1
|
Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989; 320:915-24. [PMID: 2648148 DOI: 10.1056/nejm198904063201407] [Citation(s) in RCA: 2266] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
Review |
36 |
2266 |
2
|
Ylä-Herttuala S, Palinski W, Rosenfeld ME, Parthasarathy S, Carew TE, Butler S, Witztum JL, Steinberg D. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest 1989; 84:1086-95. [PMID: 2794046 PMCID: PMC329764 DOI: 10.1172/jci114271] [Citation(s) in RCA: 1460] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Three lines of evidence are presented that low density lipoproteins gently extracted from human and rabbit atherosclerotic lesions (lesion LDL) greatly resembles LDL that has been oxidatively modified in vitro. First, lesion LDL showed many of the physical and chemical properties of oxidized LDL, properties that differ from those of plasma LDL: higher electrophoretic mobility, a higher density, higher free cholesterol content, and a higher proportion of sphingomyelin and lysophosphatidylcholine in the phospholipid fraction. A number of lower molecular weight fragments of apo B were found in lesion LDL, similar to in vitro oxidized LDL. Second, both the intact apo B and some of the apo B fragments of lesion LDL reacted in Western blots with antisera that recognize malondialdehyde-conjugated lysine and 4-hydroxynonenal lysine adducts, both of which are found in oxidized LDL; plasma LDL and LDL from normal human intima showed no such reactivity. Third, lesion LDL shared biological properties with oxidized LDL: compared with plasma LDL, lesion LDL produced much greater stimulation of cholesterol esterification and was degraded more rapidly by macrophages. Degradation of radiolabeled lesion LDL was competitively inhibited by unlabeled lesion LDL, by LDL oxidized with copper, by polyinosinic acid and by malondialdehyde-LDL, but not by native LDL, indicating uptake by the scavenger receptor(s). Finally, lesion LDL (but not normal intimal LDL or plasma LDL) was chemotactic for monocytes, as is oxidized LDL. These studies provide strong evidence that atherosclerotic lesions, both in man and in rabbit, contain oxidatively modified LDL.
Collapse
|
research-article |
36 |
1460 |
3
|
Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci U S A 1984; 81:3883-7. [PMID: 6587396 PMCID: PMC345326 DOI: 10.1073/pnas.81.12.3883] [Citation(s) in RCA: 1102] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Low density lipoprotein (LDL) incubated with cultured endothelial cells from rabbit aorta or human umbilical vein is altered in several ways (EC-modified): (i) It is degraded by macrophages much faster than LDL similarly incubated in the absence of cells or incubated with fibroblasts. (ii) Its electrophoretic mobility is increased. (iii) Its density is increased. We report here that antioxidants completely prevent these changes. We also report that these changes do not take place if transition metals in the medium are chelated with EDTA. During EC-modification as much as 40% of the LDL phosphatidylcholine is degraded to lysophosphatidylcholine by a phospholipase A2-like activity. When incubation conditions in the absence of cells were selected to favor oxidation--for example, by extending the time of incubation of LDL at low concentrations, or by increasing the Cu2+ concentration--LDL underwent changes very similar to those occurring in the presence of cells, including degradation of phosphatidylcholine. Hence, some phospholipase activity appears to be associated with the isolated LDL used in these studies. The results suggest a complex process in which endothelial cells modify LDL by mechanisms involving generation of free radicals and action of phospholipase (s).
Collapse
|
research-article |
41 |
1102 |
4
|
Palinski W, Rosenfeld ME, Ylä-Herttuala S, Gurtner GC, Socher SS, Butler SW, Parthasarathy S, Carew TE, Steinberg D, Witztum JL. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci U S A 1989; 86:1372-6. [PMID: 2465552 PMCID: PMC286692 DOI: 10.1073/pnas.86.4.1372] [Citation(s) in RCA: 1043] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It has been proposed that low density lipoprotein (LDL) must undergo oxidative modification before it can give rise to foam cells, the key component of the fatty streak lesion of atherosclerosis. Oxidation of LDL probably generates a broad spectrum of conjugates between fragments of oxidized fatty acids and apolipoprotein B. We now present three mutually supportive lines of evidence for oxidation of LDL in vivo: (i) Antibodies against oxidized LDL, malondialdehyde-lysine, or 4-hydroxynonenal-lysine recognize materials in the atherosclerotic lesions of LDL receptor-deficient rabbits; (ii) LDL gently extracted from lesions of these rabbits is recognized by an antiserum against malondialdehyde-conjugated LDL; (iii) autoantibodies against malondialdehyde-LDL (titers from 512 to greater than 4096) can be demonstrated in rabbit and human sera.
Collapse
|
research-article |
36 |
1043 |
5
|
Quinn MT, Parthasarathy S, Fong LG, Steinberg D. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci U S A 1987; 84:2995-8. [PMID: 3472245 PMCID: PMC304787 DOI: 10.1073/pnas.84.9.2995] [Citation(s) in RCA: 746] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Previous studies in this laboratory established that low density lipoprotein (LDL) incubated with cultured endothelial cells, smooth muscle cells, or macrophages undergoes free radical-catalyzed oxidative modification that generates lipid peroxides and extensive structural changes in the LDL molecule. The oxidatively modified LDL strongly inhibited chemotactic responses of the mouse resident peritoneal macrophage. The present studies show that this oxidized LDL does not inhibit the motility of mouse monocytes and actually exhibits a chemotactic activity for human monocytes; the chemotactic activity of the oxidized LDL resides in the lipid fraction. These findings allow us to propose a pathogenetic sequence by which elevated plasma LDL levels, followed by oxidative modification in the arterial wall, could sufficiently account for the generation of the lipid-laden foam cells and the initiation of the fatty streak, the earliest well-defined lesion in atherogenesis.
Collapse
|
research-article |
38 |
746 |
6
|
Parthasarathy S, Barnett J, Fong LG. High-density lipoprotein inhibits the oxidative modification of low-density lipoprotein. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1044:275-83. [PMID: 2344447 DOI: 10.1016/0005-2760(90)90314-n] [Citation(s) in RCA: 519] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxidatively modified low-density lipoprotein (LDL), generated as a result of incubation of LDL with specific cells (e.g., endothelial cells, EC) or redox metals like copper, has been suggested to be an atherogenic form of LDL. Epidemiological evidence suggests that higher concentrations of plasma high-density lipoprotein (HDL) are protective against the disease. The effect of HDL on the generation of the oxidatively modified LDL is described in the current study. Incubation of HDL with endothelial cells, or with copper, produced much lower amounts of thiobarbituric acid-reactive products (TBARS) as compared to incubations that contained LDL at equal protein concentrations. Such incubations also did not result in an enhanced degradation of the incubated HDL by macrophages in contrast to similarly incubated LDL. On the other hand, inclusion of HDL in the incubations that contained labeled LDL had a profound inhibitory effect on the subsequent degradation of the incubated LDL by the macrophages while having no effect on the generation of TBARS or the formation of conjugated dienes. This inhibition was not due to the modification of HDL as suggested by the following findings. (A) There was no enhanced macrophage degradation of the HDL incubated with EC or copper alone, together with LDL, despite an increased generation of TBARS. (B) HDL with the lysine groups blocked (acetyl HDL, malondialdehyde (MDA) HDL) was still able to prevent the modification of LDL and (C) acetyl HDL and MDA-HDL competed poorly for the degradation of oxidatively modified LDL. It is suggested that HDL may play a protective role in atherogenesis by preventing the generation of an oxidatively modified LDL. The mechanism of action of HDL may involve exchange of lipid peroxidation products between the lipoproteins.
Collapse
|
|
35 |
519 |
7
|
Quinn MT, Parthasarathy S, Steinberg D. Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci U S A 1988; 85:2805-9. [PMID: 3357891 PMCID: PMC280088 DOI: 10.1073/pnas.85.8.2805] [Citation(s) in RCA: 486] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Native low density lipoprotein (LDL) does not affect monocyte/macrophage motility. On the other hand, oxidatively modified LDL inhibits the motility of resident peritoneal macrophages yet acts as a chemotactic factor for circulating human monocytes. We now show that lysophosphatidylcholine (lyso-PtdCho), which is generated by a phospholipase A2 activity during LDL oxidation, is a potent chemotactic factor for monocytes. It is not chemotactic for neutrophils or for resident macrophages. Platelet-activating factor, after treatment with phospholipase A2, becomes chemotactic for monocytes, whereas the intact factor is not. Synthetic 1-palmitoyl-lyso-PtdCho showed chemotactic activity comparable to that of the lyso-PtdCho fraction derived from oxidized LDL. The results suggest that lyso-PtdCho in oxidized LDL may favor recruitment of monocytes into the arterial wall during the early stages of atherogenesis. Generation of lyso-PtdCho, either from LDL itself or from membrane phospholipids of damaged cells, could play a more general role in inflammatory processes throughout the body.
Collapse
|
research-article |
37 |
486 |
8
|
Parthasarathy S, Young SG, Witztum JL, Pittman RC, Steinberg D. Probucol inhibits oxidative modification of low density lipoprotein. J Clin Invest 1986; 77:641-4. [PMID: 3944273 PMCID: PMC423406 DOI: 10.1172/jci112349] [Citation(s) in RCA: 460] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previous studies have established that low density lipoprotein (LDL) incubated with endothelial cells (EC) undergoes extensive oxidative modification in structure and that the modified LDL is specifically recognized by the acetyl LDL receptor of the macrophage. Thus, in principle, EC-modified LDL could contribute to foam cell formation during atherogenesis. Oxidatively modified LDL is also potentially toxic to EC. The present studies show that addition of probucol during the incubation of LDL with EC prevents the increase in the electrophoretic mobility, the increase in peroxides, and the increase in subsequent susceptibility to macrophage degradation. It has also been shown that oxidation of LDL catalyzed by cupric ion induces many of the same changes occurring during EC modification. Addition of probucol (5 microM) also prevented this copper-catalyzed modification of LDL. Most importantly, samples of LDL isolated from plasma of hypercholesterolemic patients under treatment with conventional dosages of probucol were shown to be highly resistant to oxidative modification either by incubation with endothelial cells or by cupric ion in the absence of cells. The findings suggest the hypothetical but intriguing possibility that probucol, in addition to its recognized effects on plasma LDL levels, may inhibit atherogenesis by limiting oxidative LDL modification and thus foam cell formation and/or EC injury. Other compounds with antioxidant properties might behave similarly.
Collapse
|
research-article |
39 |
460 |
9
|
Palinski W, Ylä-Herttuala S, Rosenfeld ME, Butler SW, Socher SA, Parthasarathy S, Curtiss LK, Witztum JL. Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. ARTERIOSCLEROSIS (DALLAS, TEX.) 1990; 10:325-35. [PMID: 1693068 DOI: 10.1161/01.atv.10.3.325] [Citation(s) in RCA: 459] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Increasing evidence indicates that low density lipoprotein (LDL) has to be modified to induce foam cell formation. One such modification, oxidation of LDL, generates a number of highly reactive short chain-length aldehydic fragments of oxidized fatty acids capable of conjugating with lysine residues of apoprotein B. By immunizing animals with homologous malondialdehyde-modified LDL (MDA-LDL), 4-hydroxynonenal-LDL (4-HNE-LDL), and Cu+(+)-oxidized LDL, we developed polyvalent and monoclonal antibodies against three epitopes found in oxidatively modified LDL. The present article characterizes an antiserum and monoclonal antibody (MAL-2 and MDA2, respectively) specific for MDA-lysine, and an antiserum and monoclonal antibody (HNE-6 and NA59, respectively) specific for 4-HNE-lysine. In addition, a monoclonal antibody (OLF4-3C10) was developed against an as yet undefined epitope generated during Cu++ oxidation of LDL. With these antibodies, we demonstrated that MDA-lysine and 4-HNE-lysine adducts develop on apo-lipoprotein B during copper-induced oxidation of LDL in vitro. The application of these antibodies for immunocytochemical demonstration of oxidized lipoproteins in atherosclerotic lesions of progressive severity is described in the companion article. These antibodies should prove useful in studying the role of oxidatively modified lipoproteins as well as other oxidatively modified proteins in atherogenesis.
Collapse
|
|
35 |
459 |
10
|
Parthasarathy S, Printz DJ, Boyd D, Joy L, Steinberg D. Macrophage oxidation of low density lipoprotein generates a modified form recognized by the scavenger receptor. ARTERIOSCLEROSIS (DALLAS, TEX.) 1986; 6:505-10. [PMID: 3767695 DOI: 10.1161/01.atv.6.5.505] [Citation(s) in RCA: 399] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Incubation of low density lipoprotein (LDL) with endothelial cells or smooth muscle cells overnight has resulted in an oxidative modification of LDL that results in its recognition by macrophages by way of the acetyl LDL receptor. In the present study, we examined whether macrophages themselves can oxidize and modify LDL in a manner similar to that of endothelial cells. Incubation of 125I-labeled LDL with resident or thioglycollate-elicited macrophages for 24 hours in Ham's F-10 medium resulted in the appearance of thiobarbituric acid (TBA) reactive materials and trichloroacetic acid (TCA) soluble radioactivity in the medium. The LDL harvested from these incubations showed increased electrophoretic mobility and was degraded rapidly when added to fresh macrophages as compared to LDL previously incubated in the absence of cells. These macrophage-induced modifications could be prevented if the first incubation was carried out in the presence of the antioxidant butylated hydroxytoluene (BHT) or in Dulbecco's modified Eagle's medium (DMEM). The degradation of 125I-labeled macrophage-modified LDL by macrophages was competitively inhibited by unlabeled acetyl LDL or unlabeled endothelial cell-modified LDL but not by native LDL, indicating that the degradation was mediated by the acetyl LDL receptor.
Collapse
|
|
39 |
399 |
11
|
Steinbrecher UP, Witztum JL, Parthasarathy S, Steinberg D. Decrease in reactive amino groups during oxidation or endothelial cell modification of LDL. Correlation with changes in receptor-mediated catabolism. ARTERIOSCLEROSIS (DALLAS, TEX.) 1987; 7:135-43. [PMID: 3107534 DOI: 10.1161/01.atv.7.2.135] [Citation(s) in RCA: 375] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The monocyte/macrophage appears to be the precursor of many of the lipid-laden cells in atherosclerotic lesions, but the mechanism by which these cells accumulate cholesterol to become foam cells remains unclear. We have previously reported that cultured endothelial cells can modify low density lipoprotein (LDL) in a manner that leads to rapid uptake by the acetyl LDL receptor of macrophages. This modification involves free radical-induced peroxidation of LDL and is accompanied by many changes in the physicochemical properties of LDL including increased electrophoretic mobility, increased density, decreased content of esterified cholesterol, hydrolysis of phosphatidylcholine, and fragmentation of apolipoprotein B. Under conditions highly favorable to oxidation, a similar modification can occur even in the absence of cells. In the present studies, oxidation of LDL simply by exposure to 5 microM Cu++ resulted in a modification that was indistinguishable from that produced by endothelial cells. Moreover, it was demonstrated that LDL oxidation by either method is accompanied by a marked decreased in amino group reactivity, comparable to that seen with the chemical modifications of LDL that lead to recognition by the acetyl LDL receptor. Inhibitors of proteolytic enzymes did not reduce fragmentation of apolipoprotein B during oxidation. The rate of catabolism of intravenously injected oxidized LDL in guinea pigs was very rapid, and over 80% of the degradation occurred in the liver. The studies demonstrate that all of the changes associated with endothelial cell modification of LDL can be attributed to oxidation. The cells can, however, promote oxidation under conditions where it would otherwise occur very slowly.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
38 |
375 |
12
|
Arnold RS, Shi J, Murad E, Whalen AM, Sun CQ, Polavarapu R, Parthasarathy S, Petros JA, Lambeth JD. Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proc Natl Acad Sci U S A 2001; 98:5550-5. [PMID: 11331784 PMCID: PMC33250 DOI: 10.1073/pnas.101505898] [Citation(s) in RCA: 363] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nox1, a homologue of gp91phox, the catalytic moiety of the superoxide (O(2)(-))-generating NADPH oxidase of phagocytes, causes increased O(2)(-) generation, increased mitotic rate, cell transformation, and tumorigenicity when expressed in NIH 3T3 fibroblasts. This study explores the role of reactive oxygen species (ROS) in regulating cell growth and transformation by Nox1. H(2)O(2) concentration increased approximately 10-fold in Nox1-expressing cells, compared with <2-fold increase in O(2)(-). When human catalase was expressed in Nox1-expressing cells, H(2)O(2) concentration decreased, and the cells reverted to a normal appearance, the growth rate normalized, and cells no longer produced tumors in athymic mice. A large number of genes, including many related to cell cycle, growth, and cancer (but unrelated to oxidative stress), were expressed in Nox1-expressing cells, and more than 60% of these returned to normal levels on coexpression of catalase. Thus, H(2)O(2) in low concentrations functions as an intracellular signal that triggers a genetic program related to cell growth.
Collapse
|
research-article |
24 |
363 |
13
|
Sparrow CP, Parthasarathy S, Steinberg D. A macrophage receptor that recognizes oxidized low density lipoprotein but not acetylated low density lipoprotein. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)81655-1] [Citation(s) in RCA: 325] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
|
36 |
325 |
14
|
Parthasarathy S, Wieland E, Steinberg D. A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein. Proc Natl Acad Sci U S A 1989; 86:1046-50. [PMID: 2536929 PMCID: PMC286618 DOI: 10.1073/pnas.86.3.1046] [Citation(s) in RCA: 311] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Oxidative modification of low density lipoprotein (LDL) has been implicated as a factor in the generation of macrophage-derived foam cells in vitro and in vivo. However, the exact mechanism of LDL oxidation has not been established. The present studies show that cellular lipoxygenase activity is involved in endothelial cell-induced oxidation of LDL. Inhibitors of lipoxygenase (but not inhibitors of cyclooxygenase) reduced LDL oxidation by as much as 70-85% under the conditions used. In contrast, the addition of pure (recombinant) superoxide dismutase inhibited by only approximately 25% under the same conditions. Oxidation of LDL by smooth muscle cells, on the other hand, was effectively inhibited by superoxide dismutase, as was Cu2+-catalyzed oxidation of LDL. When LDL was added to endothelial cell cultures within a dialysis bag, it did not undergo oxidative modification, suggesting that cell-LDL contact is necessary. We propose that an important element in cell-induced oxidation of LDL depends on (i) lipoxygenase oxidation of cellular lipids, followed by their exchange into LDL in the medium; (ii) direct lipoxygenase-dependent oxidation of LDL lipids during LDL-cell contact; (iii) or both.
Collapse
|
research-article |
36 |
311 |
15
|
Ylä-Herttuala S, Rosenfeld ME, Parthasarathy S, Glass CK, Sigal E, Witztum JL, Steinberg D. Colocalization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions. Proc Natl Acad Sci U S A 1990; 87:6959-63. [PMID: 1698286 PMCID: PMC54661 DOI: 10.1073/pnas.87.18.6959] [Citation(s) in RCA: 309] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Oxidation of low density lipoprotein (LDL) enhances its atherogenicity, and inhibition of such oxidation decreases the rate of progression of atherosclerotic lesions. The mechanism of LDL oxidation in vivo remains uncertain, but in vitro studies have suggested that cellular lipoxygenases may play a role by initiating lipid peroxidation in LDL. In situ hybridization studies using a 15-lipoxygenase riboprobe and immunostaining using antibodies against 15-lipoxygenase showed strongly positive reactivity largely confined to macrophage-rich areas of atherosclerotic lesions. Polymerase chain reaction with 15-lipoxygenase-specific oligonucleotides and restriction enzyme digestions of the amplified fragment were used to confirm the presence of 15-lipoxygenase message in the reverse-transcribed lesion mRNA. Immunostaining with antibodies reactive with oxidized LDL (but not with native LDL) indicated that the lipoxygenase colocalizes with epitopes of oxidized LDL, compatible with a role for macrophage lipoxygenase in the oxidation of LDL in vivo. Since oxidized LDL is chemotactic for blood monocytes, early lesions might progress at a markedly accelerated rate because of further recruitment of more monocytes which, in turn, would increase further the rate of oxidation of LDL. These data suggest that therapy targeted to block macrophage lipoxygenase activity might decrease the rate of development of atherosclerotic lesions.
Collapse
|
research-article |
35 |
309 |
16
|
Ylä-Herttuala S, Rosenfeld ME, Parthasarathy S, Sigal E, Särkioja T, Witztum JL, Steinberg D. Gene expression in macrophage-rich human atherosclerotic lesions. 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts. J Clin Invest 1991; 87:1146-52. [PMID: 2010531 PMCID: PMC295117 DOI: 10.1172/jci115111] [Citation(s) in RCA: 309] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Oxidatively modified low density lipoprotein (LDL) exhibits several potentially atherogenic properties, and inhibition of LDL oxidation in rabbits decreases the rate of the development of atherosclerotic lesions. In vitro studies have suggested that cellular lipoxygenases may be involved in LDL oxidation, and we have shown previously that 15-lipoxygenase and oxidized LDL are present in rabbit atherosclerotic lesions. We now report that epitopes of oxidized LDL are also found in macrophage-rich areas of human fatty streaks as well as in more advanced human atherosclerotic lesions. Using in situ hybridization and immunostaining techniques, we also report that 15-lipoxygenase mRNA and protein colocalize to the same macrophage-rich areas. Moreover, these same lesions express abundant mRNA for the acetyl LDL receptor but no detectable mRNA for the LDL receptor. We suggest that atherogenesis in human arteries may be linked to macrophage-induced oxidative modification of LDL mediated by 15-lipoxygenase, leading to subsequent enhanced macrophage uptake, partly by way of the acetyl LDL receptor.
Collapse
|
research-article |
34 |
309 |
17
|
Weisner C, Mertens J, Parthasarathy S, Moore C, Lu Y. Integrating primary medical care with addiction treatment: a randomized controlled trial. JAMA 2001; 286:1715-23. [PMID: 11594896 PMCID: PMC3056510 DOI: 10.1001/jama.286.14.1715] [Citation(s) in RCA: 287] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT The prevalence of medical disorders is high among substance abuse patients, yet medical services are seldom provided in coordination with substance abuse treatment. OBJECTIVE To examine differences in treatment outcomes and costs between integrated and independent models of medical and substance abuse care as well as the effect of integrated care in a subgroup of patients with substance abuse-related medical conditions (SAMCs). DESIGN Randomized controlled trial conducted between April 1997 and December 1998. SETTING AND PATIENTS Adult men and women (n = 592) who were admitted to a large health maintenance organization chemical dependency program in Sacramento, Calif. INTERVENTIONS Patients were randomly assigned to receive treatment through an integrated model, in which primary health care was included within the addiction treatment program (n = 285), or an independent treatment-as-usual model, in which primary care and substance abuse treatment were provided separately (n = 307). Both programs were group based and lasted 8 weeks, with 10 months of aftercare available. MAIN OUTCOME MEASURES Abstinence outcomes, treatment utilization, and costs 6 months after randomization. RESULTS Both groups showed improvement on all drug and alcohol measures. Overall, there were no differences in total abstinence rates between the integrated care and independent care groups (68% vs 63%, P =.18). For patients without SAMCs, there were also no differences in abstinence rates (integrated care, 66% vs independent care, 73%; P =.23) and there was a slight but nonsignificant trend of higher costs for the integrated care group ($367.96 vs $324.09, P =.19). However, patients with SAMCs (n = 341) were more likely to be abstinent in the integrated care group than the independent care group (69% vs 55%, P =.006; odds ratio [OR], 1.90; 95% confidence interval [CI], 1.22-2.97). This was true for both those with medical (OR, 3.38; 95% CI, 1.68-6.80) and psychiatric (OR, 2.10; 95% CI, 1.04-4.25) SAMCs. Patients with SAMCs had a slight but nonsignificant trend of higher costs in the integrated care group ($470.81 vs $427.95, P =.14). The incremental cost-effectiveness ratio per additional abstinent patient with an SAMC in the integrated care group was $1581. CONCLUSIONS Individuals with SAMCs benefit from integrated medical and substance abuse treatment, and such an approach can be cost-effective. These findings are relevant given the high prevalence and cost of medical conditions among substance abuse patients, new developments in medications for addiction, and recent legislation on parity of substance abuse with other medical benefits.
Collapse
|
Clinical Trial |
24 |
287 |
18
|
Hogg N, Kalyanaraman B, Joseph J, Struck A, Parthasarathy S. Inhibition of low-density lipoprotein oxidation by nitric oxide. Potential role in atherogenesis. FEBS Lett 1993; 334:170-4. [PMID: 8224243 DOI: 10.1016/0014-5793(93)81706-6] [Citation(s) in RCA: 280] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effects of nitric oxide (.NO) and nitrovasodilators on the oxidation of low-density lipoprotein (LDL) have been studied. S-Nitroso-N-acetylpenicillamine (SNAP) and sodium nitroprusside (SNP) inhibited Cu(2+)- and 2,2'-azobis-2-amidinopropane hydrochloride-dependent oxidation of LDL as monitored by oxygen consumption and the formation of thiobarbituric acid-reactive substances, conjugated dienes, and lipid hydroperoxides. In the case of SNP, inhibition of LDL oxidation occurred only when the incubation mixture was irradiated with visible light. SNAP, however, exerted a dose-dependent inhibition of Cu(2+)-catalyzed oxidation of LDL even in the dark. Addition of .NO dissolved in deoxygenated buffer also inhibited the progression of LDL oxidation. Mouse peritoneal macrophages were less able to degrade LDL that had been oxidized in the presence of SNAP. Using an .NO electrode, it was estimated that a continuous production of .NO (< or = 760 nM/min) could retard the progression of LDL oxidation. We propose that .NO can inhibit LDL oxidation by acting as a chain-breaking antioxidant that is capable of scavenging carbon-centered and peroxyl radicals. Biological implications of this novel .NO antioxidant property are discussed in relation to atherogenesis and contrasted to the prooxidant property of .NO when generated in the presence of superoxide.
Collapse
|
|
32 |
280 |
19
|
Parthasarathy S, Steinberg D, Witztum JL. The role of oxidized low-density lipoproteins in the pathogenesis of atherosclerosis. Annu Rev Med 1992; 43:219-25. [PMID: 1580586 DOI: 10.1146/annurev.me.43.020192.001251] [Citation(s) in RCA: 273] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hypercholesterolemia is a major risk for atherogenesis. Recent evidence suggests that oxidative modification of the major cholesterol-carrying lipoprotein, low-density lipoprotein (LDL), renders it more atherogenic. Not only does oxidized LDL (Ox-LDL) have enhanced uptake by macrophages, which contributes directly to foam cell formation, it may also adversely affect many other aspects of arterial wall metabolism and thus contribute further to the atherogenic process. Inhibition of the oxidation of LDL may be another approach to inhibiting atherogenesis, additive to or even synergistic with lowering of plasma LDL levels.
Collapse
|
Review |
33 |
273 |
20
|
Richie JP, Leutzinger Y, Parthasarathy S, Malloy V, Orentreich N, Zimmerman JA. Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J 1994; 8:1302-7. [PMID: 8001743 DOI: 10.1096/fasebj.8.15.8001743] [Citation(s) in RCA: 270] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Little is known about the biochemical mechanisms responsible for the biological aging process. Our previous results and those of others suggest that one possible mechanism is based on the loss of glutathione (GSH), a multifunctional tripeptide present in high concentrations in nearly all living cells. The recent finding that life-long dietary restriction of the GSH precursor methionine (Met) resulted in increased longevity in rats led us to hypothesize that adaptive changes in Met and GSH metabolism had occurred, leading to enhanced GSH status. To test this, blood and tissue GSH levels were measured at different ages throughout the life span in F344 rats on control or Met-restricted diets. Met restriction resulted in a 42% increase in mean and 44% increase in maximum life span, and in 43% lower body weight compared to controls (P < 0.001). Increases in blood GSH levels of 81% and 164% were observed in mature and old Met-restricted animals, respectively (P < 0.001). Liver was apparently the source for this increase as hepatic GSH levels decreased to 40% of controls. Except for a 25% decrease in kidney, GSH was unchanged in other tissues. All changes in GSH occurred as early as 2 months after the start of the diet. Altogether, these results suggest that dramatic adaptations in sulfur amino acid metabolism occur as a result of chronic Met restriction, leading to increases in blood GSH levels and conservation of tissue GSH during aging.
Collapse
|
|
31 |
270 |
21
|
Parthasarathy S, Steinbrecher UP, Barnett J, Witztum JL, Steinberg D. Essential role of phospholipase A2 activity in endothelial cell-induced modification of low density lipoprotein. Proc Natl Acad Sci U S A 1985; 82:3000-4. [PMID: 3857630 PMCID: PMC397694 DOI: 10.1073/pnas.82.9.3000] [Citation(s) in RCA: 267] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Previous studies have established that incubation of low density lipoprotein (LDL) with cultured endothelial cells (EC) converts it to a new form (EC-modified LDL) that is now recognized by a specific receptor on macrophages (the acetyl LDL receptor) and is taken up and degraded 3-10 times more rapidly than native LDL (biological modification). The formation of EC-modified LDL depended on generation of free radicals with consequent peroxidation of LDL lipids and was accompanied by extensive hydrolysis of LDL phosphatidylcholine at the 2-position. The present studies show that p-bromophenacyl bromide, a site-specific irreversible inhibitor of phospholipase A2 activity, blocks this hydrolysis and, at the same time, the enhanced macrophage degradation. We show further that during EC modification the apoprotein B of LDL undergoes considerable modification and that this also is prevented by the phospholipase inhibitor. Finally, as reported previously, changes similar to those observed on incubation of LDL with EC can be induced by incubation in the absence of cells but in the presence of a sufficiently high concentration of Cu2+. This also is accompanied by hydrolysis of phosphatidylcholine at the 2-position and breakdown of apoprotein B. These changes are also inhibited by p-bromophenacyl bromide, suggesting the presence of a phospholipase A2 activity associated with LDL as it is isolated. A hypothesis is presented linking lipid peroxidation, phosphatidylcholine hydrolysis, and changes in the LDL apoprotein during EC modification.
Collapse
|
research-article |
40 |
267 |
22
|
Reaven P, Parthasarathy S, Grasse BJ, Miller E, Steinberg D, Witztum JL. Effects of oleate-rich and linoleate-rich diets on the susceptibility of low density lipoprotein to oxidative modification in mildly hypercholesterolemic subjects. J Clin Invest 1993; 91:668-76. [PMID: 8432867 PMCID: PMC288008 DOI: 10.1172/jci116247] [Citation(s) in RCA: 256] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We report the results of feeding oleate- or linoleate-enriched diets for 8 wk to mildly hypercholesterolemic subjects and the resulting alterations in composition and functional properties of their plasma LDL and HDL. LDL isolated from subjects on oleate-enriched diets was less susceptible to copper-mediated oxidation, as measured by conjugated diene and lipid peroxide formation, and less susceptible to LDL-protein modification, as evidenced by reduced LDL macrophage degradation after copper- or endothelial cell-induced oxidation. For all subjects, the percentage of 18:2 in LDL correlated strongly with the extent of conjugated diene formation (r = 0.89, P < 0.01) and macrophage degradation (r = 0.71, P < 0.01). Oxidation of LDL led to initial rapid depletion of unsaturated fatty acids in phospholipids followed by extensive loss of unsaturated fatty acids in cholesteryl esters and triglycerides. Changes in HDL fatty acid composition also occurred. However, HDL from both dietary groups retained its ability to inhibit oxidative modification of LDL. This study demonstrates that alterations in dietary fatty acid composition can effectively alter the fatty acid distribution of LDL and HDL in hypercholesterolemic subjects and that susceptibility to LDL oxidation is altered by these changes. Substitution of monounsaturated (rather than polyunsaturated) fatty acids for saturated fatty acids in the diet might be preferable for the prevention of atherosclerosis.
Collapse
|
research-article |
32 |
256 |
23
|
Parthasarathy S, Khoo JC, Miller E, Barnett J, Witztum JL, Steinberg D. Low density lipoprotein rich in oleic acid is protected against oxidative modification: implications for dietary prevention of atherosclerosis. Proc Natl Acad Sci U S A 1990; 87:3894-8. [PMID: 2339129 PMCID: PMC54010 DOI: 10.1073/pnas.87.10.3894] [Citation(s) in RCA: 254] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oxidative modification of low density lipoprotein (LDL) enhances its potential atherogenicity in several ways, notably by enhancing its uptake into macrophages. In vivo studies in the rabbit show that inhibition of LDL oxidation slows the progression of atherosclerotic lesions. In the present studies, rabbits were fed either a newly developed variant sunflower oil (Trisun 80), containing more than 80% oleic acid and only 8% linoleic acid, or conventional sunflower oil, containing only 20% oleic acid and 67% linoleic acid. LDL isolated from the plasma of animals fed the variant sunflower oil was highly enriched in oleic acid and very low in linoleic acid. These oleate-rich LDL particles were remarkably resistant to oxidative modification. Even after 16-hr exposure to copper-induced oxidation or 24-hr incubation with cultured endothelial cells, macrophage uptake of the LDL was only marginally enhanced. The results suggest that diets sufficiently enriched in oleic acid, in addition to their LDL-lowering effect, may slow the progression of atherosclerosis by generating LDL that is highly resistant to oxidative modification.
Collapse
|
research-article |
35 |
254 |
24
|
Reaven PD, Khouw A, Beltz WF, Parthasarathy S, Witztum JL. Effect of dietary antioxidant combinations in humans. Protection of LDL by vitamin E but not by beta-carotene. ARTERIOSCLEROSIS AND THROMBOSIS : A JOURNAL OF VASCULAR BIOLOGY 1993; 13:590-600. [PMID: 8466894 DOI: 10.1161/01.atv.13.4.590] [Citation(s) in RCA: 237] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Experimental and epidemiological evidence supports the hypothesis that oxidation of low density lipoprotein (LDL) appears to be important in mediating the atherogenicity of LDL. To test this hypothesis in humans, it will be necessary to perform intervention studies in large populations. We performed two studies to assess the effectiveness of supplementation with beta-carotene and vitamin E, used alone and in combination with each other, and with vitamin C, to protect LDL from oxidation. In phase 1, after a placebo period, eight subjects were given beta-carotene (60 mg/day) for 3 months, then beta-carotene plus vitamin E (1,600 mg/day) for another 3 months, and then beta-carotene plus vitamin E plus vitamin C (2 g/day) for 3 months. During phase 2, beta-carotene and vitamin C were discontinued, and subjects took only vitamin E for 5 months. During each period, LDL samples were isolated, and measurements of susceptibility to oxidation were performed. beta-Carotene levels in LDL increased nearly 20-fold, but LDL susceptibility to oxidation did not change. Addition of vitamin E increased LDL vitamin E levels nearly 2.5-fold, and this decreased LDL oxidation 30-40%. During the vitamin C supplementation period, plasma levels of beta-carotene and vitamin E rose, but only beta-carotene increased in LDL. However, the susceptibility of LDL to oxidation in this period was not decreased further. During phase 2, when subjects took only vitamin E, LDL susceptibility to oxidation was decreased by 50% as measured by thiobarbituric acid-reactive substances, conjugated dienes, and lipid peroxide formation as well as by macrophage degradation. Thus, long-term supplementation with large doses of vitamin E alone, but not beta-carotene, conferred increased protection to LDL in in vitro assays of oxidation. These data should be useful in planning therapeutic strategies to test the antioxidant hypothesis in humans.
Collapse
|
|
32 |
237 |
25
|
Reaven P, Parthasarathy S, Grasse BJ, Miller E, Almazan F, Mattson FH, Khoo JC, Steinberg D, Witztum JL. Feasibility of using an oleate-rich diet to reduce the susceptibility of low-density lipoprotein to oxidative modification in humans. Am J Clin Nutr 1991; 54:701-6. [PMID: 1897476 DOI: 10.1093/ajcn/54.4.701] [Citation(s) in RCA: 202] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Oxidized low-density lipoprotein (LDL) is more atherogenic than native LDL. The initial step in the oxidation is the peroxidation of polyunsaturated fatty acids. Thus, decreasing the concentration of polyunsaturated fatty acids should reduce the susceptibility of LDL to oxidation. Therefore, we tested the possibility that diets enriched in oleate might result in LDL that is less susceptible to oxidative modification. LDL isolated from subjects consuming an oleate-enriched diet, compared with LDL from subjects on a linoleate-enriched diet, contained significantly more oleate (28.7% vs 11.5%) and less linoleate (31.9% vs 50.9%). Generation of conjugated dienes was significantly lower in the LDL from the oleate group. Most important, after incubation with endothelial cells, LDL from the oleate group underwent less degradation by macrophages. These studies demonstrate the feasibility of altering the diet in a way that will not raise LDL cholesterol concentrations and yet will decrease the susceptibility of LDL to oxidative modification.
Collapse
|
|
34 |
202 |