1
|
Jackson JM, Witek MA, Hupert ML, Brady C, Pullagurla S, Kamande J, Aufforth RD, Tignanelli CJ, Torphy RJ, Yeh JJ, Soper SA. UV activation of polymeric high aspect ratio microstructures: ramifications in antibody surface loading for circulating tumor cell selection. LAB ON A CHIP 2014; 14:106-17. [PMID: 23900277 PMCID: PMC4182936 DOI: 10.1039/c3lc50618e] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The need to activate thermoplastic surfaces using robust and efficient methods has been driven by the fact that replication techniques can be used to produce microfluidic devices in a high production mode and at low cost, making polymer microfluidics invaluable for in vitro diagnostics, such as circulating tumor cell (CTC) analysis, where device disposability is critical to mitigate artifacts associated with sample carryover. Modifying the surface chemistry of thermoplastic devices through activation techniques can be used to increase the wettability of the surface or to produce functional scaffolds to allow for the covalent attachment of biologics, such as antibodies for CTC recognition. Extensive surface characterization tools were used to investigate UV activation of various surfaces to produce uniform and high surface coverage of functional groups, such as carboxylic acids in microchannels of different aspect ratios. We found that the efficiency of the UV activation process is highly dependent on the microchannel aspect ratio and the identity of the thermoplastic substrate. Colorimetric assays and fluorescence imaging of UV-activated microchannels following EDC/NHS coupling of Cy3-labeled oligonucleotides indicated that UV-activation of a PMMA microchannel with an aspect ratio of ~3 was significantly less efficient toward the bottom of the channel compared to the upper sections. This effect was a consequence of the bulk polymer's damping of the modifying UV radiation due to absorption artifacts. In contrast, this effect was less pronounced for COC. Moreover, we observed that after thermal fusion bonding of the device's cover plate to the substrate, many of the generated functional groups buried into the bulk rendering them inaccessible. The propensity of this surface reorganization was found to be higher for PMMA compared to COC. As an example of the effects of material and microchannel aspect ratios on device functionality, thermoplastic devices for the selection of CTCs from whole blood were evaluated, which required the immobilization of monoclonal antibodies to channel walls. From our results, we concluded the CTC yield and purity of isolated CTCs were dependent on the substrate material with COC producing the highest clinical yields for CTCs as well as better purities compared to PMMA.
Collapse
|
research-article |
11 |
60 |
2
|
Uba FI, Pullagurla SR, Sirasunthorn N, Wu J, Park S, Chantiwas R, Cho Y, Shin H, Soper SA. Surface charge, electroosmotic flow and DNA extension in chemically modified thermoplastic nanoslits and nanochannels. Analyst 2015; 140:113-26. [PMID: 25369728 PMCID: PMC4280799 DOI: 10.1039/c4an01439a] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thermoplastics have become attractive alternatives to glass/quartz for microfluidics, but the realization of thermoplastic nanofluidic devices has been slow in spite of the rather simple fabrication techniques that can be used to produce these devices. This slow transition has in part been attributed to insufficient understanding of surface charge effects on the transport properties of single molecules through thermoplastic nanochannels. We report the surface modification of thermoplastic nanochannels and an assessment of the associated surface charge density, zeta potential and electroosmotic flow (EOF). Mixed-scale fluidic networks were fabricated in poly(methylmethacrylate), PMMA. Oxygen plasma was used to generate surface-confined carboxylic acids with devices assembled using low temperature fusion bonding. Amination of the carboxylated surfaces using ethylenediamine (EDA) was accomplished via EDC coupling. XPS and ATR-FTIR revealed the presence of carboxyl and amine groups on the appropriately prepared surfaces. A modified conductance equation for nanochannels was developed to determine their surface conductance and was found to be in good agreement with our experimental results. The measured surface charge density and zeta potential of these devices were lower than glass nanofluidic devices and dependent on the surface modification adopted, as well as the size of the channel. This property, coupled to an apparent increase in fluid viscosity due to nanoconfinement, contributed to the suppression of the EOF in PMMA nanofluidic devices by an order of magnitude compared to the micro-scale devices. Carboxylated PMMA nanochannels were efficient for the transport and elongation of λ-DNA while these same DNA molecules were unable to translocate through aminated nanochannels.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
46 |
3
|
Witek MA, Aufforth RD, Wang H, Kamande JW, Jackson JM, Pullagurla SR, Hupert ML, Usary J, Wysham WZ, Hilliard D, Montgomery S, Bae-Jump V, Carey LA, Gehrig PA, Milowsky MI, Perou CM, Soper JT, Whang YE, Yeh JJ, Martin G, Soper SA. Discrete microfluidics for the isolation of circulating tumor cell subpopulations targeting fibroblast activation protein alpha and epithelial cell adhesion molecule. NPJ Precis Oncol 2017; 1. [PMID: 29657983 PMCID: PMC5871807 DOI: 10.1038/s41698-017-0028-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Circulating tumor cells consist of phenotypically distinct subpopulations that originate from the tumor microenvironment. We report a circulating tumor cell dual selection assay that uses discrete microfluidics to select circulating tumor cell subpopulations from a single blood sample; circulating tumor cells expressing the established marker epithelial cell adhesion molecule and a new marker, fibroblast activation protein alpha, were evaluated. Both circulating tumor cell subpopulations were detected in metastatic ovarian, colorectal, prostate, breast, and pancreatic cancer patients and 90% of the isolated circulating tumor cells did not co-express both antigens. Clinical sensitivities of 100% showed substantial improvement compared to epithelial cell adhesion molecule selection alone. Owing to high purity (>80%) of the selected circulating tumor cells, molecular analysis of both circulating tumor cell subpopulations was carried out in bulk, including next generation sequencing, mutation analysis, and gene expression. Results suggested fibroblast activation protein alpha and epithelial cell adhesion molecule circulating tumor cells are distinct subpopulations and the use of these in concert can provide information needed to navigate through cancer disease management challenges.
Collapse
|
Journal Article |
8 |
26 |
4
|
Chantiwas R, Hupert ML, Pullagurla SR, Balamurugan S, Tamarit-López J, Park S, Datta P, Goettert J, Cho YK, Soper SA. Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits. LAB ON A CHIP 2010; 10:3255-64. [PMID: 20938506 DOI: 10.1039/c0lc00096e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Mixed-scale nano- and microfluidic networks were fabricated in thermoplastics using simple and robust methods that did not require the use of sophisticated equipment to produce the nanostructures. High-precision micromilling (HPMM) and photolithography were used to generate mixed-scale molding tools that were subsequently used for producing fluidic networks into thermoplastics such as poly(methyl methacrylate), PMMA, cyclic olefin copolymer, COC, and polycarbonate, PC. Nanoslit arrays were imprinted into the polymer using a nanoimprinting tool, which was composed of an optical mask with patterns that were 2-7 µm in width and a depth defined by the Cr layer (100 nm), which was deposited onto glass. The device also contained a microchannel network that was hot embossed into the polymer substrate using a metal molding tool prepared via HPMM. The mixed-scale device could also be used as a master to produce a polymer stamp, which was made from polydimethylsiloxane, PDMS, and used to generate the mixed-scale fluidic network in a single step. Thermal fusion bonding of the cover plate to the substrate at a temperature below their respective T(g) was accomplished by oxygen plasma treatment of both the substrate and cover plate, which significantly reduced thermally induced structural deformation during assembly: ∼6% for PMMA and ∼9% for COC nanoslits. The electrokinetic transport properties of double-stranded DNA (dsDNA) through the polymeric nanoslits (PMMA and COC) were carried out. In these polymer devices, the dsDNA demonstrated a field-dependent electrophoretic mobility with intermittent transport dynamics. DNA mobilities were found to be 8.2 ± 0.7 × 10(-4) cm(2) V(-1) s(-1) and 7.6 ± 0.6 × 10(-4) cm(2) V(-1) s(-1) for PMMA and COC, respectively, at a field strength of 25 V cm(-1). The extension factors for λ-DNA were 0.46 in PMMA and 0.53 in COC for the nanoslits (2-6% standard deviation).
Collapse
|
Research Support, N.I.H., Extramural |
15 |
24 |
5
|
Pullagurla SR, Witek MA, Jackson JM, Lindell MAM, Hupert ML, Nesterova IV, Baird AE, Soper SA. Parallel affinity-based isolation of leukocyte subsets using microfluidics: application for stroke diagnosis. Anal Chem 2014; 86:4058-65. [PMID: 24650222 PMCID: PMC4004188 DOI: 10.1021/ac5007766] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
We report the design and performance
of a polymer microfluidic
device that can affinity select multiple types of biological cells
simultaneously with sufficient recovery and purity to allow for the
expression profiling of mRNA isolated from these cells. The microfluidic
device consisted of four independent selection beds with curvilinear
channels that were 25 μm wide and 80 μm deep and were
modified with antibodies targeting antigens specifically expressed
by two different cell types. Bifurcated and Z-configured device geometries
were evaluated for cell selection. As an example of the performance
of these devices, CD4+ T-cells and neutrophils were selected from
whole blood as these cells are known to express genes found in stroke-related
expression profiles that can be used for the diagnosis of this disease.
CD4+ T-cells and neutrophils were simultaneously isolated with purities
>90% using affinity-based capture in cyclic olefin copolymer (COC)
devices with a processing time of ∼3 min. In addition, sufficient
quantities of the cells could be recovered from a 50 μL whole
blood input to allow for reverse transcription-polymerase chain reaction
(RT-PCR) following cell lysis. The expression of genes from isolated
T-cells and neutrophils, such as S100A9, TCRB, and FPR1, was evaluated using RT-PCR.
The modification and isolation procedures demonstrated here can also
be used to analyze other cell types as well where multiple subsets
must be interrogated.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
19 |
6
|
O'Neil CE, Taylor S, Ratnayake K, Pullagurla S, Singh V, Soper SA. Characterization of activated cyclic olefin copolymer: effects of ethylene/norbornene content on the physiochemical properties. Analyst 2016; 141:6521-6532. [PMID: 27827488 PMCID: PMC5354357 DOI: 10.1039/c6an01448h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ethylene/norbornene content within cyclic olefin copolymer (COC) is well known to affect the chemical and physical properties of the copolymer, such as the glass transition temperature (Tg) and transparency. However, no work has been reported evaluating the effects of the ethylene/norbornene content on the surface properties of COC following UV/O3 or O2 plasma activation. Activation with either O2 plasma or UV/O3 is often used to assist in thermal assembly of fluidic devices, increasing the wettability of the surfaces, or generating functional scaffolds for the attachment of biological elements. Thus, we investigated differences in the physiochemical surface properties of various ethylene/norbornene compositions of COC following activation using analytical techniques such as water contact angle (WCA), ATR-FTIR, XPS, TOF-SIMS, UV-VIS, AFM and a colorimetric assay utilizing Toluidine Blue O (TBO). Results showed that increased norbornene content led to the generation of more oxygen containing functionalities such as alcohols, ketones, aldehydes and carboxyl groups when activated with either UV/O3 or O2 plasma. Specifically, COC with ∼60% norbornene content showed a significantly higher -COOH functional group density when compared to COC with a 50% norbornene content and COC with a 35% norbornene content following UV/O3 or O2 plasma activation. Furthermore, COC with large norbornene contents showed a smaller average RMS roughness (0.65 nm) when compared to COC containing low norbornene contents (0.95 nm) following activation making this substrate especially suited for nanofluidic applications, which require smooth surfaces to minimize effects arising from dielectrophoretic trapping or non-specific adsorption. Although all COC substrates showed >90% transparency at wavelengths >475 nm, COC possessing high norbornene contents showed significantly less transparency at wavelengths below 475 nm following activation, making optical detection in this region difficult. Our data showed distinct physiochemical differences in activated COC that was dependent upon the ethylene/norbornene content of the thermoplastic and thus, careful selection of the particular COC grade must be considered for micro- and nanofluidics.
Collapse
|
research-article |
9 |
19 |
7
|
Kumar P, Shukla RS, Patel A, Pullagurla SR, Bird C, Ogun O, Kumru OS, Hamidi A, Hoeksema F, Yallop C, Bines JE, Joshi SB, Volkin DB. Formulation development of a live attenuated human rotavirus (RV3-BB) vaccine candidate for use in low- and middle-income countries. Hum Vaccin Immunother 2021; 17:2298-2310. [PMID: 33861183 PMCID: PMC8189091 DOI: 10.1080/21645515.2021.1885279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/29/2021] [Indexed: 01/05/2023] Open
Abstract
Formulation development was performed with the live, attenuated, human neonatal rotavirus vaccine candidate (RV3-BB) with three main objectives to facilitate use in low- and middle- income countries including (1) a liquid, 2-8°C stable vaccine, (2) no necessity for pre-neutralization of gastric acid prior to oral administration of a small-volume dose, and (3) a low-cost vaccine dosage form. Implementation of a high-throughput RT-qPCR viral infectivity assay for RV3-BB, which correlated well with traditional FFA assays in terms of monitoring RV3-BB stability profiles, enabled more rapid and comprehensive formulation development studies. A wide variety of different classes and types of pharmaceutical excipients were screened for their ability to stabilize RV3-BB during exposure to elevated temperatures, freeze-thaw and agitation stresses. Sucrose (50-60% w/v), PEG-3350, and a solution pH of 7.8 were selected as promising stabilizers. Using a combination of an in vitro gastric digestion model (to mimic oral delivery conditions) and accelerated storage stability studies, several buffering agents (e.g., succinate, adipate and acetate at ~200 to 400 mM) were shown to protect RV3-BB under acidic conditions, and at the same time, minimize virus destabilization during storage. Several optimized RV3-BB candidate formulations were identified based on negligible viral infectivity losses during storage at 2-8°C and -20°C for up to 12 months, as well as by relative stability comparisons at 15°C and 25°C (up to 12 and 3 months, respectively). These RV3-BB stability results are discussed in the context of stability profiles of other rotavirus serotypes as well as future RV3-BB formulation development activities.
Collapse
|
research-article |
4 |
8 |
8
|
Kumar P, Pullagurla SR, Patel A, Shukla RS, Bird C, Kumru OS, Hamidi A, Hoeksema F, Yallop C, Bines JE, Joshi SB, Volkin DB. Effect of Formulation Variables on the Stability of a Live, Rotavirus (RV3-BB) Vaccine Candidate using in vitro Gastric Digestion Models to Mimic Oral Delivery. J Pharm Sci 2021; 110:760-770. [PMID: 33035539 PMCID: PMC7815322 DOI: 10.1016/j.xphs.2020.09.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022]
Abstract
In this work, two different in vitro gastric digestion models were used to evaluate the stability of a live attenuated rotavirus vaccine candidate (RV3-BB) under conditions designed to mimic oral delivery in infants. First, a forced-degradation model was established at low pH to assess the buffering capacity of formulation excipients and to screen for RV3-BB stabilizers. Second, a sequential-addition model was implemented to examine RV3-BB stability under conditions more representative of oral administration to infants. RV3-BB rapidly inactivated at < pH 5.0 (37 °C, 1 h) as measured by an infectivity RT-qPCR assay. Pre-neutralization with varying volumes of infant formula (Enfamil®) or antacid (Mylanta®) conferred partial to full protection of RV3-BB. Excipients with sufficient buffering capacity to minimize acidic pH inactivation of RV3-BB were identified (e.g., succinate, acetate, adipate), however, they concomitantly destabilized RV3-BB in accelerated storage stability studies. Both effects were concentration dependent, thus excipient optimization was required to design candidate RV3-BB formulations which minimize acid-induced viral inactivation during oral delivery while not destabilizing the vaccine during long-term 2-8 °C storage. Finally, a statistical Design -of-Experiments (DOE) study examining RV3-BB stability in the in vitro sequential-addition model identified key formulation parameters likely affecting RV3-BB stability during in vivo oral delivery.
Collapse
|
research-article |
4 |
6 |
9
|
Baird AE, Soper SA, Pullagurla SR, Adamski MG. Recent and near-future advances in nucleic acid-based diagnosis of stroke. Expert Rev Mol Diagn 2015; 15:665-79. [PMID: 25837776 DOI: 10.1586/14737159.2015.1024660] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stroke is a leading cause of death and disability in adults, but at present, treatment for ischemic stroke reaches only a small percentage of patients. This is because of the very short time window for treatment and the time-consuming evaluation involved. Intense efforts are underway to find novel approaches to expedite stroke diagnosis and treatment. In this review, we provide the rationale for the use of blood-based nucleic acid biomarkers to advance stroke diagnosis. We describe mRNA markers identified in genomic profiling of circulating leukocytes and then outline technological issues involved in the application of these results. We then describe the novel point-of-care technology that is in development for the rapid detection of multiple mRNA molecules in circulating leukocytes.
Collapse
|
Review |
10 |
6 |
10
|
Hamidi A, Hoeksema F, Velthof P, Lemckert A, Gillissen G, Luitjens A, Bines JE, Pullagurla SR, Kumar P, Volkin DB, Joshi SB, Havenga M, Bakker WAM, Yallop C. Developing a manufacturing process to deliver a cost effective and stable liquid human rotavirus vaccine. Vaccine 2021; 39:2048-2059. [PMID: 33744044 PMCID: PMC8062787 DOI: 10.1016/j.vaccine.2021.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 11/28/2022]
Abstract
Despite solid evidence of the success of rotavirus vaccines in saving children from fatal gastroenteritis, more than 82 million infants worldwide still lack access to a rotavirus vaccine. The main barriers to global rotavirus vaccine coverage include cost, manufacturing capacity and suboptimal efficacy in low- and lower-middle income countries. One vaccine candidate with the potential to address the latter is based on the novel, naturally attenuated RV3 strain of rotavirus, RV3-BB vaccine administered in a birth dose strategy had a vaccine efficacy against severe rotavirus gastroenteritis of 94% at 12 months of age in infants in Indonesia. To further develop this vaccine candidate, a well-documented and low-cost manufacturing process is required. A target fully loaded cost of goods (COGs) of ≤$3.50 per course of three doses was set based on predicted market requirements. COGs modelling was leveraged to develop a process using Vero cells in cell factories reaching high titers, reducing or replacing expensive reagents and shortening process time to maximise output. Stable candidate liquid formulations were developed allowing two-year storage at 2-8 °C. In addition, the formulation potentially renders needless the pretreatment of vaccinees with antacid to ensure adequate gastric acid neutralization for routine oral vaccination. As a result, the formulation allows small volume dosing and reduction of supply chain costs. A dose ranging study is currently underway in Malawi that will inform the final clinical dose required. At a clinical dose of ≤6.3 log10 FFU, the COGs target of ≤$3.50 per three dose course was met. At a clinical dose of 6.5 log10 FFU, the final manufacturing process resulted in a COGs that is substantially lower than the current average market price, 2.44 USD per dose. The manufacturing and formulation processes were transferred to BioFarma in Indonesia to enable future RV3-BB vaccine production.
Collapse
|
research-article |
4 |
4 |
11
|
Wan Y, Gupta V, Bird C, Pullagurla SR, Fahey P, Forster A, Volkin DB, Joshi SB. Formulation Development and Improved Stability of a Combination Measles and Rubella Live-Viral Vaccine Dried for Use in the Nanopatch TM Microneedle Delivery System. Hum Vaccin Immunother 2021; 17:2501-2516. [PMID: 33957843 PMCID: PMC8475600 DOI: 10.1080/21645515.2021.1887692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Measles (Me) and rubella (Ru) viral diseases are targeted for elimination by ensuring a high level of vaccination coverage worldwide. Less costly, more convenient MeRu vaccine delivery systems should improve global vaccine coverage, especially in low - and middle - income countries (LMICs). In this work, we examine formulating a live, attenuated Me and Ru combination viral vaccine with Nanopatch™, a solid polymer micro-projection array for intradermal delivery. First, high throughput, qPCR-based viral infectivity and genome assays were established to enable formulation development to stabilize Me and Ru in a scaled-down, custom-built evaporative drying system to mimic the Nanopatch™ vaccine coating process. Second, excipient screening and optimization studies identified virus stabilizers for use during the drying process and upon storage in the dried state. Finally, a series of real-time and accelerated stability studies identified eight candidate formulations that met a target thermal stability criterion for live vaccines (<1 log10 loss after 1 week storage at 37°C). Compared to -80°C control samples, the top candidate formulations resulted in minimal viral infectivity titer losses after storage at 2-8°C for 6 months (i.e., <0.1 log10 for Me, and ~0.4 log10 for Ru). After storage at 25°C over 6 months, ~0.3-0.5 and ~1.0-1.4 log10 titer losses were observed for Me and Ru, respectively, enabling the rank-ordering of the stability of candidate formulations. These results are discussed in the context of future formulation challenges for developing microneedle-based dosage forms containing stabilized live, attenuated viral vaccines for use in LMICs.
Collapse
|
research-article |
4 |
4 |
12
|
Sharma N, Jerajani K, Wan Y, Kumru OS, Pullagurla SR, Ogun O, Mapari S, Brendle S, Christensen ND, Batwal S, Mahedvi M, Rao H, Dogar V, Chandrasekharan R, Shaligram U, Volkin DB, Joshi SB. Multi-dose Formulation Development for a Quadrivalent Human Papillomavirus Virus-Like Particle-Based Vaccine: Part II- Real-time and Accelerated Stability Studies. J Pharm Sci 2023; 112:458-470. [PMID: 36462710 DOI: 10.1016/j.xphs.2022.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
This work describes Part 2 of multi-dose formulation development of a Human Papillomavirus (HPV) Virus-Like Particle (VLP) based vaccine (see Part 1 in companion paper). Storage stability studies with candidate multi-dose formulations containing individual or combinations of seven different antimicrobial preservatives (APs) were performed with quadrivalent HPV VLP (6, 11, 16, 18) antigens adsorbed to aluminum-salt adjuvant (Alhydrogel®). Real-time (up to two years, 2-8°C) and accelerated (months at 25 and 40°C) stability studies identified eight lead candidates as measured by antigen stability (competitive ELISA employing conformational serotype-specific mAbs), antimicrobial effectiveness (modified European Pharmacopeia assay), total protein content (SDS-PAGE), and AP concentration (RP-UHPLC). The AH-adsorbed HPV18 VLP component was most sensitive to AP-induced destabilization. Optimal quadrivalent antigen storage stability while maintaining antimicrobial effectiveness was observed with 2-phenoxyethanol, benzyl alcohol, chlorobutanol, and 2-phenoxyethanol + benzyl alcohol combination. Interestingly, for single-AP containing multi-dose formulations, this rank-ordering of storage stability did not correlate with previously reported biophysical measurements of AP-induced antigen destabilization. Moreover, other APs (e.g., m-cresol, phenol, parabens) described by others for inclusion in multi-dose HPV VLP formulations showed suboptimal stability. These results suggest that each HPV VLP vaccine candidate (e.g., different serotypes, expression systems, processes, adjuvants) will require customized multi-dose formulation development.
Collapse
|
|
2 |
1 |
13
|
Pullagurla SR, Kumar P, Ogun O, Kumru OS, Hamidi A, Hoeksema F, Yallop C, Bines JE, Volkin DB, Joshi SB. Modeling the long-term 2-8 °C stability profiles of a live, rotavirus vaccine candidate (RV3-BB) in various liquid formulations via extrapolations of real-time and accelerated stability data. Biologicals 2021; 75:21-28. [PMID: 34924260 DOI: 10.1016/j.biologicals.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/20/2021] [Accepted: 12/11/2021] [Indexed: 12/17/2022] Open
Abstract
To accelerate the formulation development of live-virus vaccine (LVV) candidates, more rapid approaches to rank-order formulations and estimate their real-time storage stability losses are needed. In this case-study, we utilize new and previously described stability data of a live, rotavirus vaccine candidate (RV3-BB) in three different liquid formulations to model and compare predicted vs. experimental RV3-BB stability profiles. Linear-regression extrapolations of limited real-time (2-8 °C) stability data and Arrhenius modeling of accelerated (15, 25, 37 °C) stability data provided predictions of RV3-BB real-time stability profiles (2-8 °C, 24 months). Good correlations of modeled versus experimental stability data to rank-order the RV3-BB formulations were achieved by employing (1) a high-throughput RT-qPCR assay to measure viral titers, (2) additional assay replicates and stability time-points, and (3) a -80 °C control for each formulation to benchmark results at each stability time-point and temperature. Instead of accumulating two-year, 2-8 °C storage stability data, the same rank-ordering of the three RV3-BB formulations could have been achieved by modeling 37°, 25°, 15° (and 2-8 °C) stability data over 1, 3 and 12 months, respectively. The results of this case-study are discussed in the context of accelerating LVV formulation development by expeditiously identifying stable formulations, estimating their shelf-lives, and determining vaccine vial monitoring (VVM) designations.
Collapse
|
|
4 |
1 |
14
|
Jerajani K, Wan Y, Hickey JM, Kumru OS, Sharma N, Pullagurla SR, Ogun O, Mapari S, Whitaker N, Brendle S, Christensen ND, Batwal S, Mahedvi M, Rao H, Dogar V, Chandrasekharan R, Shaligram U, Joshi SB, Volkin DB. Analytical and Preformulation Characterization Studies of Human Papillomavirus Virus-Like Particles to Enable Quadrivalent Multi-Dose Vaccine Formulation Development. J Pharm Sci 2022; 111:2983-2997. [PMID: 35914546 DOI: 10.1016/j.xphs.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/14/2022]
Abstract
Introducing multi-dose formulations of Human Papillomavirus (HPV) vaccines will reduce costs and enable improved global vaccine coverage, especially in low- and middle-income countries. This work describes the development of key analytical methods later utilized for HPV vaccine multi-dose formulation development. First, down-selection of physicochemical methods suitable for multi-dose formulation development of four HPV (6, 11, 16, and 18) Virus-Like Particles (VLPs) adsorbed to an aluminum adjuvant (Alhydrogel®, AH) was performed. The four monovalent AH-adsorbed HPV VLPs were then characterized using these down-selected methods. Second, stability-indicating competitive ELISA assays were developed using HPV serotype-specific neutralizing mAbs, to monitor relative antibody binding profiles of the four AH-adsorbed VLPs during storage. Third, concentration-dependent preservative-induced destabilization of HPV16 VLPs was demonstrated by addition of eight preservatives found in parenterally administered pharmaceuticals and vaccines, as measured by ELISA, dynamic light scattering, and differential scanning calorimetry. Finally, preservative stability and effectiveness in the presence of vaccine components were evaluated using a combination of RP-UHPLC, a microbial growth inhibition assay, and a modified version of the European Pharmacopoeia assay (Ph. Eur. 5.1.3). Results are discussed in terms of analytical challenges encountered to identify and develop high-throughput methods that facilitate multi-dose formulation development of aluminum-adjuvanted protein-based vaccine candidates.
Collapse
|
|
3 |
|