOI: 10.3390/tropicalmed5010028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 11/29/2022] Open
Abstract
Current anti-trypanosomal therapies suffer from problems of longer treatment duration, toxicity and inadequate efficacy, hence there is a need for safer, more efficacious and ‘easy to use’ oral drugs. Previously, we reported the discovery of the triazolopyrimidine (TP) class as selective kinetoplastid proteasome inhibitors with in vivo efficacy in mouse models of leishmaniasis, Chagas Disease and African trypanosomiasis (HAT). For the treatment of HAT, development compounds need to have excellent penetration to the brain to cure the meningoencephalic stage of the disease. Here we describe detailed biological and pharmacological characterization of triazolopyrimidine compounds in HAT specific assays. The TP class of compounds showed single digit nanomolar potency against Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense strains. These compounds are trypanocidal with concentration-time dependent kill and achieved relapse-free cure in vitro. Two compounds, GNF6702 and a new analog NITD689, showed favorable in vivo pharmacokinetics and significant brain penetration, which enabled oral dosing. They also achieved complete cure in both hemolymphatic (blood) and meningoencephalic (brain) infection of human African trypanosomiasis mouse models. Mode of action studies on this series confirmed the 20S proteasome as the target in T. brucei. These proteasome inhibitors have the potential for further development into promising new treatment for human African trypanosomiasis.
Collapse
|
Journal Article |
5 |
8 |
23
|
Mueller R, Reddy V, Nchinda AT, Mebrahtu F, Taylor D, Lawrence N, Tanner L, Barnabe M, Eyermann CJ, Zou B, Kondreddi RR, Lakshminarayana SB, Rottmann M, Street LJ, Chibale K. Lerisetron Analogues with Antimalarial Properties: Synthesis, Structure-Activity Relationship Studies, and Biological Assessment. ACS OMEGA 2020; 5:6967-6982. [PMID: 32258933 PMCID: PMC7114883 DOI: 10.1021/acsomega.0c00327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/05/2020] [Indexed: 06/11/2023]
Abstract
A phenotypic whole cell high-throughput screen against the asexual blood and liver stages of the malaria parasite identified a benzimidazole chemical series. Among the hits were the antiemetic benzimidazole drug Lerisetron 1 (IC50 NF54 = 0.81 μM) and its methyl-substituted analogue 2 (IC50 NF54 = 0.098 μM). A medicinal chemistry hit to lead effort led to the identification of chloro-substituted analogue 3 with high potency against the drug-sensitive NF54 (IC50 NF54 = 0.062 μM) and multidrug-resistant K1 (IC50 K1 = 0.054 μM) strains of the human malaria parasite Plasmodium falciparum. Compounds 2 and 3 gratifyingly showed in vivo efficacy in both Plasmodium berghei and P. falciparum mouse models of malaria. Cardiotoxicity risk as expressed in strong inhibition of the human ether-a-go-go-related gene (hERG) potassium channel was identified as a major liability to address. This led to the synthesis and biological assessment of around 60 analogues from which several compounds with improved antiplasmodial potency, relative to the lead compound 3, were identified.
Collapse
|
research-article |
5 |
7 |
24
|
Ravikumar B, Lakshminarayana S. Determination of the tissue inhomogeneity correction in high dose rate Brachytherapy for Iridium-192 source. J Med Phys 2012; 37:27-31. [PMID: 22363109 PMCID: PMC3283913 DOI: 10.4103/0971-6203.92717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 09/17/2011] [Accepted: 10/18/2011] [Indexed: 11/04/2022] Open
Abstract
In Brachytherapy treatment planning, the effects of tissue heterogeneities are commonly neglected due to lack of accurate, general and fast three-dimensional (3D) dose-computational algorithms. In performing dose calculations, it is assumed that the tumor and surrounding tissues constitute a uniform, homogeneous medium equivalent to water. In the recent past, three-dimensional computed tomography (3D-CT) based treatment planning for Brachytherapy applications has been popularly adopted. However, most of the current commercially available planning systems do not provide the heterogeneity corrections for Brachytherapy dosimetry. In the present study, we have measured and quantified the impact of inhomogeneity caused by different tissues with a 0.015 cc ion chamber. Measurements were carried out in wax phantom which was employed to measure the heterogeneity. Iridium-192 ((192)Ir) source from high dose rate (HDR) Brachytherapy machine was used as the radiation source. The reduction of dose due to tissue inhomogeneity was measured as the ratio of dose measured with different types of inhomogeneity (bone, spleen, liver, muscle and lung) to dose measured with homogeneous medium for different distances. It was observed that different tissues attenuate differently, with bone tissue showing maximum attenuation value and lung tissue resulting minimum value and rest of the tissues giving values lying in between those of bone and lung. It was also found that inhomogeneity at short distance is considerably more than that at larger distances.
Collapse
|
|
13 |
6 |
25
|
Sujitha K, Bharathi M, Lakshminarayana S, Shareef A, Lavanya B, SivKumar V. Physical Properties of Heat Cure Denture Base Resin after Incorporation of Methacrylic Acid. Contemp Clin Dent 2018; 9:S251-S255. [PMID: 30294153 PMCID: PMC6169284 DOI: 10.4103/ccd.ccd_172_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Introduction Heat cure acrylic resins are the most commonly used denture base materials. The important limitation is they may act as reservoir of microorganisms. The adherence of microorganisms can be reduced by chemical modification of the surface charge of denture base resin. Incorporation of methacrylic acid (MA) in the denture base resin gives a negative surface charge. A denture base having a negative surface charge may hinder the initial adhesion of microorganisms through repulsive electrostatic forces. Aims and Objectives The present in vitro study was performed to determine the effect of addition of antimicrobial agent MA on the flexural strength and surface roughness of heat cure denture base resin. Materials and Methods A total of 90 heat cure acrylic specimens were prepared. Of 90 specimens, 30 were prepared as Group I control group without addition of MA. Groups II and III specimens were prepared by adding 10% and 20% MA, respectively. Using universal testing machine and surface roughness tester, flexural strength and surface roughness of specimens measured. Results In the present study, decrease in the flexural strength was observed when the concentration of the MA increased in the denture base resin. A slight increase in the surface roughness was observed as the concentration of MA increased.
Collapse
|
|
7 |
3 |