1
|
Xie L, Lehvävirta S, Timonen S, Kasurinen J, Niemikapee J, Valkonen JPT. Species-specific synergistic effects of two plant growth-promoting microbes on green roof plant biomass and photosynthetic efficiency. PLoS One 2018; 13:e0209432. [PMID: 30596699 PMCID: PMC6312232 DOI: 10.1371/journal.pone.0209432] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/05/2018] [Indexed: 11/24/2022] Open
Abstract
Rhizophagus irregularis, an arbuscular mycorrhizal fungus, and Bacillus amyloliquefaciens, a bacterium, are microorganisms that promote plant growth. They associate with plant roots and facilitate nutrient absorption by their hosts, increase resistance against pathogens and pests, and regulate plant growth through phytohormones. In this study, eight local plant species in Finland (Antennaria dioica, Campanula rotundifolia, Fragaria vesca, Geranium sanguineum, Lotus corniculatus, Thymus serpyllum, Trifolium repens, and Viola tricolor) were inoculated with R. irregularis and/or B. amyloliquefaciens in autoclaved substrates to evaluate the plant growth-promoting effects of different plant/microbe combinations under controlled conditions. The eight plant species were inoculated with R. irregularis, B. amyloliquefaciens, or both microbes or were not inoculated as a control. The impact of the microbes on the plants was evaluated by measuring dry shoot weight, colonization rate by the arbuscular mycorrhizal fungus, bacterial population density, and chlorophyll fluorescence using a plant phenotyping facility. Under dual inoculation conditions, B. amyloliquefaciens acted as a "mycorrhiza helper bacterium" to facilitate arbuscular mycorrhizal fungus colonization in all tested plants. In contrast, R. irregularis did not demonstrate reciprocal facilitation of the population density of B. amyloliquefaciens. Dual inoculation with B. amyloliquefaciens and R. irregularis resulted in the greatest increase in shoot weight and photosynthetic efficiency in T. repens and F. vesca.
Collapse
|
research-article |
7 |
35 |
2
|
Kotze DJ, O'Hara RB, Lehvävirta S. Dealing with varying detection probability, unequal sample sizes and clumped distributions in count data. PLoS One 2012; 7:e40923. [PMID: 22911719 PMCID: PMC3401226 DOI: 10.1371/journal.pone.0040923] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 06/15/2012] [Indexed: 11/18/2022] Open
Abstract
Temporal variation in the detectability of a species can bias estimates of relative abundance if not handled correctly. For example, when effort varies in space and/or time it becomes necessary to take variation in detectability into account when data are analyzed. We demonstrate the importance of incorporating seasonality into the analysis of data with unequal sample sizes due to lost traps at a particular density of a species. A case study of count data was simulated using a spring-active carabid beetle. Traps were 'lost' randomly during high beetle activity in high abundance sites and during low beetle activity in low abundance sites. Five different models were fitted to datasets with different levels of loss. If sample sizes were unequal and a seasonality variable was not included in models that assumed the number of individuals was log-normally distributed, the models severely under- or overestimated the true effect size. Results did not improve when seasonality and number of trapping days were included in these models as offset terms, but only performed well when the response variable was specified as following a negative binomial distribution. Finally, if seasonal variation of a species is unknown, which is often the case, seasonality can be added as a free factor, resulting in well-performing negative binomial models. Based on these results we recommend (a) add sampling effort (number of trapping days in our example) to the models as an offset term, (b) if precise information is available on seasonal variation in detectability of a study object, add seasonality to the models as an offset term; (c) if information on seasonal variation in detectability is inadequate, add seasonality as a free factor; and (d) specify the response variable of count data as following a negative binomial or over-dispersed Poisson distribution.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
33 |
3
|
|
|
26 |
27 |
4
|
Lehvävirta S, Kotze DJ, Niemelä J, Mäntysaari M, O'Hara B. Effects of fragmentation and trampling on carabid beetle assemblages in urban woodlands in Helsinki, Finland. Urban Ecosyst 2006. [DOI: 10.1007/s11252-006-5526-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
|
19 |
23 |
5
|
Hällfors MH, Vaara EM, Hyvärinen M, Oksanen M, Schulman LE, Siipi H, Lehvävirta S. Coming to terms with the concept of moving species threatened by climate change - a systematic review of the terminology and definitions. PLoS One 2014; 9:e102979. [PMID: 25055023 PMCID: PMC4108403 DOI: 10.1371/journal.pone.0102979] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 06/24/2014] [Indexed: 12/30/2022] Open
Abstract
Intentional moving of species threatened by climate change is actively being discussed as a conservation approach. The debate, empirical studies, and policy development, however, are impeded by an inconsistent articulation of the idea. The discrepancy is demonstrated by the varying use of terms, such as assisted migration, assisted colonisation, or managed relocation, and their multiple definitions. Since this conservation approach is novel, and may for instance lead to legislative changes, it is important to aim for terminological consistency. The objective of this study is to analyse the suitability of terms and definitions used when discussing the moving of organisms as a response to climate change. An extensive literature search and review of the material (868 scientific publications) was conducted for finding hitherto used terms (N = 40) and definitions (N = 75), and these were analysed for their suitability. Based on the findings, it is argued that an appropriate term for a conservation approach relating to aiding the movement of organisms harmed by climate change is assisted migration defined as follows: Assisted migration means safeguarding biological diversity through the translocation of representatives of a species or population harmed by climate change to an area outside the indigenous range of that unit where it would be predicted to move as climate changes, were it not for anthropogenic dispersal barriers or lack of time. The differences between assisted migration and other conservation translocations are also discussed. A wide adoption of the clear and distinctive term and definition provided would allow more focused research on the topic and enable consistent implementation as practitioners could have the same understanding of the concept.
Collapse
|
Review |
11 |
23 |
6
|
Korpilo S, Virtanen T, Saukkonen T, Lehvävirta S. More than A to B: Understanding and managing visitor spatial behaviour in urban forests using public participation GIS. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 207:124-133. [PMID: 29156435 DOI: 10.1016/j.jenvman.2017.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Planning and management needs up-to-date, easily-obtainable and accurate information on the spatial and social aspects of visitor behaviour in order to balance human use and impacts, and protection of natural resources in public parks. We used a web-based public participation GIS (PPGIS) approach to gather citizen data on visitor behaviour in Helsinki's Central Park in order to aid collaborative spatial decision-making. The study combined smartphone GPS tracking, route drawing and a questionnaire to examine differences between user groups in their use of formal trails, off-trail behaviour and the motivations that affect it. In our sample (n = 233), different activity types were associated with distinctive spatial patterns and potential extent of impacts. The density mapping and statistical analyses indicated three types of behaviour: predominantly on or close to formal trails (runners and cyclists), spatially concentrated off-trail behaviour confined to a few informal paths (mountain bikers), and dispersed off-trail use pattern (walkers and dog walkers). Across all user groups, off-trail behaviour was mainly motivated by positive attraction towards the environment such as scenic view, exploration, and viewing flora and fauna. Study findings lead to several management recommendations that were presented to city officials. These include reducing dispersion and the spatial extent of trampling impacts by encouraging use of a limited number of well-established informal paths away from sensitive vegetation and protected habitats.
Collapse
|
|
7 |
8 |
7
|
Golding J, Güsewell S, Kreft H, Kuzevanov VY, Lehvävirta S, Parmentier I, Pautasso M. Species-richness patterns of the living collections of the world's botanic gardens: a matter of socio-economics? ANNALS OF BOTANY 2010; 105:689-96. [PMID: 20237117 PMCID: PMC2859917 DOI: 10.1093/aob/mcq043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS The botanic gardens of the world are now unmatched ex situ collections of plant biodiversity. They mirror two biogeographical patterns (positive diversity-area and diversity-age relationships) but differ from nature with a positive latitudinal gradient in their richness. Whether these relationships can be explained by socio-economic factors is unknown. METHODS Species and taxa richness of a comprehensive sample of botanic gardens were analysed as a function of key ecological and socio-economic factors using (a) multivariate models controlling for spatial autocorrelation and (b) structural equation modelling. KEY RESULTS The number of plant species in botanic gardens increases with town human population size and country Gross Domestic Product (GDP) per person. The country flora richness is not related to the species richness of botanic gardens. Botanic gardens in more populous towns tend to have a larger area and can thus host richer living collections. Botanic gardens in richer countries have more species, and this explains the positive latitudinal gradient in botanic gardens' species richness. CONCLUSIONS Socio-economic factors contribute to shaping patterns in the species richness of the living collections of the world's botanic gardens.
Collapse
|
research-article |
15 |
8 |
8
|
Hamberg L, Malmivaara-Lämsä M, Lehvävirta S, O'Hara RB, Kotze DJ. Quantifying the effects of trampling and habitat edges on forest understory vegetation--a field experiment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2010; 91:1811-20. [PMID: 20434828 DOI: 10.1016/j.jenvman.2010.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 03/19/2010] [Accepted: 04/07/2010] [Indexed: 05/16/2023]
Abstract
We investigated the effects of human trampling on boreal forest understory vegetation on, and off paths from suburban forest edges towards the interiors and on the likelihood of trampling-aided dispersal into the forests for three years by carrying out a trampling experiment. We showed that the vegetation was highly sensitive to trampling. Even low levels of trampling considerably decreased covers of the most abundant species on the paths. Cover decreased between 10 and 30% on paths which had been trampled 35 times, and at least by 50% on those trampled 70-270 times. On-path vegetation cover decreased similarly at forest edges and in the interiors. However, some open habitat plant species that occurred outside the forest patches and at forest edges dispersed into the forests, possibly through the action of trampling. A higher cover percentage of an open habitat species at the forest edge line increased its probability to disperse into the forest interior. The vegetation community on, next to, and away from lightly trampled paths remained the same throughout the trampling experiment. For heavily trampled paths, the community changed drastically on the paths, but stayed relatively similar next to and away from the paths. As boreal vegetation is highly sensitive to the effects of trampling, overall ease of access throughout the forest floor should be restricted to avoid the excessive creation of spontaneous paths. To minimize the effects of trampling, recreational use could be guided to the maintained path network in heavily used areas.
Collapse
|
|
15 |
6 |
9
|
Hällfors M, Lehvävirta S, Aandahl T, Lehtimäki IM, Nilsson LO, Ruotsalainen A, Schulman LE, Hyvärinen MT. Translocation of an arctic seashore plant reveals signs of maladaptation to altered climatic conditions. PeerJ 2020; 8:e10357. [PMID: 33240662 PMCID: PMC7682418 DOI: 10.7717/peerj.10357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/23/2020] [Indexed: 01/20/2023] Open
Abstract
Ongoing anthropogenic climate change alters the local climatic conditions to which species may be adapted. Information on species' climatic requirements and their intraspecific variation is necessary for predicting the effects of climate change on biodiversity. We used a climatic gradient to test whether populations of two allopatric varieties of an arctic seashore herb (Primula nutans ssp. finmarchica) show adaptation to their local climates and how a future warmer climate may affect them. Our experimental set-up combined a reciprocal translocation within the distribution range of the species with an experiment testing the performance of the sampled populations in warmer climatic conditions south of their range. We monitored survival, size, and flowering over four growing seasons as measures of performance and, thus, proxies of fitness. We found that both varieties performed better in experimental gardens towards the north. Interestingly, highest up in the north, the southern variety outperformed the northern one. Supported by weather data, this suggests that the climatic optima of both varieties have moved at least partly outside their current range. Further warming would make the current environments of both varieties even less suitable. We conclude that Primula nutans ssp. finmarchica is already suffering from adaptational lag due to climate change, and that further warming may increase this maladaptation, especially for the northern variety. The study also highlights that it is not sufficient to run only reciprocal translocation experiments. Climate change is already shifting the optimum conditions for many species and adaptation needs also to be tested outside the current range of the focal taxon in order to include both historic conditions and future conditions.
Collapse
|
|
5 |
3 |
10
|
Kyrö K, Kankaanpää T, Vesterinen EJ, Lehvävirta S, Kotze DJ. Arthropod Communities on Young Vegetated Roofs Are More Similar to Each Other Than to Communities at Ground Level. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.785448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vegetated roofs are human-manufactured ecosystems and potentially promising conservation tools for various taxa and habitats. Focussing on arthropods, we conducted a 3 year study on newly constructed vegetated roofs with shallow substrates (up to 10 cm) and vegetation established with pre-grown mats, plug plants and seeds to describe pioneer arthropod communities on roofs and to compare them with ground level communities. We vacuum sampled arthropods from the roofs and nearby ground level sites with low, open vegetation, i.e., potential source habitats. We showed that the roofs and ground sites resembled each other for ordinal species richness but differed in community composition: with time the roofs started to resemble each other rather than their closest ground level habitats. Species richness increased with time on roofs and at ground level, but the roofs had consistently less species than the ground sites and only a few species were unique to the roofs. Also, the proportion of predators increased on roofs, while not at ground level. We conclude that vegetated roofs established with similar substrates and vegetation, filter arthropods in a way that produces novel communities that are different from those at ground level but similar to one another. The role of these insular communities in species networks and ecosystem function remains to be investigated.
Collapse
|
|
3 |
1 |
11
|
Hamberg L, Lehvävirta S, Kotze DJ, Heikkinen J. Tree species composition affects the abundance of rowan (Sorbus aucuparia L.) in urban forests in Finland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 151:369-377. [PMID: 25588119 DOI: 10.1016/j.jenvman.2015.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/26/2014] [Accepted: 01/04/2015] [Indexed: 06/04/2023]
Abstract
Recent studies have shown a considerable increase in the abundance of rowan (Sorbus aucuparia) saplings in urban forests in Finland, yet the reasons for this increase are not well understood. Here we investigated whether canopy cover or tree species composition, i.e., the basal areas of different tree species in Norway spruce dominated urban forests, affects the abundances of rowan seedlings, saplings and trees. Altogether 24 urban forest patches were investigated. We sampled the number of rowan and other saplings, and calculated the basal areas of trees. We showed that rowan abundance was affected by tree species composition. The basal area of rowan trees (≥ 5 cm in diameter at breast height, dbh) decreased with increasing basal area of Norway spruce, while the cover of rowan seedlings increased with an increase in Norway spruce basal area. However, a decrease in the abundance of birch (Betula pendula) and an increase in the broad-leaved tree group (Acer platanoides, Alnus glutinosa, Alnus incana, Amelanchier spicata, Prunus padus, Quercus robur, Rhamnus frangula and Salix caprea) coincided with a decreasing number of rowans. Furthermore, rowan saplings were scarce in the vicinity of mature rowan trees. Although it seems that tree species composition has an effect on rowan, the relationship between rowan saplings and mature trees is complex, and therefore we conclude that regulating tree species composition is not an easy way to keep rowan thickets under control in urban forests in Finland.
Collapse
|
|
10 |
1 |
12
|
Xie L, Timonen S, Gange AC, Kuoppamäki K, Hagner M, Lehvävirta S. Effect of weather conditions, substrate pH, biochar amendment and plant species on two plant growth-promoting microbes on vegetated roofs and facades. Heliyon 2022; 8:e09560. [PMID: 35677418 PMCID: PMC9167976 DOI: 10.1016/j.heliyon.2022.e09560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022] Open
Abstract
Background Vegetated building envelopes (VBEs), such as vegetated roofs and facades, are becoming more frequent in urban planning nowadays. However, harsh growing conditions restrain the application of VBEs. Plant growth-promoting microbes (PGPMs) might help ease the stresses, but first, it is necessary to investigate how to ensure their survival and growth under VBE conditions. Methods We conducted three experiments to test the impact of various factors on the microbial populations of inoculated PGPMs in VBEs, a mycorrhizal fungus Rhizophagus irregularis and a bacterium Bacillus amyloliquefaciens. The first experiment was conducted by inoculating the two PGPMs separately in Sedum roof plots, and the microbial populations associated with Poa alpina was monitored for two consecutive years under local weather conditions. The second experiment was conducted in a laboratory testing the effect of substrate pH (substrates collected from balcony gardens) on R. irregularis population associated with Trifolium repens and Viola tricolor. The third experiment was conducted on a meadow roof testing the effect of biochar amendment on R. irregularis population associated with Thymus serpyllum and Fragaria vesca. Results In the first experiment, Bacillus was found to associate with P. alpina, but Rhizophagus wasn't. Yet, the fungus induced high Bacillus population density in the Rhizophagus treated plots in the first year. In the second experiment, Rhizophagus abundance in T. repens was higher in the neutral substrate (6–6.5), while V. tricolor was more colonized in acidic substrate (5–5.5), suggesting an important interactive effect of substrate pH and plant species on Rhizophagus abundance. The third experiment suggested a negligible impact of biochar amendment on Rhizophagus abundance for both host plants. Conclusion Three experiments demonstrate that PGPM inoculation on VBEs is feasible, and various factors and interactions affect the PGPM populations. This paper provides reference and inspiration for other VBE research involving substrate microbial manipulation.
Collapse
|
|
3 |
1 |
13
|
Shu X, Kotze DJ, Timonen S, Lehvävirta S, Xie L. Improving runoff quality in vertical greenery systems: Substrate type outweighed the effect of plant growth promoting microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166718. [PMID: 37660810 DOI: 10.1016/j.scitotenv.2023.166718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Due to limited urban green spaces and catchments, researchers are exploring the capacity of vertical greenery systems (VGSs) in stormwater management as complementary strategies. While the literature acknowledges the significant impacts of vegetated roof substrates on stormwater, comparing the stormwater management capacities of organic and non-organic substrates for VGSs remains largely unexplored. It is thus essential to gather empirical evidence to enhance the stormwater management capacity of VGSs. Here, we report on the impact of installation factors (substrate type and plant growth-promoting microbe (PGPM) inoculation) and environmental factors (simulated rainwater quantity and substrate moisture) of an innovative VGS on the concentrations and total loads of 15 elements (N, P, Al, V, Cr, Fe, Mn, Co, Ni, Cu, Zn, As, Se, Cd, and Pb) in the runoff. Results showed that substrate type was the most influential factor: concentrations and total loads were significantly higher from a reed-based substrate with high organic matter than from a sandy loam substrate. Substrate type also had profound interactive effects with other factors. For instance, PGPM inoculation significantly reduced the total loads of As, Cr, N, Ni, and Se, regardless of substrate type, and reduced the total loads of Cd, Co, Cu, Fe, Mn, and Pb in the reed-based substrate only. In addition, PGPM inoculation primarily reduced total loads, yet had little effect on concentrations. Substrate type also interacted with simulated rainwater quantity and substrate moisture: for example, in the reed-based substrate, a higher simulated rainwater quantity reduced concentrations but increased total loads, while concentrations and total loads remained constantly low from the sandy loam substrate under various simulated rainwater quantities. High antecedent substrate moisture increased both concentrations and total loads for most of the elements. We conclude that leaching from VGSs can be contained via substrate selection, maintenance of substrate moisture, and beneficial PGPM inoculation.
Collapse
|
|
2 |
|
14
|
Xie L, Shu X, Kotze DJ, Kuoppamäki K, Timonen S, Lehvävirta S. Plant growth-promoting microbes improve stormwater retention of a newly-built vertical greenery system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116274. [PMID: 36261966 DOI: 10.1016/j.jenvman.2022.116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
On-site decentralized urban stormwater management has gained significant momentum in urban planning. Recently, vegetated roofs have been recommended as a viable decentralized stormwater management system and nature-based solution to meet the challenge of urban floods. However, as another type of unconventional green infrastructure, vertical greenery systems (VGS), also known as vegetated facades, have received much less research attention. Even though some researchers suggest that stormwater management by VGS is comparable to that of vegetated roofs, empirical evidence to substantiate this claim is limited. In this study, we conducted rain simulations on newly-built vegetation containers with water storage compartments. These vegetation containers were designed to be incorporated into a VGS specifically for stormwater management. We tested variables that could influence water retention efficiency and evapotranspiration of the containers under field conditions, i.e., inoculation of plant growth-promoting microbes (PGPMs) (Rhizophagus irregularis and Bacillus amyloliquefaciens), different substrate types (sandy loam and reed-based substrate), simulated rain quantity, natural precipitation, substrate moisture, and air temperature. The inoculation of PGPMs significantly reduced runoff quantity from the vegetation containers. Meanwhile, the well-ventilated sandy-loam substrate significantly reduced the remaining water in the water storage compartments over 1-week periods between rain simulation events, achieving high water-use efficiency. The selected microbes were established successfully in the containers and promoted the growth of 2 out of 5 plant species. R. irregularis colonization responded to substrate type and host plant species, while B. amyloliquefaciens population density in the substrate did not respond to these factors. Environmental conditions, such as antecedent substrate moisture, air temperature, and natural precipitation also influenced the efficiency of stormwater retention and/or evapotranspiration. In conclusion, this study provides instructive and practical insights to reduce urban flood risk by using VGS.
Collapse
|
|
3 |
|