1
|
Hoffmann WA, Adasme R, Haridasan M, T. de Carvalho M, Geiger EL, Pereira MAB, Gotsch SG, Franco AC. Tree topkill, not mortality, governs the dynamics of savanna–forest boundaries under frequent fire in central Brazil. Ecology 2009; 90:1326-37. [DOI: 10.1890/08-0741.1] [Citation(s) in RCA: 325] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
|
16 |
325 |
2
|
Hoffmann WA, Geiger EL, Gotsch SG, Rossatto DR, Silva LCR, Lau OL, Haridasan M, Franco AC. Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecol Lett 2012; 15:759-68. [PMID: 22554474 DOI: 10.1111/j.1461-0248.2012.01789.x] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/05/2011] [Accepted: 04/02/2012] [Indexed: 12/01/2022]
Abstract
Fire shapes the distribution of savanna and forest through complex interactions involving climate, resources and species traits. Based on data from central Brazil, we propose that these interactions are governed by two critical thresholds. The fire-resistance threshold is reached when individual trees have accumulated sufficient bark to avoid stem death, whereas the fire-suppression threshold is reached when an ecosystem has sufficient canopy cover to suppress fire by excluding grasses. Surpassing either threshold is dependent upon long fire-free intervals, which are rare in mesic savanna. On high-resource sites, the thresholds are reached quickly, increasing the probability that savanna switches to forest, whereas low-resource sites are likely to remain as savanna even if fire is infrequent. Species traits influence both thresholds; saplings of savanna trees accumulate bark thickness more quickly than forest trees, and are more likely to become fire resistant during fire-free intervals. Forest trees accumulate leaf area more rapidly than savanna trees, thereby accelerating the transition to forest. Thus, multiple factors interact with fire to determine the distribution of savanna and forest by influencing the time needed to reach these thresholds. Future work should decipher multiple environmental controls over the rates of tree growth and canopy closure in savanna.
Collapse
|
Review |
13 |
245 |
3
|
Berry ZC, Emery NC, Gotsch SG, Goldsmith GR. Foliar water uptake: Processes, pathways, and integration into plant water budgets. PLANT, CELL & ENVIRONMENT 2019; 42:410-423. [PMID: 30194766 DOI: 10.1111/pce.13439] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 05/04/2023]
Abstract
Nearly all plant families, represented across most major biomes, absorb water directly through their leaves. This phenomenon is commonly referred to as foliar water uptake. Recent studies have suggested that foliar water uptake provides a significant water subsidy that can influence both plant water and carbon balance across multiple spatial and temporal scales. Despite this, our mechanistic understanding of when, where, how, and to what end water is absorbed through leaf surfaces remains limited. We first review the evidence for the biophysical conditions necessary for foliar water uptake to occur, focusing on the plant and atmospheric water potentials necessary to create a gradient for water flow. We then consider the different pathways for uptake, as well as the potential fates of the water once inside the leaf. Given that one fate of water from foliar uptake is to increase leaf water potentials and contribute to the demands of transpiration, we also provide a quantitative synthesis of observed rates of change in leaf water potential and total fluxes of water into the leaf. Finally, we identify critical research themes that should be addressed to effectively incorporate foliar water uptake into traditional frameworks of plant water movement.
Collapse
|
Review |
6 |
84 |
4
|
Gotsch SG, Nadkarni N, Darby A, Glunk A, Dix M, Davidson K, Dawson TE. Life in the treetops: ecophysiological strategies of canopy epiphytes in a tropical montane cloud forest. ECOL MONOGR 2015. [DOI: 10.1890/14-1076.1] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
|
10 |
63 |
5
|
Gotsch SG, Asbjornsen H, Holwerda F, Goldsmith GR, Weintraub AE, Dawson TE. Foggy days and dry nights determine crown-level water balance in a seasonal tropical Montane cloud forest. PLANT, CELL & ENVIRONMENT 2014; 37:261-72. [PMID: 23777598 DOI: 10.1111/pce.12151] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 06/04/2013] [Indexed: 05/13/2023]
Abstract
The ecophysiology of tropical montane cloud forest (TMCF) trees is influenced by crown-level microclimate factors including regular mist/fog water inputs, and large variations in evaporative demand, which in turn can significantly impact water balance. We investigated the effect of such microclimatic factors on canopy ecophysiology and branch-level water balance in the dry season of a seasonal TMCF in Veracruz, Mexico, by quantifying both water inputs (via foliar uptake, FU) and outputs (day- and night-time transpiration, NT). Measurements of sap flow, stomatal conductance, leaf water potential and pressure-volume relations were obtained in Quercus lanceifolia, a canopy-dominant tree species. Our results indicate that FU occurred 34% of the time and led to the recovery of 9% (24 ± 9.1 L) of all the dry-season water transpired from individual branches. Capacity for FU was independently verified for seven additional common tree species. NT accounted for approximately 17% (46 L) of dry-season water loss. There was a strong correlation between FU and the duration of leaf wetness events (fog and/or rain), as well as between NT and the night-time vapour pressure deficit. Our results show the clear importance of fog and NT for the canopy water relations of Q. lanceifolia.
Collapse
|
|
11 |
56 |
6
|
Gotsch SG, Geiger EL, Franco AC, Goldstein G, Meinzer FC, Hoffmann WA. Allocation to leaf area and sapwood area affects water relations of co-occurring savanna and forest trees. Oecologia 2010; 163:291-301. [PMID: 20058025 DOI: 10.1007/s00442-009-1543-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 12/08/2009] [Indexed: 11/28/2022]
Abstract
Water availability is a principal factor limiting the distribution of closed-canopy forest in the seasonal tropics, suggesting that forest tree species may not be well adapted to cope with seasonal drought. We studied 11 congeneric species pairs, each containing one forest and one savanna species, to test the hypothesis that forest trees have a lower capacity to maintain seasonal homeostasis in water relations relative to savanna species. To quantify this, we measured sap flow, leaf water potential (Psi(L)), stomatal conductance (g (s)), wood density, and Huber value (sapwood area:leaf area) of the 22 study species. We found significant differences in the water relations of these two species types. Leaf area specific hydraulic conductance of the soil/root/leaf pathway (G (t)) was greater for savanna species than forest species. The lower G (t) of forest trees resulted in significantly lower Psi(L) and g (s) in the late dry season relative to savanna trees. The differences in G (t) can be explained by differences in biomass allocation of savanna and forest trees. Savanna species had higher Huber values relative to forest species, conferring greater transport capacity on a leaf area basis. Forest trees have a lower capacity to maintain homeostasis in Psi(L) due to greater allocation to leaf area relative to savanna species. Despite significant differences in water relations, relationships between traits such as wood density and minimum Psi(L) were indistinguishable for the two species groups, indicating that forest and savanna share a common axis of water-use strategies involving multiple traits.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
53 |
7
|
Gotsch SG, Dawson TE, Draguljić D. Variation in the resilience of cloud forest vascular epiphytes to severe drought. THE NEW PHYTOLOGIST 2018; 219:900-913. [PMID: 29084355 DOI: 10.1111/nph.14866] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Epiphytes are common in tropical montane cloud forests (TMCFs) and play many important ecological roles, but the degree to which these unique plants will be affected by changes in climate is unknown. We investigated the drought responses of three vascular epiphyte communities bracketing the cloud base during a severe, El Niño-impacted dry season. Epiphytes were instrumented with sap flow probes in each site. Leaf water potential and pressure-volume curve parameters were also measured before and during the drought. We monitored the canopy microclimate in each site to determine the drivers of sap velocity across the sites. All plants greatly reduced their water use during the drought, but recovery occurred more quickly for plants in the lower and drier sites. Plants in drier sites also exhibited the greatest shifts in the osmotic potential at full saturation and the turgor loss point. Although all individuals survived this intense drought, epiphytes in the cloud forest experienced the slowest recovery, suggesting that plants in the TMCF are particularly sensitive to severe drought. Although vapor pressure deficit was an important driver of sap velocity in the highest elevation site, other factors, such as the volumetric water content of the canopy soil, were more important at lower (and warmer) sites.
Collapse
|
|
7 |
15 |
8
|
Gotsch SG, Crausbay SD, Giambelluca TW, Weintraub AE, Longman RJ, Asbjornsen H, Hotchkiss SC, Dawson TE. Water relations and microclimate around the upper limit of a cloud forest in Maui, Hawai'i. TREE PHYSIOLOGY 2014; 34:766-777. [PMID: 24990865 DOI: 10.1093/treephys/tpu050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The goal of this study was to determine the effects of atmospheric demand on both plant water relations and daily whole-tree water balance across the upper limit of a cloud forest at the mean base height of the trade wind inversion in the tropical trade wind belt. We measured the microclimate and water relations (sap flow, water potential, stomatal conductance, pressure-volume relations) of Metrosideros polymorpha Gaudich. var. polymorpha in three habitats bracketing the cloud forest's upper limit in Hawai'i to understand the role of water relations in determining ecotone position. The subalpine shrubland site, located 100 m above the cloud forest boundary, had the highest vapor pressure deficit, the least amount of rainfall and the highest levels of nighttime transpiration (EN) of all three sites. In the shrubland site, on average, 29% of daily whole-tree transpiration occurred at night, while on the driest day of the study 50% of total daily transpiration occurred at night. While EN occurred in the cloud forest habitat, the proportion of total daily transpiration that occurred at night was much lower (4%). The average leaf water potential (Ψleaf) was above the water potential at the turgor loss point (ΨTLP) on both sides of the ecotone due to strong stomatal regulation. While stomatal closure maintained a high Ψleaf, the minimum leaf water potential (Ψleafmin) was close to ΨTLP, indicating that drier conditions may cause drought stress in these habitats and may be an important driver of current landscape patterns in stand density.
Collapse
|
|
11 |
13 |
9
|
Gotsch SG, Davidson K, Murray JG, Duarte VJ, Draguljić D. Vapor pressure deficit predicts epiphyte abundance across an elevational gradient in a tropical montane region. AMERICAN JOURNAL OF BOTANY 2017; 104:1790-1801. [PMID: 29196341 DOI: 10.3732/ajb.1700247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
PREMISE OF THE STUDY Tropical Montane Cloud Forests (TMCFs) are important ecosystems to study and preserve because of their high biodiversity and critical roles in local and regional ecosystem processes. TMCFs may be particularly affected by changes in climate because of the narrow bands of microclimate they occupy and the vulnerability of TMCF species to projected increases in cloud base heights and drought. A comprehensive understanding of the structure and function of TMCFs is lacking and difficult to attain because of variation in topography within and across TMCF sites. This causes large differences in microclimate and forest structure at both large and small scales. METHODS In this study, we estimated the abundance of the entire epiphyte community in the canopy (bryophytes, herbaceous vascular plants, woody epiphytes, and canopy dead organic matter) in six sites. In each of the sites we installed a complete canopy weather station to link epiphyte abundance to a number of microclimatic parameters. KEY RESULTS We found significant differences in epiphyte abundance across the sites; epiphyte abundance increased with elevation and leaf wetness, but decreased as vapor pressure deficit (VPD) increased. Epiphyte abundance had the strongest relationship with VPD; there were differences in VPD that could not be explained by elevation alone. CONCLUSIONS By measuring this proxy of canopy VPD, TMCF researchers will better understand differences in microclimate and plant community composition across TMCF sites. Incorporating such information in comparative studies will allow for more meaningful comparisons across TMCFs and will further conservation and management efforts in this ecosystem.
Collapse
|
|
8 |
13 |
10
|
Gotsch SG, Draguljić D, Williams CJ. Evaluating the effectiveness of urban trees to mitigate storm water runoff via transpiration and stemflow. Urban Ecosyst 2017. [DOI: 10.1007/s11252-017-0693-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
|
8 |
6 |
11
|
Amici AA, Nadkarni NM, Williams CB, Gotsch SG. Differences in epiphyte biomass and community composition along landscape and within‐crown spatial scales. Biotropica 2019. [DOI: 10.1111/btp.12725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
6 |
5 |
12
|
Williams CB, Murray JG, Glunk A, Dawson TE, Nadkarni NM, Gotsch SG. Vascular epiphytes show low physiological resistance and high recovery capacity to episodic, short‐term drought in Monteverde, Costa Rica. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
|
5 |
5 |
13
|
Gotsch SG, Ellison AM. Seed Germination of the Northern Pitcher Plant, Sarracenia purpurea. Northeast Nat (Steuben) 1998. [DOI: 10.2307/3858588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
27 |
3 |
14
|
Ostertag R, Restrepo C, Dalling JW, Martin PH, Abiem I, Aiba S, Alvarez‐Dávila E, Aragón R, Ataroff M, Chapman H, Cueva‐Agila AY, Fadrique B, Fernández RD, González G, Gotsch SG, Häger A, Homeier J, Iñiguez‐Armijos C, Llambí LD, Moore GW, Næsborg RR, Poma López LN, Pompeu PV, Powell JR, Ramírez Correa JA, Scharnagl K, Tobón C, Williams CB. Litter decomposition rates across tropical montane and lowland forests are controlled foremost by climate. Biotropica 2021. [DOI: 10.1111/btp.13044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
4 |
2 |
15
|
Gotsch SG, Williams CB, Bicaba R, Cruz-de Hoyos R, Darby A, Davidson K, Dix M, Duarte V, Glunk A, Green L, Ferguson B, Muñoz-Elizondo K, Murray JG, Picado-Fallas I, Nӕsborg R, Dawson TE, Nadkarni N. Trade-offs between succulent and non-succulent epiphytes underlie variation in drought tolerance and avoidance. Oecologia 2022; 198:645-661. [PMID: 35279723 DOI: 10.21203/rs.3.rs-899788/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/19/2022] [Indexed: 05/25/2023]
Abstract
Epiphyte communities comprise important components of many forest ecosystems in terms of biomass and diversity, but little is known regarding trade-offs that underlie diversity and structure in these communities or the impact that microclimate has on epiphyte trait allocation. We measured 22 functional traits in vascular epiphyte communities across six sites that span a microclimatic gradient in a tropical montane cloud forest region in Costa Rica. We quantified traits that relate to carbon and nitrogen allocation, gas exchange, water storage, and drought tolerance. Functional diversity was high in all but the lowest elevation site where drought likely limits the success of certain species with particular trait combinations. For most traits, variation was explained by relationships with other traits, rather than differences in microclimate across sites. Although there were significant differences in microclimate, epiphyte abundance, and diversity, we found substantial overlap in multivariate trait space across five of the sites. We found significant correlations between functional traits, many of which related to water storage (leaf water content, leaf thickness, hydrenchymal thickness), drought tolerance (turgor loss point), and carbon allocation (specific leaf area, leaf dry matter content). This suite of trait correlations suggests that the epiphyte community has evolved functional strategies along with a drought avoidance versus drought tolerance continuum where leaf succulence emerged as a pivotal overall trait.
Collapse
|
|
3 |
1 |
16
|
Moore AFP, Antoine J, Bedoya LI, Medina A, Buck CS, Van Stan JT, Gotsch SG. Drought decreases water storage capacity of two arboreal epiphytes with differing ecohydrological traits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023:164791. [PMID: 37308022 DOI: 10.1016/j.scitotenv.2023.164791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
Arboreal epiphytes, plants that grow on trees, can significantly increase rainwater storage and evaporation (i.e., "interception") within canopies. Drought conditions may affect this hydrological role, as epiphytes' physiological responses change leaf properties that affect water retention. Drought-induced changes in epiphyte water storage capacity could substantially alter canopy hydrology, but have not been studied. We tested the effects of drought on the water storage capacity (Smax) of leaves and leaf properties of two epiphytes with distinct ecohydrological traits: resurrection fern (Pleopeltis polypodioides), and Spanish moss (Tillandsia usneoides). Both species are common in maritime forests of the Southeastern U.S.A., where climate change is expected to decrease precipitation in spring and summer. To simulate drought, we dried leaves to 75 %, 50 %, and ~25 % of fresh weight, and quantified their Smax in fog chambers. We measured relevant leaf properties: hydrophobicity, minimum leaf conductance (gmin; a measure of water loss under drought), and Normalized Difference Vegetative Index (NDVI). We found that drought significantly reduced Smax and increased leaf hydrophobicity for both species, indicating that lower Smax may be due to shedding of droplets. While the overall reduction in Smax did not differ between the two species, they exhibited distinct drought responses. Dehydrated T. usneoides leaves had lower gmin, demonstrating the ability to limit water loss under drought. P. polypodioides increased gmin when dehydrated, consistent with its extraordinary ability to withstand water loss. NDVI decreased with dehydration in T. usneoides but not P. polypodioides. Our results suggest that increased drought may have a dramatic effect on canopy water cycling by reducing the Smax of epiphytes. Reduced rainfall interception and storage in forest canopies could have widespread effects on hydrological cycling, thus understanding the potential feedbacks of plant drought response on hydrology is crucial. This study highlights the importance of connecting foliar-scale plant response with broader hydrological processes.
Collapse
|
|
2 |
|
17
|
Ferguson BN, Gotsch SG, Williams CB, Wilson H, Barnes CN, Dawson TE, Nadkarni NM. Variation in cloud immersion, not precipitation, drives leaf trait plasticity and water relations in vascular epiphytes during an extreme drought. AMERICAN JOURNAL OF BOTANY 2022; 109:550-563. [PMID: 35244206 DOI: 10.1002/ajb2.1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
PREMISE Epiphytes are abundant in ecosystems such as tropical montane cloud forests where low-lying clouds are often in contact with vegetation. Climate projections for these regions include more variability in rainfall and an increase in cloud base heights, which would lead to drier conditions in the soil and atmosphere. While recent studies have examined the effects of drought on epiphytic water relations, the influence that atmospheric moisture has, either alone or in combination with drought, on the health and performance of epiphyte communities remains unclear. METHODS We conducted a 10-week drought experiment on seven vascular epiphyte species in two shadehouses, one with warmer and drier conditions and another that was cooler and more humid. We measured water relations across control and drought-treatment groups and assessed functional traits of leaves produced during drought conditions to evaluate trait plasticity. RESULTS Epiphytes exposed to drought and drier atmospheric conditions had a significant reduction in stomatal conductance and leaf water potential and an increase in leaf dry matter. Nonsucculent epiphytes from the drier shadehouse had the greatest shifts in functional traits, whereas succulent epiphytes released stored leaf water to maintain water status. CONCLUSIONS Individuals in the drier shadehouse had a substantial reduction in performance, whereas drought-treated individuals that experienced cloud immersion displayed minimal changes in water status. Our results indicate that projected increases in the cloud base height will reduce growth and performance of epiphytic communities and that nonsucculent epiphytes may be particularly vulnerable.
Collapse
|
|
3 |
|
18
|
Vaughan D, Williams CB, Nadkarni N, Dawson TE, Draguljic D, Næsborg RR, Gotsch SG. Drought response strategies of vascular epiphytes in isolated pasture trees in a Costa Rican tropical montane landscape. AMERICAN JOURNAL OF BOTANY 2024; 111:e16423. [PMID: 39394737 DOI: 10.1002/ajb2.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 10/14/2024]
Abstract
PREMISE Vascular epiphytes of tropical montane cloud forests are vulnerable to climate change, particularly as cloud bases elevate and reduce atmospheric inputs to the system. However, studies have generally focused on epiphytes in contiguous forests, with little research being done on epiphytes on isolated pasture trees. We investigated water relations of pasture-tree epiphytes at three sites located below and above the elevation of the average cloud base in Monteverde, Costa Rica. METHODS We measured sap velocity and four microclimate variables in both the dry and wet season of 2018. We also measured functional traits, including pressure volume (PV) curves, predawn/midday water potential, and various lab-based water relations traits. We used linear mixed models to assess the correlation between microclimate and sap velocity in both seasons and ANOVA to assess the variation in PV curve and water potential variables. RESULTS The turgor loss point generally increased from the wettest to driest site. However, this trend was driven primarily by the increasing prevalence of leaf succulence at drier sites. Microclimatic variables correlated strongly with sap velocity in the wet season, but low soil moisture availability caused this correlation to break down during the dry season. CONCLUSIONS Our results emphasize the vulnerability of cloud forest epiphytes to rising cloud bases. This vulnerability may be more severe in pasture trees that lack the potential buffer of surrounding forest, but additional research that directly compares the canopy microclimate conditions between forest and pasture trees is needed to confirm this possibility.
Collapse
|
|
1 |
|
19
|
Van Stan JT, Allen ST, Aubrey DP, Berry ZC, Biddick M, Coenders-Gerrits MAMJ, Giordani P, Gotsch SG, Gutmann ED, Kuzyakov Y, Magyar D, Mella VSA, Mueller KE, Ponette-González AG, Porada P, Rosenfeld CE, Simmons J, Sridhar KR, Stubbins A, Swanson T. Shower thoughts: why scientists should spend more time in the rain. Bioscience 2023; 73:441-452. [PMID: 37397836 PMCID: PMC10308363 DOI: 10.1093/biosci/biad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 07/04/2023] Open
Abstract
Stormwater is a vital resource and dynamic driver of terrestrial ecosystem processes. However, processes controlling interactions during and shortly after storms are often poorly seen and poorly sensed when direct observations are substituted with technological ones. We discuss how human observations complement technological ones and the benefits of scientists spending more time in the storm. Human observation can reveal ephemeral storm-related phenomena such as biogeochemical hot moments, organismal responses, and sedimentary processes that can then be explored in greater resolution using sensors and virtual experiments. Storm-related phenomena trigger lasting, oversized impacts on hydrologic and biogeochemical processes, organismal traits or functions, and ecosystem services at all scales. We provide examples of phenomena in forests, across disciplines and scales, that have been overlooked in past research to inspire mindful, holistic observation of ecosystems during storms. We conclude that technological observations alone are insufficient to trace the process complexity and unpredictability of fleeting biogeochemical or ecological events without the shower thoughts produced by scientists' human sensory and cognitive systems during storms.
Collapse
|
Review |
2 |
|