1
|
Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher M, Whaley J, Swindlehurst C. Isolation and quantification of soluble Alzheimer's beta-peptide from biological fluids. Nature 1992; 359:325-7. [PMID: 1406936 DOI: 10.1038/359325a0] [Citation(s) in RCA: 1293] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cerebral deposition of the beta-amyloid peptide (A beta) is an invariant feature of Alzheimer's disease. Since the original isolation and characterization of A beta (ref. 1) and the subsequent cloning of its precursor protein, no direct evidence for the actual production of discrete A beta has been reported. Here we investigate whether A beta is present in human biological fluids using antibodies specific for an epitope within A beta that spans the site of normal constitutive cleavage. These antibodies were used to construct a sandwich-type enzyme-linked immunosorbent assay that detects A beta in cerebrospinal fluid, plasma and conditioned medium of human mixed-brain cells grown in vitro (see also ref. 14). By affinity chromatography, we have purified and sequenced A beta and a novel A beta fragment from human cerebrospinal fluid and conditioned medium of human mixed-brain cell cultures. These findings demonstrate that A beta is produced and released both in vivo and in vitro. These observations offer new opportunities for developing diagnostic tests for Alzheimer's disease and therapeutic strategies aimed at reducing the cerebral deposition of A beta.
Collapse
|
|
33 |
1293 |
2
|
Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, Doan M, Dovey HF, Frigon N, Hong J, Jacobson-Croak K, Jewett N, Keim P, Knops J, Lieberburg I, Power M, Tan H, Tatsuno G, Tung J, Schenk D, Seubert P, Suomensaari SM, Wang S, Walker D, Zhao J, McConlogue L, John V. Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 1999; 402:537-40. [PMID: 10591214 DOI: 10.1038/990114] [Citation(s) in RCA: 1239] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteolytic processing of the amyloid precursor protein (APP) generates amyloid beta (Abeta) peptide, which is thought to be causal for the pathology and subsequent cognitive decline in Alzheimer's disease. Cleavage by beta-secretase at the amino terminus of the Abeta peptide sequence, between residues 671 and 672 of APP, leads to the generation and extracellular release of beta-cleaved soluble APP, and a corresponding cell-associated carboxy-terminal fragment. Cleavage of the C-terminal fragment by gamma-secretase(s) leads to the formation of Abeta. The pathogenic mutation K670M671-->N670L671 at the beta-secretase cleavage site in APP, which was discovered in a Swedish family with familial Alzheimer's disease, leads to increased beta-secretase cleavage of the mutant substrate. Here we describe a membrane-bound enzyme activity that cleaves full-length APP at the beta-secretase cleavage site, and find it to be the predominant beta-cleavage activity in human brain. We have purified this enzyme activity to homogeneity from human brain using a new substrate analogue inhibitor of the enzyme activity, and show that the purified enzyme has all the properties predicted for beta-secretase. Cloning and expression of the enzyme reveals that human brain beta-secretase is a new membrane-bound aspartic proteinase.
Collapse
|
|
26 |
1239 |
3
|
Roberds SL, Anderson J, Basi G, Bienkowski MJ, Branstetter DG, Chen KS, Freedman SB, Frigon NL, Games D, Hu K, Johnson-Wood K, Kappenman KE, Kawabe TT, Kola I, Kuehn R, Lee M, Liu W, Motter R, Nichols NF, Power M, Robertson DW, Schenk D, Schoor M, Shopp GM, Shuck ME, Sinha S, Svensson KA, Tatsuno G, Tintrup H, Wijsman J, Wright S, McConlogue L. BACE knockout mice are healthy despite lacking the primary beta-secretase activity in brain: implications for Alzheimer's disease therapeutics. Hum Mol Genet 2001; 10:1317-24. [PMID: 11406613 DOI: 10.1093/hmg/10.12.1317] [Citation(s) in RCA: 529] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by accumulation of amyloid plaques and neurofibrillary tangles in the brain. The major components of plaque, beta-amyloid peptides (Abetas), are produced from amyloid precursor protein (APP) by the activity of beta- and gamma-secretases. beta-secretase activity cleaves APP to define the N-terminus of the Abeta1-x peptides and, therefore, has been a long- sought therapeutic target for treatment of AD. The gene encoding a beta-secretase for beta-site APP cleaving enzyme (BACE) was identified recently. However, it was not known whether BACE was the primary beta-secretase in mammalian brain nor whether inhibition of beta-secretase might have effects in mammals that would preclude its utility as a therapeutic target. In the work described herein, we generated two lines of BACE knockout mice and characterized them for pathology, beta-secretase activity and Abeta production. These mice appeared to develop normally and showed no consistent phenotypic differences from their wild-type littermates, including overall normal tissue morphology and brain histochemistry, normal blood and urine chemistries, normal blood-cell composition, and no overt behavioral and neuromuscular effects. Brain and primary cortical cultures from BACE knockout mice showed no detectable beta-secretase activity, and primary cortical cultures from BACE knockout mice produced much less Abeta from APP. The findings that BACE is the primary beta-secretase activity in brain and that loss of beta-secretase activity produces no profound phenotypic defects with a concomitant reduction in beta-amyloid peptide clearly indicate that BACE is an excellent therapeutic target for treatment of AD.
Collapse
|
|
24 |
529 |
4
|
Pollefeys M, Nistér D, Frahm JM, Akbarzadeh A, Mordohai P, Clipp B, Engels C, Gallup D, Kim SJ, Merrell P, Salmi C, Sinha S, Talton B, Wang L, Yang Q, Stewénius H, Yang R, Welch G, Towles H. Detailed Real-Time Urban 3D Reconstruction from Video. Int J Comput Vis 2007. [DOI: 10.1007/s11263-007-0086-4] [Citation(s) in RCA: 450] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
18 |
450 |
5
|
Oltersdorf T, Fritz LC, Schenk DB, Lieberburg I, Johnson-Wood KL, Beattie EC, Ward PJ, Blacher RW, Dovey HF, Sinha S. The secreted form of the Alzheimer's amyloid precursor protein with the Kunitz domain is protease nexin-II. Nature 1989; 341:144-7. [PMID: 2506449 DOI: 10.1038/341144a0] [Citation(s) in RCA: 403] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The A4 protein (or beta-protein) is a 42- or 43-amino-acid peptide present in the extracellular neuritic plaques in Alzheimer's disease and is derived from a membrane-bound amyloid protein precursor (APP). Three forms of APP have been described and are referred to as APP695, APP751 and APP770, reflecting the number of amino acids encoded for by their respective complementary DNAs. The two larger APPs contain a 57-amino-acid insert with striking homology to the Kunitz family of protease inhibitors. Here we report that the deduced amino-terminal sequence of APP is identical to the sequence of a cell-secreted protease inhibitor, protease nexin-II (PN-II). To confirm this finding, APP751 and APP695 cDNAs were over-expressed in the human 293 cell line, and the secreted N-terminal extracellular domains of these APPs were purified to near homogeneity from the tissue-culture medium. The relative molecular mass and high-affinity binding to dextran sulphate of secreted APP751 were consistent with that of PN-II. Functionally, secreted APP751 formed stable, non-covalent, inhibitory complexes with trypsin. Secreted APP695 did not form complexes with trypsin. We conclude that the secreted form of APP with the Kunitz protease inhibitor domain is PN-II.
Collapse
|
|
36 |
403 |
6
|
Sinha S, Lieberburg I. Cellular mechanisms of beta-amyloid production and secretion. Proc Natl Acad Sci U S A 1999; 96:11049-53. [PMID: 10500121 PMCID: PMC34239 DOI: 10.1073/pnas.96.20.11049] [Citation(s) in RCA: 349] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The major constituent of senile plaques in Alzheimer's disease is a 42-aa peptide, referred to as beta-amyloid (Abeta). Abeta is generated from a family of differentially spliced, type-1 transmembrane domain (TM)-containing proteins, called APP, by endoproteolytic processing. The major, relatively ubiquitous pathway of APP metabolism in cell culture involves cleavage by alpha-secretase, which cleaves within the Abeta sequence, thus precluding Abeta formation and deposition. An alternate secretory pathway, enriched in neurons and brain, leads to cleavage of APP at the N terminus of the Abeta peptide by beta-secretase, thus generating a cell-associated beta-C-terminal fragment (beta-CTF). A pathogenic mutation at codons 670/671 in APP (APP "Swedish") leads to enhanced cleavage at the beta-secretase scissile bond and increased Abeta formation. An inhibitor of vacuolar ATPases, bafilomycin, selectively inhibits the action of beta-secretase in cell culture, suggesting a requirement for an acidic intracellular compartment for effective beta-secretase cleavage of APP. beta-CTF is cleaved in the TM domain by gamma-secretase(s), generating both Abeta 1-40 (90%) and Abeta 1-42 (10%). Pathogenic mutations in APP at codon 717 (APP "London") lead to an increased proportion of Abeta 1-42 being produced and secreted. Missense mutations in PS-1, localized to chromosome 14, are pathogenic in the majority of familial Alzheimer's pedigrees. These mutations also lead to increased production of Abeta 1-42 over Abeta 1-40. Knockout of PS-1 in transgenic animals leads to significant inhibition of production of both Abeta 1-40 and Abeta 1-42 in primary cultures, indicating that PS-1 expression is important for gamma-secretase cleavages. Peptide aldehyde inhibitors that block Abeta production by inhibiting gamma-secretase cleavage of beta-CTF have been discovered.
Collapse
|
Review |
26 |
349 |
7
|
Abstract
BH3 domains were originally discovered in the context of apoptosis regulators and they mediate binding of proapoptotic Bcl-2 family members to antiapoptotic Bcl-2 family members. Yet, recent studies indicate that BH3 domains do not function uniquely in apoptosis regulation; they also function in the regulation of another critical pathway involved in cellular and tissue homeostasis called autophagy. Antiapoptotic Bcl-2 homologs downregulate autophagy through interactions with the essential autophagy effector and haploinsufficient tumor suppressor, Beclin 1. Beclin 1 contains a BH3 domain, similar to that of Bcl-2 proteins, which is necessary and sufficient for binding to antiapoptotic Bcl-2 homologs and required for Bcl-2-mediated inhibition of autophagy. This review will summarize the evidence that the BH3 domain of Beclin 1 serves as a key structural motif that enables Bcl-2 to function not only as an antiapoptotic protein, but also as an antiautophagy protein.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
301 |
8
|
Sinha S, Munichoodappa CS, Kozak GP. Neuro-arthropathy (Charcot joints) in diabetes mellitus (clinical study of 101 cases). Medicine (Baltimore) 1972; 51:191-210. [PMID: 5021769 DOI: 10.1097/00005792-197205000-00006] [Citation(s) in RCA: 247] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
|
53 |
247 |
9
|
Sinha S, Maity SN, Lu J, de Crombrugghe B. Recombinant rat CBF-C, the third subunit of CBF/NFY, allows formation of a protein-DNA complex with CBF-A and CBF-B and with yeast HAP2 and HAP3. Proc Natl Acad Sci U S A 1995; 92:1624-8. [PMID: 7878029 PMCID: PMC42572 DOI: 10.1073/pnas.92.5.1624] [Citation(s) in RCA: 235] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The CCAAT binding factor CBF is a heteromeric transcription factor, which binds to functional CCAAT motifs in many eukaryotic promoters. cDNAs for the A and B subunits of CBF (CBF-A and CBF-B) and for their yeast homologues HAP3 and HAP2 have been previously isolated, but the purified recombinant CBF-A and CBF-B together are unable to bind to CCAAT motifs in DNA. Here we report the isolation of a cDNA coding for rat CBF-C, demonstrate that recombinant CBF-C is required together with CBF-A and CBF-B to form a CBF-DNA complex, and show that CBF-C is present in this protein-DNA complex together with the other two subunits. We further show that CBF-C allows formation of a complex between the purified recombinant yeast HAP2 and HAP3 polypeptides and a CCAAT-containing DNA and is present in this complex, implying the existence of a CBF-C homologue in yeast. We show that CBF-A and CBF-C interact with each other to form a CBF-A-CBF-C complex and that CBF-B does not interact with CBF-A or CBF-C individually but that it associates with the CBF-A-CBF-C complex. Our results indicate that CBF is a unique evolutionarily conserved DNA binding protein.
Collapse
|
research-article |
30 |
235 |
10
|
Kekuda R, Prasad PD, Fei YJ, Torres-Zamorano V, Sinha S, Yang-Feng TL, Leibach FH, Ganapathy V. Cloning of the sodium-dependent, broad-scope, neutral amino acid transporter Bo from a human placental choriocarcinoma cell line. J Biol Chem 1996; 271:18657-61. [PMID: 8702519 DOI: 10.1074/jbc.271.31.18657] [Citation(s) in RCA: 199] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have isolated a cDNA from a human placental choriocarcinoma cell cDNA library which, when expressed in HeLa cells, induces a Na+-dependent amino acid transport system with preference for zwitterionic amino acids. Anionic amino acids, cationic amino acids, imino acids, and N-methylated amino acids are excluded by this system. These characteristics are identical to those described for the amino acid transporter Bo. When expressed in Xenopus laevis oocytes that do not have detectable endogenous activity of the amino acid transporter Bo, the cloned transporter increases alanine transport in the oocytes severalfold and induces alanine-evoked inward currents in the presence of Na+. The cDNA codes for a polypeptide containing 541 amino acids with 10 putative transmembrane domains. Amino acid sequence homology predicts this transporter (hATBo) to be a member of a superfamily consisting of the glutamate transporters, the neutral amino acid transport system ASCT, and the insulin-activable neutral/anionic amino acid transporter. Chromosomal assignment studies with somatic cell hybrid analysis and fluorescent in situ hybridization have located the ATBo gene to human chromosome 19q13.3.
Collapse
|
|
29 |
199 |
11
|
Martins LM, Kottke T, Mesner PW, Basi GS, Sinha S, Frigon N, Tatar E, Tung JS, Bryant K, Takahashi A, Svingen PA, Madden BJ, McCormick DJ, Earnshaw WC, Kaufmann SH. Activation of multiple interleukin-1beta converting enzyme homologues in cytosol and nuclei of HL-60 cells during etoposide-induced apoptosis. J Biol Chem 1997; 272:7421-30. [PMID: 9054443 DOI: 10.1074/jbc.272.11.7421] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Recent genetic and biochemical studies have implicated cysteine-dependent aspartate-directed proteases (caspases) in the active phase of apoptosis. In the present study, three complementary techniques were utilized to follow caspase activation during the course of etoposide-induced apoptosis in HL-60 human leukemia cells. Immunoblotting revealed that levels of procaspase-2 did not change during etoposide-induced apoptosis, whereas levels of procaspase-3 diminished markedly 2-3 h after etoposide addition. At the same time, cytosolic peptidase activities that cleaved DEVD-aminotrifluoromethylcoumarin and VEID-aminomethylcoumarin increased 100- and 20-fold, respectively; but there was only a 1. 5-fold increase in YVAD-aminotrifluoromethylcoumarin cleavage activity. Affinity labeling with N-(Nalpha-benzyloxycarbonylglutamyl-Nepsilon-biotin yllysyl)aspartic acid [(2,6-dimethylbenzoyl)oxy]methyl ketone indicated that multiple active caspase species sequentially appeared in the cytosol during the first 6 h after the addition of etoposide. Analysis on one- and two-dimensional gels revealed that two species comigrated with caspase-6 and three comigrated with active caspase-3 species, suggesting that several splice or modification variants of these enzymes are active during apoptosis. Polypeptides that comigrate with the cytosolic caspases were also labeled in nuclei of apoptotic HL-60 cells. These results not only indicate that etoposide-induced apoptosis in HL-60 cells is accompanied by the selective activation of multiple caspases in cytosol and nuclei, but also suggest that other caspase precursors such as procaspase-2 are present but not activated during apoptosis.
Collapse
|
|
28 |
176 |
12
|
Sinha S, Watorek W, Karr S, Giles J, Bode W, Travis J. Primary structure of human neutrophil elastase. Proc Natl Acad Sci U S A 1987; 84:2228-32. [PMID: 3550808 PMCID: PMC304622 DOI: 10.1073/pnas.84.8.2228] [Citation(s) in RCA: 163] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The complete amino acid sequence of human neutrophil elastase has been determined. The protein consists of 218 amino acid residues, contains two asparagine-linked carbohydrate side chains, and is joined together by four disulfide bonds. Comparison of the sequence to other serine proteinases indicates only moderate homology with porcine pancreatic elastase (43.0%) or neutrophil cathepsin G (37.2%). In particular, many of the residues suggested to play important roles in the mechanism by which the pancreatic elastase functions are significantly changed in the neutrophil enzyme, indicating alternative types of binding with the human proteinase.
Collapse
|
research-article |
38 |
163 |
13
|
Tang X, Kleinhammes A, Shimoda H, Fleming L, Bennoune KY, Sinha S, Bower C, Zhou O, Wu Y. Electronic structures of single-walled carbon nanotubes determined by NMR. Science 2000; 288:492-4. [PMID: 10775103 DOI: 10.1126/science.288.5465.492] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Single-walled carbon nanotubes were studied by (13)C nuclear magnetic resonance (NMR). Two types of (13)C nuclear spins were identified with different spin-lattice relaxation rates. The fast-relaxing component, assigned to metallic tubes, followed the relaxation behavior expected in metals, and the density-of-states at the Fermi level increased with decreasing tube diameter. The slow-relaxing component has a significantly lower density-of-states at the Fermi level. Exposure to oxygen has a substantial effect on relaxation rates of both components.
Collapse
|
|
25 |
163 |
14
|
Wamhoff BR, Bowles DK, McDonald OG, Sinha S, Somlyo AP, Somlyo AV, Owens GK. L-type Voltage-Gated Ca
2+
Channels Modulate Expression of Smooth Muscle Differentiation Marker Genes via a Rho Kinase/Myocardin/SRF–Dependent Mechanism. Circ Res 2004; 95:406-14. [PMID: 15256479 DOI: 10.1161/01.res.0000138582.36921.9e] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vascular smooth muscle cell (SMC) contraction is mediated in part by calcium influx through L-type voltage-gated Ca
2+
channels (VGCC) and activation of the RhoA/Rho kinase (ROK) signaling cascade. We tested the hypothesis that Ca
2+
influx through VGCCs regulates SMC differentiation marker expression and that these effects are dependent on RhoA/ROK signaling. Depolarization-induced activation of VGCCs resulted in a nifedipine-sensitive increase in endogenous smooth muscle myosin heavy chain (SMMHC) and SM α-actin expression and CArG-dependent promoter activity, as well as c-fos promoter activity. The ROK inhibitor, Y-27632, prevented depolarization-induced increase in SMMHC/SM α-actin but had no effect on c-fos expression. Conversely, the Ca
2+
/calmodulin-dependent kinase inhibitor, KN93, prevented depolarization-induced increases in c-fos expression with no effect on SMMHC/SM α-actin. Depolarization increased expression of myocardin, a coactivator of SRF that mediates CArG-dependent transcription of SMC marker gene promoters containing paired CArG
cis
regulatory elements (SMMHC/SM α-actin). Both nifedipine and Y-27632 prevented the depolarization-induced increase in myocardin expression. Moreover, short interfering RNA (siRNA) specific for myocardin attenuated depolarization-induced SMMHC/SM α-actin transcription. Chromatin immunoprecipitation (ChIP) assays revealed that depolarization increased SRF enrichment of the CArG regions in the SMMHC, SM α-actin, and c-fos promoters in intact chromatin. Whereas Y-27632 decreased basal and depolarization-induced SRF enrichment in the SMMHC/SM α-actin promoter regions, it had no effect of SRF enrichment of c-fos. Taken together, these results provide evidence for a novel mechanism whereby Ca
2+
influx via VGCCs stimulates expression of SMC differentiation marker genes through mechanisms that are dependent on ROK, myocardin, and increased binding of SRF to CArG
cis
regulatory elements.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Actins/physiology
- Animals
- Aorta
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/physiology
- Cell Differentiation/physiology
- Cells, Cultured/cytology
- Cells, Cultured/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Developmental/drug effects
- Genes, fos
- Intracellular Signaling Peptides and Proteins
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Myosin Heavy Chains/physiology
- Nifedipine/pharmacology
- Nuclear Proteins/physiology
- Organoids/cytology
- Patch-Clamp Techniques
- Potassium Chloride/pharmacology
- Protein Serine-Threonine Kinases/physiology
- Protein Transport
- RNA, Small Interfering/pharmacology
- Rats
- Reverse Transcriptase Polymerase Chain Reaction
- Serum Response Element/genetics
- Serum Response Factor/physiology
- Trans-Activators/physiology
- Transfection
- rho-Associated Kinases
- rhoA GTP-Binding Protein/physiology
Collapse
|
|
21 |
151 |
15
|
Sinha S, Newsom-Davis J, Mills K, Byrne N, Lang B, Vincent A. Autoimmune aetiology for acquired neuromyotonia (Isaacs' syndrome). Lancet 1991; 338:75-7. [PMID: 1676468 DOI: 10.1016/0140-6736(91)90073-x] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuromyotonia is a rare disorder of unknown cause in which hyperexcitability of peripheral motor nerves leads to incapacitating muscle twitching, cramps, and weakness. We investigated an antibody-mediated mechanism for neuromyotonia in a 24-year-old man with a 7-year history of severe disease unresponsive to pharmacological treatment. Two periods of plasma exchange each produced almost complete disappearance of symptoms for 2-3 weeks, and a highly significant decrease in recorded neuromyotonic discharges. Injection of the patient's plasma or purified IgG into mice significantly enhanced in-vitro resistance to d-tubocurarine at the neuromuscular junction of phrenic nerve-diaphragm preparations. This finding suggests that an increase in neurotransmitter release might result from an antibody-mediated reduction in the number of functional potassium channels that normally regulate nerve excitability. The demonstration of pathogenic IgG autoantibodies in acquired neuromyotonia suggests that immunosuppressive treatment may be helpful in severe cases.
Collapse
|
Case Reports |
34 |
148 |
16
|
Narimatsu H, Sinha S, Brew K, Okayama H, Qasba PK. Cloning and sequencing of cDNA of bovine N-acetylglucosamine (beta 1-4)galactosyltransferase. Proc Natl Acad Sci U S A 1986; 83:4720-4. [PMID: 3014508 PMCID: PMC323813 DOI: 10.1073/pnas.83.13.4720] [Citation(s) in RCA: 146] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Galactosyltransferases constitute a family of enzymes, each member of which transfers galactose from UDPgalactose to a specific acceptor molecule, generating a specific galactose-acceptor linkage. Two synthetic oligonucleotides, 27mer and 21mer, were synthesized, based on the amino acid sequences of two peptides derived from bovine milk N-acetylglucosaminide (beta 1-4)galactosyltransferase (EC 2.4.1.90), and used as hybridization probes to isolate cDNA clones for galactosyltransferase from a bovine mammary gland cDNA library. One of the plasmids, designated pLbGT-1, contains an insert of about 3.7 kilobases that hybridizes to both of the probes and encodes the amino acid sequences of five peptides obtained from bovine milk (beta 1-4)galactosyltransferase. A second plasmid, designated pLbGT-2, contains an insert of about 4.1 kilobases that hybridizes to only the 27mer and that encodes a polypeptide containing the sequence of the carboxyl-terminal 120 residues identical to the peptide encoded by pLbGT-1; the rest of the protein sequence, however, does not contain known sequences from bovine galactosyltransferase. The two cDNAs contain a 3'-untranslated region of about 2.7 kilobases that includes two copies of the Alu-equivalent sequences. pLbGT-1 and pLbGT-2 hybridize to mRNAs of various sizes obtained from the bovine and rat mammary gland and the human mammary tumor cell line MCF-7, with the longest mRNA from each species being around 4.5 kilobases. The results show that pLbGT-1 is a cDNA clone for bovine (beta 1-4)galactosyltransferase, and pLbGT-2 encodes a protein that is structurally and may be functionally related to transferases.
Collapse
|
research-article |
39 |
146 |
17
|
Kumar A, Eby MT, Sinha S, Jasmin A, Chaudhary PM. The ectodermal dysplasia receptor activates the nuclear factor-kappaB, JNK, and cell death pathways and binds to ectodysplasin A. J Biol Chem 2001; 276:2668-77. [PMID: 11035039 DOI: 10.1074/jbc.m008356200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ectodermal dysplasia receptor (EDAR) is a recently isolated member of the tumor necrosis factor receptor family that has been shown to play a key role in the process of ectodermal differentiation. We present evidence that EDAR is capable of activating the nuclear factor-kappaB, JNK, and caspase-independent cell death pathways and that these activities are impaired in mutants lacking its death domain or those associated with anhidrotic ectodermal dysplasia and the downless phenotype. Although EDAR possesses a death domain, it did not interact with the death domain-containing adaptor proteins TRADD and FADD. EDAR successfully interacted with various TRAF family members; however, a dominant-negative mutant of TRAF2 was incapable of blocking EDAR-induced nuclear factor-kappaB or JNK activation. Collectively, the above results suggest that EDAR utilizes a novel signal transduction pathway. Finally, ectodysplasin A can physically interact with the extracellular domain of EDAR and thus represents its biological ligand.
Collapse
|
|
24 |
143 |
18
|
Sinha S, Kim IS, Sohn KY, de Crombrugghe B, Maity SN. Three classes of mutations in the A subunit of the CCAAT-binding factor CBF delineate functional domains involved in the three-step assembly of the CBF-DNA complex. Mol Cell Biol 1996; 16:328-37. [PMID: 8524312 PMCID: PMC231007 DOI: 10.1128/mcb.16.1.328] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The mammalian CCAAT-binding factor CBF (also called NF-Y or CP1) consists of three subunits, CBF-A, CBF-B, and CBF-C, all of which are required for DNA binding and present in the CBF-DNA complex. In this study we first established the stoichiometries of the CBF subunits, both in the CBF molecule and in the CBF-DNA complex, and showed that one molecule of each subunit is present in the complex. To begin to understand the interactions between the CBF subunits and DNA, we performed a mutational analysis of the CBF-A subunit. This analysis identified three classes of mutations in the segment of CBF-A that is conserved in Saccharomyces cerevisiae and mammals. Analysis of the first class of mutants revealed that a major part of the conserved segment was essential for interactions with CBF-C to form a heterodimeric CBF-A/CBF-C complex. The second class of mutants identified a segment of CBF-A that is necessary for interactions between the CBF-A/CBF-C heterodimer and CBF-B to form a CBF heterotrimer. The third class defined a domain of CBF-A involved in binding the CBF heterotrimer to DNA. The second and third classes of mutants acted as dominant negative mutants inhibiting the formation of a complex between the wild-type CBF subunits and DNA. The segment of CBF-A necessary for DNA binding showed sequence homology to a segment of CBF-C. Interestingly, these sequences in CBF-A and CBF-C were also homologous to the sequences in the histone-fold motifs of histones H2B and H2A, respectively, and to the archaebacterial histone-like protein HMf-2. We discuss the functional domains of CBF-A and the properties of CBF in light of these sequence homologies and propose that an ancient histone-like motif in two CBF subunits controls the formation of a heterodimer between these subunits and the assembly of a sequence-specific DNA-protein complex.
Collapse
|
research-article |
29 |
140 |
19
|
Jeste DV, Potkin SG, Sinha S, Feder S, Wyatt RJ. Tardive dyskinesia--reversible and persistent. ARCHIVES OF GENERAL PSYCHIATRY 1979; 36:585-90. [PMID: 35116 DOI: 10.1001/archpsyc.1979.01780050095012] [Citation(s) in RCA: 136] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Twenty-one hospitalized patients over 50 years of age who had tardive dyskinesia were studied for 13 months. After withdrawal of neuroleptics and antidepressants for three months, dyskinetic symptoms abated in 12 patients and persisted in nine. Discriminant function analysis showed that the persistent and reversible dyskinesia groups could be clearly separated and that the best discriminator was the number of drug-free intervals. The persistent dyskinesia group had had significantly longer neuroleptic treatment (mean, 10.8 yr) and a greater number (mean, 5.6) of drug interruptions of at least two months' duration each than did the reversible dyskinesia group. Our finding, as well as the literature reviewed, does not support the commonly held notion that frequent lengthy interruptions of long-term drug treatment reduce the incidence of persistent dyskinesia, at least in patients who are otherwise predisposed to the development of tardive dyskinesia.
Collapse
|
|
46 |
136 |
20
|
Kim IS, Sinha S, de Crombrugghe B, Maity SN. Determination of functional domains in the C subunit of the CCAAT-binding factor (CBF) necessary for formation of a CBF-DNA complex: CBF-B interacts simultaneously with both the CBF-A and CBF-C subunits to form a heterotrimeric CBF molecule. Mol Cell Biol 1996; 16:4003-13. [PMID: 8754798 PMCID: PMC231396 DOI: 10.1128/mcb.16.8.4003] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mammalian CCAAT-binding factor (CBF; also called NF-Y and CP1) is a heterotrimeric protein consisting of three subunits, CBF-A, CBF-B, and CBF-C, all of which are required for DNA binding and all of which are present in the CBF-DNA complex. In this study using cross-linking and immunoprecipitation methods, we first established that CBF-B interacts simultaneously with both subunits of the CBF-A-CBF-C heterodimer to form a heterotrimeric CBF molecule. We then performed a mutational analysis of CBF-C to define functional interactions with the other two CBF subunits and with DNA using several in vitro assays and an in vivo yeast two-hybrid system. Our experiments established that the evolutionarily conserved segment of CBF-C, which shows similarities with the histone-fold motif of histone H2A, was necessary for formation of the CBF-DNA complex. The domain of CBF-C which interacts with CBF-A included a large portion of this segment, one that corresponds to the segment of the histone-fold motif in H2A used for interaction with H2B. Two classes of interactions involved in formation of the CBF-A-CBF-C heterodimer were detected; one class, provided by residues in the middle of the interaction domain, was needed for formation of the CBF-A-CBF-C heterodimer. The other, provided by sequences flanking those of the first class was needed for stabilization of the heterodimer. Two separate domains were identified in the conserved segment of CBF-C for interaction with CBF-B; these were located on each side of the CBF-A interaction domain. Since our previous experiments identified a single CBF-B interaction domain in the histone-fold motif of CBF-A, we propose that a tridentate interaction domain in the CBF-A-CBF-C heterodimer interacts with the 21-amino-acid-long subunit interaction domain of CBF-B. Together with our previous mutational analysis of CBF-A (S. Sinha, I.-S. Kim, K.-Y. Sohn, B. de Crombrugghe, and S. N. Maity, Mol. Cell. Biol. 16:328-337, 1996), this study demonstrates that the histone fold-motifs of CBF-A and CBF-C interact with each other to form the CBF-A-CBF-C heterodimer and generate a hybrid surface which then interacts with CBF-B to form the heterotrimeric CBF molecule.
Collapse
|
research-article |
29 |
129 |
21
|
Sinha S, Taly AB, Ravishankar S, Prashanth LK, Venugopal KS, Arunodaya GR, Vasudev MK, Swamy HS. Wilson’s disease: cranial MRI observations and clinical correlation. Neuroradiology 2006; 48:613-21. [PMID: 16752136 DOI: 10.1007/s00234-006-0101-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 04/10/2006] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Study of MRI changes may be useful in diagnosis, prognosis and better understanding of the pathophysiology of Wilson's disease (WD). We aimed to describe and correlate the MRI abnormalities of the brain with clinical features in WD. METHODS MRI evaluation was carried out in 100 patients (57 males, 43 females; mean age 19.3+/-8.9 years) using standard protocols. All but 18 patients were on de-coppering agents. Their history, clinical manifestations and scores for severity of disease were noted. RESULTS The mean duration of illness and treatment were 8.3+/-10.8 years and 7.5+/-7.1 years respectively. MRI of the brain was abnormal in all the 93 symptomatic patients. The most conspicuous observations were atrophy of the cerebrum (70%), brainstem (66%) and cerebellum (52%). Signal abnormalities were also noted: putamen (72%), caudate (61%), thalami (58%), midbrain (49%), pons (20%), cerebral white matter (25%), cortex (9%), medulla (12%) and cerebellum (10%). The characteristic T2-W globus pallidal hypointensity (34%), "Face of giant panda" sign (12%), T1-W striatal hyperintensity (6%), central pontine myelinosis (7%), and bright claustral sign (4%) were also detected. MRI changes correlated with disease severity scores (P<0.001) but did not correlate with the duration of illness. CONCLUSION MRI changes were universal but diverse and involved almost all the structures of the brain in symptomatic patients. A fair correlation between MRI observations and various clinical features provides an explanation for the protean manifestations of the disease.
Collapse
|
|
19 |
122 |
22
|
Wamhoff BR, Hoofnagle MH, Burns A, Sinha S, McDonald OG, Owens GK. A G/C element mediates repression of the SM22alpha promoter within phenotypically modulated smooth muscle cells in experimental atherosclerosis. Circ Res 2004; 95:981-8. [PMID: 15486317 DOI: 10.1161/01.res.0000147961.09840.fb] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A hallmark of smooth muscle cell (SMC) phenotypic switching in atherosclerotic lesions is suppression of SMC differentiation marker gene expression. Yet little is known regarding the molecular mechanisms that control this process. Here we show that transcription of the SMC differentiation marker gene SM22alpha is reduced in atherosclerotic lesions and identify a cis regulatory element in the SM22alpha promoter required for this process. Transgenic mice carrying the SM22alpha promoter-beta-galactosidase (beta-gal) reporter transgene were crossed to apolipoprotein E (ApoE)-/- mice. Cells of the fibrous cap, intima, and underlying media showed complete loss of beta-gal activity in advanced atherosclerotic lesions. Of major significance, mutation of a G/C-rich cis element in the SM22alpha promoter prevented the decrease in SM22alpha promoter-beta-gal reporter transgene expression, including in cells that compose the fibrous cap of the lesion and in medial cells in proximity to the lesion. To begin to assess mechanisms whereby the G/C repressor element mediates suppression of SM22alpha in atherosclerosis, we tested the hypothesis that effects may be mediated by platelet-derived growth factor (PDGF)-BB-induced increases in the G/C binding transcription factor Sp1. Consistent with this hypothesis, results of studies in cultured SMCs showed that: (1) PDGF-BB increased expression of Sp1; (2) PDGF-BB and Sp1 profoundly suppressed SM22alpha promoter activity as well as smooth muscle myosin heavy chain promoter activity through mechanisms that were at least partially dependent on the G/C cis element; and (3) a short interfering RNA to Sp1 increased basal expression and attenuated PDGF-BB induced suppression of SM22alpha. Together, these results support a model whereby a G/C repressor element within the SM22alpha promoter mediates transcriptional repression of this gene within phenotypically modulated SMCs in experimental atherosclerosis and provide indirect evidence implicating PDGF-BB and Sp1 as possible mediators of these effects.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Apolipoproteins E/genetics
- Arteriosclerosis/etiology
- Arteriosclerosis/genetics
- Arteriosclerosis/pathology
- Becaplermin
- Cell Differentiation/genetics
- Cells, Cultured/metabolism
- Cells, Cultured/pathology
- Crosses, Genetic
- Extracellular Matrix Proteins/biosynthesis
- Extracellular Matrix Proteins/genetics
- Gene Silencing/physiology
- Genes, Reporter
- Hypercholesterolemia/complications
- Hypercholesterolemia/genetics
- Lac Operon
- Mice
- Mice, Inbred CBA
- Mice, Transgenic
- Microfilament Proteins/genetics
- Muscle Proteins/biosynthesis
- Muscle Proteins/genetics
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Platelet-Derived Growth Factor/pharmacology
- Platelet-Derived Growth Factor/physiology
- Promoter Regions, Genetic/genetics
- Protein Binding
- Proto-Oncogene Proteins c-sis
- Rats
- Recombinant Fusion Proteins/physiology
- Regulatory Sequences, Nucleic Acid
- Serum Response Element
- Sp1 Transcription Factor/physiology
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
115 |
23
|
Chen PP, Liu MF, Sinha S, Carson DA. A 16/6 idiotype-positive anti-DNA antibody is encoded by a conserved VH gene with no somatic mutation. ARTHRITIS AND RHEUMATISM 1988; 31:1429-31. [PMID: 3263866 DOI: 10.1002/art.1780311113] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recently, the heavy chain of 16/6 idiotype-positive human anti-DNA antibodies was found to be similar, but not identical, to the VH26 gene. We resequenced the VH26 gene and found that its coding sequence is actually identical to the complementary DNA sequence of the anti-DNA antibodies previously described. Together with the previous data, our findings demonstrate that some human autoantibodies are encoded directly by immunoglobulin V region genes, and that these V region genes are remarkably conserved in populations.
Collapse
|
|
37 |
113 |
24
|
Krawczynski K, Alter MJ, Tankersley DL, Beach M, Robertson BH, Lambert S, Kuo G, Spelbring JE, Meeks E, Sinha S, Carson DA. Effect of immune globulin on the prevention of experimental hepatitis C virus infection. J Infect Dis 1996; 173:822-8. [PMID: 8603959 DOI: 10.1093/infdis/173.4.822] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The efficacy of postexposure prophylaxis for the prevention of hepatitis C virus (HCV) infection was studied in experimentally infected chimpanzees. Three chimpanzees were inoculated with HCV: Two were treated 1 h later with anti-HCV--negative intravenous immune globulin (IGIV) or hepatitis C immune globulin (HCIG), and a third animal was not treated. HCV infection was detected in all 3 animals within a few days of inoculation. Once passively transferred anti-HCV declined in the HCIG-treated animal, there was an increase of HCV antigen (Ag)--positive hepatocytes followed by reappearance of anti-HCV; HCV Ag disappeared concordant with the development of acute hepatitis. Acute hepatitis C developed in both the IGIV-treated and untreated chimpanzees, with peak liver enzyme activity on day 59, but was delayed in the HCIG-treated animal until day 146. Postexposure HCIG treatment markedly prolonged the incubation period of acute hepatitis C but did not prevent or delay HCV infection. IGIV had no effect on the course of HCV infection.
Collapse
|
|
29 |
113 |
25
|
Lefebvre V, Zhou G, Mukhopadhyay K, Smith CN, Zhang Z, Eberspaecher H, Zhou X, Sinha S, Maity SN, de Crombrugghe B. An 18-base-pair sequence in the mouse proalpha1(II) collagen gene is sufficient for expression in cartilage and binds nuclear proteins that are selectively expressed in chondrocytes. Mol Cell Biol 1996; 16:4512-23. [PMID: 8754852 PMCID: PMC231450 DOI: 10.1128/mcb.16.8.4512] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The molecular mechanisms by which mesenchymal cells differentiate into chondrocytes are still poorly understood. We have used the gene for a chondrocyte marker, the proalpha1(II) collagen gene (Col2a1), as a model to delineate a minimal sequence needed for chondrocyte expression and identify chondrocyte-specific proteins binding to this sequence. We previously localized a cartilage-specific enhancer to 156 bp of the mouse Col2a1 intron 1. We show here that four copies of a 48-bp subsegment strongly increased promoter activity in transiently transfected rat chondrosarcoma (RCS) cells and mouse primary chondrocytes but not in 10T1/2 fibroblasts. They also directed cartilage specificity in transgenic mouse embryos. These 48 bp include two 11-bp inverted repeats with only one mismatch. Tandem copies of an 18-bp element containing the 3' repeat strongly enhanced promoter activity in RCS cells and chondrocytes but not in fibroblasts. Transgenic mice harboring 12 copies of this 18-mer expressed luciferase in ribs and vertebrae and in isolated chondrocytes but not in noncartilaginous tissues except skin and brain. In gel retardation assays, an RCS cell-specific protein and another closely related protein expressed only in RCS cells and primary chondrocytes bound to a 10-bp sequence within the 18-mer. Mutations in these 10 bp abolished activity of the multimerized 18-bp enhancer, and deletion of these 10 bp abolished enhancer activity of 465- and 231-bp intron 1 segments. This sequence contains a low-affinity binding site for POU domain proteins, and competition experiments with a high-affinity POU domain binding site strongly suggested that the chondrocyte proteins belong to this family. Together, our results indicate that an 18-bp sequence in Col2a1 intron 1 controls chondrocyte expression and suggest that RCS cells and chondrocytes contain specific POU domain proteins involved in enhancer activity.
Collapse
|
research-article |
29 |
104 |